Surface waves in orthotropic incompressible materials
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The secular equation for surface acoustic waves propagating on an orthotropic incompressible
half-space is derived in a direct manner, using the method of first integral200@ Acoustical
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I. INTRODUCTION equations for the components of timactions on surfaces
. . arallel to the free surface, rather than for the components of
The problem of elastic waves propagating on the fre

A . : he mechanical displacemefds in Ref. 11 In the latter
surface of a semi-infinite elastic body is a well-covered e~ .ase. the pressure appears in the svstem of differential equa-
search topic, initiated by Rayleidtin his study of seismic ’ P PP Y q

A . . . tions, whereas in the former case, it does not, and hence the
waves within the context of classical linear elasticity. Fornumber of unknowns is reduced from fo@ihe pressure and
anisotropic crystals, Barnett and Lothleave drawn on the P

. the components of the mechanical displaceméentthree
works of Strof to build a complete theory of surface waves .
. the components of the traction on surfaces parallel to the
based on an analogy between surface wave propagation a

d . "
) . ) ; i . ree surfacg Also, the mechanical boundary conditions are
straight line dislocation motion. Extensive coverage and sur-
veys of that topic can be found, for instance, in a textbook b

easily written, because they correspond to the nullity of these
77y Mraction components on the free surface of the half-space,
Ting.
Recently, there has been some interdsh the study of

and at an infinite distance from this surface. A third advan-
wave propagation in anisotropic materials subjected to théage of th|s apprpaph is that the assumption of plane Stiin

. . . ; not requireda priori.
constraint ofincompressibility Our purpose in the present

: ) . The paper is organized as follows. In Sec. I, the basic
paper is to establish the secular equation for surféagy- : : . ) :

. . equations governing the propagation of elastic waves in an
leigh) waves propagating on the free plane surface of an .S . .
. ; . L orthotropic incompressible material are recalled. In Sec. I,
incompressible _orthotropic half-space. A similar IOrOblemthese equations are written for the case of surface acoustic
was solved by Chadwiékwithin the context of finite elastic- q

o . . . waves. Then a system of six first order differential equations
ity: he considered the propagation of small-amplitude surfac?or the displacement and the traction components is derived.

waves in a finitely deformed incompressible material; the . .
. . Eventually a system of three second order differential equa-
deformation was static and purely homogeneous, and thg ~ .
. : : . . tions is found for the traction components. One of these three
strain energy function for the incompressible nonlinearly

elastic material was such that the deformed body presenteeaquat'onS is trivially solved when the boundary conditions

orthotropic anisotropy. Following Nair and Sotiropoulo dre applied. In Sec. 1V, the method of first integfafS is
P Py- 9 poulias, applied to the two remaining equations, and the secular equa-

the present article we focus on an orthotropic linearly eIastigE. . o : .
. . . . fion for surface waves in orthotropic incompressible materi-
material for which the usual stress—strain relations are modi-

. . - L als is quickly derived. As a check, the isotropic case is
fied to take the incompressibility constraint into account, bytrgated and Rayleigh's original equatlda recovered. Also

adding an isotropiq pressure term. The_sg_authors have argugcs correspondence between this paper’s result and Chad-
that “the assumptions of incompressibility and OrthOtrOpyWick's resulf is shown. Finally in Sec. V, possible develop-

are applicable to several materials as, for example, polymer :
. ! ments for this work are presented.
Kratons, thermoplastic elastomers, rubber composites when
low frequency waves are considered to justify the assump-
tion of material homogeneity, etc.” Other studies use thesd'- PRELIMINARIES
assumptions for the modeling of laminated composites made  First, the governing equations for an incompressible
alternatively with reinforcing (filler) layers and matrix orthotropic elastic material are recalled. The material axes of
(bindep layers? or with stiff fibers and incompressible epoxy the body are denoted by, x,, andx;. The equations may
matrices:’ be derived from the classical linearized equations of aniso-
Our primary purpose in this paper is to show that thetropic elasticity® by adding an isotropic pressure temd
method of first integrals used by Mozhadéwo derive, in a (say to the nominal stress (say. Hence, for orthotropic
rapid and elegant manner, the secular equation for surfadacompressible elastic bodiés,
waves in(compressible orthotropic materials, can also be
employed in the case of incompressible orthotropic materi-
als. This can be achieved by applying the method of first  5,,= —p+Cy,e11+ Copernt Cogeas,

integrals to a system of second order ordinary differential (1)
033= — P+ Cyz€11+ Cozennt Cazeas,

011= — P+ Cyi€11+ Coo€xp+ Coz€as,
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wheree’s denote the strain components, a0 the elastic ity tt,=—pv2Uy, itypytth=—pv2U,,

constants. The strain components are related to the displace- 10
H ro__ 2 H r_ ( )
ment components;, U,, Us through itigttz=—pv°Us, 1U;+U,=0.
&i=(uj+u; D2 (i,j=1,2,3. ) Note that a glassical approach would pe to sub;titute in
) _ - ) these last equations, the expressions obtained earlier for the
Finally, the incompressibility constraint reads as stress tensor components, which would lead to a system of

3) four second order differential equations for the unknown
_ o functionsU,, U,, Uz, P. Instead, the Stroh formalism is
and the equations of motion, in the absence of body forcesiow used to derive a system of six first order differential

Uy 1+ Up ot Uz 3=0,

are written as equations for the components of the displacement and the
. tractions on the surface,= const. Thus, introducing the no-
giji=pUiy (1=1,273), (4) tation R 9

wherep is the mass density of the material, and the comma t=t, (i=12.3) (1)
denotes differentiation. These are the equations established ' 2 (i=129),

by Nair and Sotiropoulo§.These authors also note that for and using Eqs(7)—(10), the system is found as

plane strain, the strain—energy function density is positive , . b ;L

definite when the following inequalities are satisfied: Ui=—iUp+(1Cety, Uj=—iU;, Ui=(1ICyots,

r__ _ _ 2 s
Cee=0, Cy;+Cy—2C1,=0. (5) t1=(C111t Cpp—=2C15—pv)U —ity, (12
ty=—pvU,—ity, t3=(Css—pv*)Us.

Now a system of three second order differential equa-
ll. SURFACE WAVES tions forty, t,, tsis derived as follows. First, the differen-

. . . _tiation of (12),_g yields relations between th§ and the
Here the equations of motion for a surface wave ina , - . "
A S .U, ti, or equivalently, using12),_; between the; and
semi-infinite body made of an orthotropic incompressible ) L :
. . . L . theu;, t{, t;. Then, substitution for tha; by their expres-
elastic material are established. Attention is restricted to. " ; . )
L . ion in terms of thet{, t; obtained from(12),_¢ is per-
propagating inhomogeneous surface waves which are Su?érmed Eventually it is found that tha, t', t, (i
sonic with respect to homogeneous body waves. The mode;1 5 3' ¢ sati y the followi " oot
ization of the surface wave follows that of Mozhddwhe — 1+2:3) Must satisfy the following equations,
plane wave propagates with speedwave numbek, and  (pv?)t]—i(Cyy+ Cpo—2C1,— 2pv )t}

corresponding displacement and pressure of the form
[Uj(xl,xz,xs)yp(xl,Xz,X3)]:[Uj(Xz),kp(xz)]eik(xlivt)

(1=1.2,3), (6)

+(Cy3+Cp—2C1p— pv?)(1—pv?/Cee)t, =0,
(C11+Cpp—2C1p— pv?)th+i(Cyqt+ Cpp— 2C1p— 2pvo)t]

. +pvzt2: 0! (13)
where theU’s and P are unknowns functions of, alone.
For these waves, the planes of constant phase are orthogor§adats — (Css— pv¥)t3=0,
to the x;-axis, and the planes of constant amplitude are or

: . . and are subject to the following boundary conditions:
thogonal to thex,-axis. The stress—strain relatiofis reduce : g y

to t(0)=tj(»)=0 (i=123). (14
tyy= — P+iCqyU;+ CyU}, The third differential equation in the syste(3) is de-
coupled from the two others, and can be solved exactly. Tak-
too=—P+iC,U;+CyU5, ing the boundary conditiond4); into account, it is seen that
7 -
tag= — P+iCqaUq+ CpaU}, () ta(x2)=0, for all x,, (15

_ , . B . and hence the motion is a pure m&téor the tractions on
t32=Cadls,  113=1CslUs,  11p=Cog(Uy +iU>), the surfacex,=const. Now the coupled system of the two
where the prime denotes differentiation with respedttg, ~ femaining equations may be solved.
and thet’s are defined by

i (X1, X2, X3) =kt (x)ekCa™v)  (§j=123). (8)  IV. SECULAR EQUATION

The surfacex, =0 is assumed to be free of tractions, and  For surface waves in compressible orthotropic materials,
the mechanical displacement and pressure are assumed toMezhaev* applied the method of first integrals to a system
vanishing a, tends to infinity. These conditions lead to the of two differential equations for the two nonzero components
following boundary conditions: of the mechanical displacement. Here a similar procedure for

_ _ . _ the two nonzero components, t, of the tractions on the
t2(0)=0, Ui(=)=0 (i=123, P(*)=0. (9 surfacex,=const is followed, and the secular equation for

Finally, the equations of motio#) and the incompress- surface waves in incompressible orthotropic materials is ob-
ibility constraint(3) reduce to tained in a direct manner.
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The differential equationg13),, for t;, t, are ex- proved that with respect to surface waves, results established

pressed as for the orthotropic case may be applied to 16 different con-
Wi , B _ _ figurations, including cubic, tetragonal, and hexagonal an-

G —i(5-28)tp+ (8- §)(1- Oty =0, isotropy.
(6—E)ty+i(6—28)t)+ £t,=0, (16) In order to justify the existence of a real wave speed, the

secular equatiofi23) is expressed as
f(§)=0, where f(§)=&—(6-6%(1-§). (24

As noted earlier, for traveling subsonic surface waves, this
secular equation is subject to

whereé and 6 are defined by
£=(pv?)ICq5, 6=(Cy1+Cp—2C1))/Cs. (17

The speed given bg=1 (that ispv2= Cgg) corresponds
to the speed of a bodihomogeneoyswave propagating in
the x,-direction, and gives therefore an upper bound for the  0=s¢<1. (25
speed of subsonic waves. Throughout the rest of the , o i
paper, it is assumed that the surface wave travels with /Ithin this range, it is easy to prove thais a monotonic
speed distinct from that given byé=é (that is ncreasing function of, and that
pv?# (C11+Cpr—2Cy1,)/Ceg). f0)=—&% f(1)=L1. (26)

Now multiplication of(16); by t; and(16), by t;, and
integration betweerx,=0 and x,=%, yields, using the It follows that the secular equation has a unique positive root

boundary condition$14), in the interval(25).
For consistency purposes, the main result established in
§t’(0)2—2i(5—2§)J tit}=0 this paper is related to previous studies. First, attention is
! ! given to the isotropic limit, wherC,;;=C,,=N+2u, Cq»
and (18) =\, Cge=pu, wherex andp are the classical Lammoduli
of elasticity. In this case, the secular equation, writtené&or
— 2
(5—g)t§(0)2+2i(5—2g)f tt)=0, =pvu, reduces to
h (4—91-§)=¢, or £-8£2+246-16=0,
so that (27
£t3(0)%+ (56— §)t5(0)?=0. (19  which is the well-known equation derived by Lord

Rayleigh! by considering the incompressible limik € )
for an isotropic linear elastic material.
Next, another previous result is put into perspective.
Chadwick has adapted the Stroh formalism to the theory of
, . prestressed incompressible nonlinearly elastic materials.
£11(0)%+2i(5-28) (5~ 5)(1—§)f t1t2=0, Considering a material whose stored energy function is such
that the body will present orthorhombic anisotropy once it

Similarly, multiplication of (16); by &t;+i(5—2¢)t, and
(16), by (6—&t,—i(6—2¢)t,, and integration between
X,=0 andx,=x, yields

and has been subjected to a large pure homogeneous deforma-
2ot D a _ tion, he obtained the secular equation for surface waves
(0=8)715(0)"=21(6=28)¢ | 111, =0, (20 propagating in a principal direction as
S0 that [2(B+C—0)—pv?][C(A—pv?)]*?
347 2 _a\3/1 ’ 2 __ _
‘f tl(o) +(5 g) (l f)tz(O) =0. (21) =(C—0')2—C(A—pvz), (28)

Equations(19) and (21) form a trivial system of two equa-
tions for the unknowns;(0)? andt5(0)?, whose determi-
nant must be zero:

whereA, B, C are constants defined in terms of the strain

energy, initial pressure, and initial stretch ratios, anis the
normal stress applied on the surface=0. When this sur-

8- H[(6-H*(1- 9 —¢]=0. (220 face is free of tractionsy=0 and after squaring, Eq28)

It follows that thesecular equations given by reduces to

(6-6)2(1-¢6)=¢&, (2B+C—A-7?)%(C~7*)=C(7°)? (29)
ie., where 7°=C—A+pv?. This equation may be formally

2.2 o 22 compared to Eq(23),, where »?, C, and B—A play the
(Caxt Cap=2C1om pr7) (Cos—pv7) =Coslpv)™. (23 )0 of pv2, Cgg, andCyy+ Cop— Ces— 2C1,, respectively.
This equation constitutes the main result of the paper: the Finally, Nair and Sotiropoul§shave obtained anm-
direct and explicit derivation of the secular equation for sub-plicit form of the secular equation for surface waves propa-
sonic surface waves propagating in a semi-infinite bodygating in a monoclinic incompressible material. By taking
made of orthotropic incompressible linearly elastic materialthe elastic coefficient€,5 andC,g to be zero in their analy-
It is worth mentioning that this result can be used for othersis, the reader may check that the explicit secular equation
types of anisotropy: Royer and Dieulesdihave indeed (23) is recovered.
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