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The secular equation for surface acoustic waves propagating on a monoclinic elastic half-space is
derived in a direct manner, using the method of first integrals. Although the motion is at first
assumed to correspond to generalized plane strain, the analysis shows that only two components of
the mechanical displacement and of the tractions on planes parallel to the free surface are nonzero.
Using the Stroh formalism, a system of two second order differential equations is found for the
remaining tractions. The secular equation is then obtained as a quartic for the squared wave speed.
This explicit equation is consistent with that found in the orthorhombic case. The speed of subsonic
surface waves is then computed for 12 specific monoclinic crystals20@1 Acoustical Society of
America. [DOI: 10.1121/1.1356703

PACS numbers: 43.35.PANN]

I. INTRODUCTION + px,—vt), wherep is unknown. Then, assuming a complex
exponential form for the displacement, the equations of mo-
The modern theory of surface acoustic waves in anisotjon are written in the absence of body forces and solved for
tropic media owes most of its results to the pioneering works, Finally, the boundary conditions yield the secular equation
of A. N. Stroh. Although his two seminal articlSwent  for . The principal mathematical difficulty arising from this
largely unnoticed for a long time, their theoretical implica- procedure is that the equations of motion yield a se(gén-
tions were far reaching, as many came to realize since thegjized plane strajror a quartic(plane straii for p which

publication. Among_others, CurrieBamett and Lothé, iy general are impractical to solve analytically, or even, as a
Chadwick and Smithwere able to use his “sextic formal- numerical scheme suggests in the sextic case, are actually

ism” to address many problems, such as the existence of gsoluble analytically(in the sense of Galois®
single real secular equation for the wave speed, the existence | 1994, Mozhaet* proposed “some new ideas in the
of a limiting velocity (the smallest velocity of body wave theory of surface acoustic waves.” He introduced a novel
solutions which defines “subsonic” and “supersonic” method based on first integril®f the displacement compo-
ranges for the speeds, or numerical schemes to compute th@nts, which bypasses the sexiic quartio equation forp
polarization vectors and the speed of the surface wave. Ang yields directly the secular equation. He successfully ap-
comprehensive review of these topics can be found in a texjjied this method to the case of orthorhombic materials. In
book by Ting® the present paper, generalized plane strain surface waves in a
However precise numerical procedures might be, thergnonoclinic crystal with plane of symmetry a§=0 are ex-
is still progress to be made in the search for secular equationgmined. The method of first integrals is adapted in order to
in analytic form. So far, explicit expressions have remained,e applied to the tractions components on the plaxges
few. The secular equation for surface waves in orthorhombic- const, rather than to the displacement components. This
crystals was established by Sveklas early as 1948 and switch presents several advantages. First, the equations of
later, Royer and Dieulesaffproved that it could account for - motion, the boundary conditions, and eventually the secular
16 different crystal configurations, such as tetragonal, hexaquation itself, are expressed directly in terms of the usual
ag_onalé or cubic. For monoclinic media, Chadwick andelastic stiffnesses. Second, it makes it apparent that one of
Wilson” devised a procedure to derive the secular equationne traction components is zero and thus that, in this paper's
which is given as “explicit[...] apart from the solution of  context, generalized plane strain leads to plane stress. Third,
[a] bicubic equation.” The object of this paper is to derive the poundary conditions are written in a direct and natural
one expression for the secular equation whichfuly ex-  manner, because they correspond to the vanishing of the
plicit, when the surface wave propagates in monoclinic crySgractions on the free surface and at infinite distance from this
tals. ] ~surface. Finally, this procedure can easily accommodate an
A classical approach to the problem of surface waves ifntermal constraint, such as incompressibifitf (the secular

anisotropic crystals is to consider that a wave propagatesqyation for surface waves in incompressible monoclinic lin-
with speedv in the directionx,; of a material axigon the early elastic materials is obtained elsewhere

free plane surfageof the material, and is attenuated along The plan of the paper is the following. After a brief
another material axig,, orthogonal to the free suiface, SO review of the basic equations describing motion in linearly
that the mechanical displacementis written asu=u(Xy  gjastic monoclinic materialéSec. I), the equations of mo-
tion are written down in Sec. Il for a surface acoustic wave
dElectronic mail: destrade@math.tamu.edu with three displacement components which depend on two
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coordinates, that in the direction of propagation and that irvhere theU’s depend onx, only. For these waves, the
the direction normal to the free surfa¢generalized plane planes of constant phase are orthogonal toxhexis, and
strain. Then in Sec. IV, it is seen that one of the tractionthe planes of constant amplitude are orthogonal to the
components is identically zeKplane stregs and that conse-  Xx,-axis.

quently, so is one of the displacement compondptane The stress-strain relatior{) reduce to

strain. For the remaining two traction components, coupled
equations of motion and the boundary conditions are derived
in Sec. V. Finally in Sec. VI, the method of first integrals is tr=1C1U1+CpUb+Cos(UL+iU ),

applied and the secular equation for acoustic surface waves

in monoclinic elastic materials is derived explicity. As a  tss=iC1dUs+CogUz+Cas(Ug+iU5), 5
check, the subcase of orthorhombic materials is treated, and
numerical results obtained by Chadwick and Wifsdar
some monoclinic materials are recovered. t1;=1C1gUs+ CogUb+Cag(U+iU ),

tiy=icyUs+CpUs+cie(Us+iUy),

t3o=CyqUstiCssUs, tiz=CysUs+icssUs,

where the prime denotes differentiation with respedtxg,
Il. PRELIMINARIES and thet's are defined by

First, the governing equations for a monoclinic elastic ~ @ij(X1.X2,X3,t) =Kt (o) *2172Y (i,j=1,2,3. (6)
material are recalled. The material axes of the media are 1pe boundary conditions of the probletsurface x,
denoted byx;, x,, andxs, and the plane;=0 is assumed _ free of tractions, vanishing displacementastends to
to be a plane of material symmetry. For such a material, th?nfinity) are
relationship between the nominal stressind the straire is

given by® ti2(0)=0, Ui(*)=0 (i=123. (7)
o €y Cip Ciz O 0 ciel. e -Finally,, the eqzlation.s of m,otio(ﬁ) rjduce to
02 Ciz C2 C3 0 0 Cof| . Ity +t=—pv°Uy, Itppttn=—pvU,,
o3| |C13 C3 Cm O 0 Co5)| ez it 15+ th=—pv2Us;. ®
723 0 0 0 cCau Cu O[] 20" At this point, a sextic formalism could be developed for
O31 0 O 0O cygy5 Cs5 O 2€31 the three displacement componeiits, U,, U, and the
L 912 Cie Cos Ciz O O Cegl- 2€1;] three traction components,, t,,, t3,. However, it turns out

- - (1)  thatone of these traction components is identically zero, as is

. . . now proved.
wherec's denote the elastic stiffnesses, and the strain com- P

ponentse's are related to the displacement components
U,, Uj through
2e;=(uj+u;) (i,j=123. (2) It is knc')wr? (see the Appendix of Stroh’s 1962 paﬁer,
) ) ) ) and also Ting’s booR,p. 66 that for a two-dimensional
The equations of motion, written in the absence of bodygeformation of a monoclinic crystal with axis of symmetry at
forces, are X3=0, the displacements, andu, are decoupled frono.
o =puig (=123, (3) Tak!ng uz=0 for_ surface waves, it follows from the stress—
i i ) strain relationship$5) thatt,3=1t5,=0. Here, an alternative
wherep is the mass density of the material, and the COMMay 00 of this result is presented.

denotes differentiation. . . Using Eqs(5),, (8)s, and(5)s, two first order differential
_F_lnally, _the _®<6 matrix ¢ given in Eq. (1) must be equations fott5, andUs are found as

positive definite in order for the strain-energy function den- _ ) ) ) _ )

sity to be positive. tao=iCssUstCalUs, t3=(Css— pv)Uz—icysUs.

(€)

These equations may be inverted to give andU3 as

IV. PLANE STRESS

Ill. SURFACE WAVES

2 2 —i
. : (C44Cs5— Cas— Caapv)U3=iCystaot Cadlsy,
Now the propagation of a surface wave on a semi-

infinite body of monoclinic media is modeled. In the same  (C4Cs5— Ca5— Caap?) U= (Cs5— pv2)tar— iCasthy.
manner as MozhaeV, the amplitude of the associated dis-
placement is assumed to be varying sinusoidally with time i
the direction of propagation,;, while its variation in the
direction x,, orthogonal to the free surface, is not stated
explicitly. Thus callingv the speed of the wave, ardthe Cudtart 2iC gt 50— (Cs5— pv?)tgr=0. 11
associated wave number, the displacement components
written in the form

(10

Differentiation of Eq.(10); and comparison with Eq.
r-'(10)2 yields the following second order differential equation
for ts,:

¥Re boundary condition$7) and Eq.(5), imply that the
. stress components;, must satisfyts(0)=ts,(0)=0. The
Uj(Xq,Xg, X3, 1) =Uj(x)ekavh (j=1,2,3), (4)  only solution of this boundary value problem for the differ-
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ential equatior(11) is the trivial one. Consequently,

tax(Xp)=0 for all x,, (12

and so it is proved that, as far as the propagation of surface
acoustic waves in monoclinic crystals with plane of symme-
try at x3=0 is concerned, generalized plane strain leads to
plane stress.

It is also worth noting that by Eq10);, plane stress
leads in turn to plane strain which, as an assumption, was not
needed a priori. This result was obtained by Strioha dif-

elasticity matrix N,
Tonning®® Explicitly, N;, N,, N3 are given b§

introduced by Ingebrigsten and

CNo= re 1 N, = S22 TS26| 1
! r, 0f 2 —S2  Ses 2
(15
Nl O
1o of ’

where the quantities,, rg, Sy, Syg, Sgs, aNd 7y are given in

ferent manner: [when| there is a reflection plane normal to terms of the elastic stiffnesses as

the x5 axis,[...] there is no coupling of the displacemant
with u; andu,; any two dimensional problem reduces to one
of plane strain ¢3=0) and one of anti-plane strairu{
= UZ: 0) V!

Now the equations of motion can be written for the re-
maining displacements and traction components.

V. EQUATIONS OF MOTION

Here, the equations of motion are derived, first as a sys-
tem of four first order differential equations for the nonzero
components of mechanical displacement and tractions, and
then as a system of two second order differential equations
for the tractions.

The stress—strain relatioifS) and the equations of mo-
tion (8) lead to a system of differential equations for the
displacement components;, U,, and for the traction com-
ponentst,, t,, defined by

ti1=typ, tr=ty. (13
This system is as follows

u'] iNg N2 |[u 14

t"] | —(Ng+X1) iNj[[t]

where u=[U;,U,]", t=[t;,t,]7, X=pv?, and the X2

_|C22 Cz6

_ 2
=C22Le6— C2

C2 Ces

=

1
lg= A (C22€16— C12C26) s rZZK (C12C66— C16C26)

1 .
Sij:KCij (|,J:2,6), (16)
1 Ci1 Ci2 Cip
=3 Ci2 Cyo Cpp
Ci6 C26 Cop

2 2
Ce6C12T C22C16~ 2C12C16C26

2
C22Cs6— Cop

=Cp1—

Throughout the paper, it is assumed that the matijx

+X1 is not singular, which means that the surface wave
propagates at a speed distinct from that givenpby= 7.

This assumption made, the second vector line of the system
(14) yields

u=i(Ng+X1)"INJt—(N3+X1) " t’. 17

matricesN;, N,, andN; are submatrices of the fundamental On the other hand, differentiation of the systét) leads to

"

u
t"

— N3 N; — Ny(Ng+X1)
| —i[(Ng+X1)N; + NI (Ng+X1)]

| (NaN+N,NT)
—(N3+X1)N,—NIN]

Now the second vector line of this equation yields, using Eq.
(17), a system of two second order differential equations for
t, written as

&t —i Biti— Yiktk=0, (19

where the symmetric 2 matricesea, B andy, are given

u
) (18
|
. 1 . . 1
allzﬁy @15=0, agp=— i’
A 2rg A 1 ro A
Bu=— X Bro=y— Py B22=0,
21
R rg 1 lale 2y
Y11= S22t X X' YTy S

by

&= —(Na+X1) ™1,
B=—Ny(Ng+X1)~1—(N3+X1)"INT, (20

=N~ Ny (Nz+X1) Ny,

2

. rs
=——+Sg.
Y22 7—X 66

The system(19) of second order differential equations

for the traction components is more convenient to work with

or, explicitly, by their components,
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TABLE I. Values of the relevant elastic stiffness@Pa, density(kg m3), and surface wave speéu s 2) for

12 monoclinic crystals.

Material C11 Coo Cio Cig Cog Cee p v
aegirite-augite 216 156 66 19 25 46.5 3420 3382
augite 218 182 72 25 20 51.1 3320 3615
diallage 211 154 37 12 15 62.2 3300 4000
diopside 238 204 88 —-34 -19 58.8 3310 3799
diphenyl 14.6 5.95 2.88 2.02 0.40 2.26 1114 1276
epidote 202 212 45 -14.3 0 43.2 3400 3409
gypsum 50.2 94.5 28.2 -75 -11.0 32.4 2310 3011
hornblende 192 116 61 10 4 31.8 3120 3049
microcline 122 66 26 -13 -3 23.8 2561 2816
oligoclase 124 81 54 -7 16 27.4 2638 2413
tartaric acid 46.5 93 36.7 -0.4 -12.0 8.20 1760 1756
tin fluoride 33.6 47.9 5.3 6.5 -5.1 12.9 4875 1339

nents, because the boundary conditions are simply writterf,;— (1+r,) X]{( 7—X)[( 7— X)(Sp2X— 1) +r3X]

using Egs(7), (5), and(13), as

ti(0)=ti()=0 (i=1.2. (22)

This claim is further justified in the next section, where the

secular equation is quickly derived.

VI. SECULAR EQUATION

+X[(9—X)See+ 3]}

=2reX3(p=X)[(7—X)Sp— Il 6]. (28

Hence the secular equation is obtained explicitly as the
quartic Eq. (28) in X=puv?, with coefficients expressed in
terms of the elastic stiffnesses through Eds).

For consistency, the orthorhombic case, whefg= c,g

Now the method of first integrals is applied to the sys-=c45=0, is now considered. In this case, the coefficients Eq.

tem (19). MozhaeV* defined the following inner product,

(o= | 5+ Toan, 23
and multiplying Eq.(19) by it; gives

a’ikajJF,éikEkjJF3’i|<':kj=0, (24
where the 4 2 matricesD, E, F, are defined by

Di=(itist), Eqg=(t ), Fi=(t,it)). (25)

By writing down Fy;+F, it is easy to check that the
matrix F is antisymmetric. Integrating directl¥,;+E;y,
and integratingD,;+ D by parts, and using the boundary
conditions Eq(22), it is found that the matrice& andD are
also antisymmetric. S®, E, andF may be written in the

form
0 D 0 E F
°=l-p o] Fl- of Fl-F o) @@

and Eq.(24) yields the following system of three linearly
independent equations for the three unknoinsE, F,

&11D + BE+ ¥1,F =0,
&1D+ BiE+ ¥1F =0, (27)

&22D + BzzE+ A’)/ZzF =0.

This homogeneous linear algebraic system yields nontrivial

solutions forD, E, andF, only when its determinant is zero,
which, accounting for the fact thait,,= 3,,=0, is equiva-

lent to By &11¥25— &2¥11) = — &22B11712, OF equivalently,
using the expressions Eq&1) and multiplying by X3(#
_ X)3,

1401 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001

(16) reduce to

re=0, r2:c_22’ Szzzc—%,
1 cZ, 29
S26=0, 56620—22, 772011_(;—22,

and the right hand-side of E@28) is zero, while the left
hand-side yields the equation

[7—(L+r)X{(7—X)%(sX— 1)

+X2[(7—X)See+ 5]} =0. (30

The nullity of the first factor in this equation corresponds to
B1,=0. Because for the orthorhombic case,= ¥1,=B11

=B,,=0 also, the equations of moticf19) then decouple
into

aqqt] + 11t =0, (3D

whose solutions satisfying the boundary conditions E2@).
are the trivial ones. The nullity of the second factor in Eq.
(30) corresponds to the well-studfet'’ secular equation for
surface waves in orthorhombic crystals,

oty + Yot ,=0,

Cn C2Ce6 Ces Ces
2\2 2
v v
_(P_) (1_"_)20_ (32)
Ce6 Cna

Finally, concrete examples are givésee Table )l In
each considered case, the secular equat®® has either
two or four positive real roots, out of which only one corre-
sponds to a subsonic wave. The elimination of the other roots
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is made by comparison with the speed of a homogeneous Nevertheless, some plane strain problems remain open
body wave propagating in the direction of tlk¢ material and it is hoped that the method exposed in this paper might
axis. For this body wave, the functions;(x,), t;(x,), (i help solve them analytically. Also, beyond mathematical sat-
=1,2), are constant, and the equations of motion imply thaisfaction, the derivation of an explicit secular equation pro-
the determinant of the ¥4 matrix in Eq.(14) is zero, con- vides a basis for a possible nonlinear perturbative analysis.
dition from which the body wave speed can be found. Also,

it is checked a posteriori that the valXe= » corresponds to

the supersonic range, and so that the malix- X1 is in-  ACKNOWLEDGMENTS

deed invertible within the subsonic range. For instance, for
tin fluoride, # is of the order of 3 10’, the secular equation
(28) has the roots 1339, 2350, 2513, and 3403, and the slo
est body wave in the; direction travels at 1504 m’s;
hencia a subsonic surface wave travels in tin fluoride at 133
ms -
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