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Abstract

Small-amplitude inhomogeneous plane waves propagating in any direction in a homogeneously deformed Hadamard
material are considered. Conditions for circular polarization are established. The analysis relies on the use of complex vectors
(or bivectors) to describe the slowness and the polarization of the waves.

Generally, homogeneous circularly polarized plane waves may propagate in only two directions, the directions of the
acoustic axes, in a homogeneously deformed Hadamard material. For inhomogeneous circularly polarized plane waves, the
number of possibilities is far greater. They include an infinity of ‘transverse waves’, as well as ‘longitudinal waves’, and the
superposition of transverse waves and longitudinal waves, where ‘transverse’ and ‘longitudinal’ are used in the bivector sense.

Each and every possibility of circular polarization is examined in turn, and explicit examples of solutions are given in every
case. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

When a homogeneous, isotropic, compressible elastic body is maintained in a state of finite homogeneous static
deformation, longitudinal waves are, in general, only possible when the propagation direction is along a principal
axis of strain. However, Hadamard [1] introduced a remarkable class of elastic materials characterized by the
property thatnfinitesimal longitudinal waves may propagate in every direction, irrespective of the basic static finite
homogeneous deformation. Many studies of the properties of Hadamard materials have been made [2—4]. Among
these we mention the result of Boulanger et al. [5], who showed that there are only two direttiansin—, called
‘acoustic axes’, along whicfinite-amplitude circularly polarized transverse waves may propagate. The acoustic
axesn® are the directions along the normals to the planes of central circular sections of the ekipBoitk = 1,
where the left Cauchy—Green tensor associated with the basic deformation is denBtethigyacoustic axes are
determined solely by the basic static deformation and are independent of the choice of material constants and of the
function which occurs in the strain-energy function describing the Hadamard material.

Here, consideration is restricted to the propagationfafitesimal plane waves in a Hadamard material maintained
in a state of finite static homogeneous deformation, and the primary emphasis of this papehEmmyeneous
plane waves. For these waves, the incremental displacamismf the formu = Aexpiw(NC - X — t), whereA
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andC are the amplitude and propagation bivectors, respectivetiie real frequency, an¥ the complex scalar
slowness. The propagation bivector= C* + iC™ is prescribed withC™ # 0, C~ # 0, andA and N are
sought such that satisfies the equations of motion [6]. This is equivalent to finding the eigenvaiie$ and
eigenbivectord\ of the acoustical tensdp(C): Q(C)A = pN—2A. Our special consideration is the determination
of circularly polarized inhomogeneous plane wave solutions. For these waves, the amplitude Bivectstr be
isotropic:A - A = 0. We find that there are two distinct sets of solutions, according as to whether@isiohosen

to be isotropic.

In the case wher€ is chosen non-isotropicC - C # 0), the ‘projection tensofll = 1 — {C® C/(C - C)}, may
be introduced. For thidI? = IT, IIC = 0. If n* - TInT = 0,n~ - TIn~ # 0, thenIIn™ is an isotropic amplitude
bivector. The orthogonal projection of the directional ellipseCofonto the plane of central circular section of
the B~ 1-ellipsoid with normaln™, is a circle. There is an infinity of such choices®@fand, therefore, an infinity
of circularly polarized inhomogeneous plane waves (similar comments apply @héh+# 0,n™ - I[In™ = 0,
nt . IIn* £ 0).

There are only two bivecto@ satisfyingC - C # 0,n*IInT = 0,n"IIn~ = 0. ThenlIn™ andIIn~ are both
isotropic amplitude bivectors with the same eigenvalue. Therénareircularly polarized inhomogeneous plane
waves in this case.

Finally, if the orthogonal projections of the directional ellipseCofipon either plane of central circular section
of theB~-ellipsoid is not a circlen® - [Tn* = 0, then the tensdkIB 111 admits two orthogonal non-isotropic
eigenbivector&\ ™, A—, with different eigenvalues. In this case, if the directional ellipsé & chosen to be similar
and similarly situated to a (non-circular) central elliptical section of a celt&illipsoid,C - MC = 0, whereM
depends upon the finite deformation, then there is a corresponding isotropic amplitude BHwvetich is parallel
to either{C/(C - C)¥/2} + iA* or {C/(C - C)¥/2} + iA~. There is a corresponding infinity of inhomogeneous
circularly polarized waves.

Turning now to the set of solutions for whi¢his isotropic,C - C = 0, itis seen that i€ is chosen isotropic and
also satisfie€ - B~1C = 0, so that the circle df lies in either plane of central circular section of fhel-ellipsoid,
then the corresponding amplitude bivectérare parallel taC. There are two such waves.

If C is isotropic,C-C = 0, and ifC - B~1C # 0, C - ®C = 0, where® is a certain real symmetric tensor
which depends only upon the basic deformation, then the circ lads in a plane of central circular section of
the ellipsoid associated widP. Corresponding to either choice Gf there are two linearly independent isotropic
eigenbivectors of)(C), each with the same eigenvalue. Thus, with either choicg,dhere argwo circularly
polarized waves which may propagate.

Finally, for isotropicC, if C-B~1C # 0, C - ®C + 0, all isotropic amplitude eigenbivectors are paralleCto
There is an infinity of such choices 6fand, therefore, also of circularly polarized plane waves.

Examples are presented for every type of solution. The paper is organized as follows.

In Section 2, we recall the equations governing the behavior of a Hadamard material subjected to a finite static
homogeneous deformation. For the constitutive equation, we follow Boulanger et al. [5] and choose to express the
Cauchy stress in terms d&f B, andB~1, whereB is the left Cauchy—Green strain tensor, rather than in terms of
1, B, andB? [3,4]. Then we assume that an infinite body of Hadamard material is subjected to a finite static pure
homogeneous deformation. We also introduce the acoustic axes in the deformed state, which play an important role
in the study of elastic waves.

Then in Section 3, we consider the propagation of small-amplitude inhomogeneous plane waves in a de-
formed body of Hadamard material. The waves are of complex exponential type and their associated ampli-
tude and slowness are described through the use of bivectors [6]. Explicitly, the perturbation is the real part of
AexpiwN(C - x — 1), wherew is the real frequency of the wave, aAdC, and N are complex quantities called
the ‘amplitude bivector’, ‘propagation bivector’, and ‘complex scalar slowness’, respectively. Incremental strain,
strain invariants, and stress are computed, leading to the derivation of the equations of motion and the acoustica
tensor.

Next, we seek circularly polarized solutions, which correspond [6] to the isotropy (@k. A - A = 0) or
equivalently to a double eigenvalue of the acoustical tensor.
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The case of circularly polarized waves with a non-isotropic propagation bivEdioe. C - C # 0) is treated in
Section 4. We prove that the existence of such waves is determined by a condition inkirspme tensors which
depend only on the finite static deformation. Transvefse@ = 0) waves are found, as well as waves which can
be decomposed into the superposition of a transvérsé€(= 0) wave and a longitudina(A C = 0) wave.

In Section 5, we consider circularly polarized inhomogeneous plane waves with an isotropic b&dctar
C - C = 0). We show that longitudinal waves can propagate. We also find all other circularly polarized waves.

Finally, in Section 6, we specialize our results to the case of circularly polanzradgeneous plane waves, when
Cisareal unitvectorinthe direction of propagation. The result established by Boulanger et al. [5] for finite-amplitude
plane waves is recovered: circular polarization for homogeneous waves occurs only in the directions orthogonal to
either of the planes of central circular sections of the ellipgoi®—1x = 1, whereB is the left Cauchy—Green
strain tensor of the finite static deformation.

2. Basic equations

2.1. Hadamard materials

We consider homogeneous isotropic hyperelastic materials of the Hadamard type. These are characterized by a
strain-energy densityy’, measured per unit volume of the undeformed state, given by [2]

2¥ =all + bl + f(1), (2.1)
wherea, b are two material constants. Alsg(l11) is a material function, and, 11, 11l are principal invariants of
the left Cauchy—Green tensBr

[ =trB, 2l = 1% — tr(B?), Il = detB, (2.2)

with B given by

ox; ax; ax;
B = FFT, B” = i x'l s EA = i , (23)
0Xa 0X4 X

wherex; are the coordinates at timef a particle whose coordinates &g in the undeformed state. The deformation
gradientF is such that deff > 0.
The constitutive equation for the Cauchy strefs a Hadamard material is [5]:

t =[all 172 4+ g(11Y?)]1 + bB — alll B2, (2.4)

where the functiory is defined by
g = (Y2 =12 . (2.5)
We exclude consideration of the special case whete0, when the material is a ‘restricted Hadamard material’

[7—10]. Then, assuming # 0, it may be shown [4,5] that in order for the strong ellipticity conditions to hold, the
following inequalities must be valid:

a>0, b >0, g >0. (2.6)

It is assumed throughout that these conditions are satisfied.
We also assume that the body of Hadamard material is free of stress in the undeformed state- Dhuken
B = 1. Then we must have [5]:

') = —(a+2b). 2.7)
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The equations of motion, in the absence of body forces, are
: . 0
oX =divt,  pi; = —2, (2.8)
3)6]'

wherex; are the acceleration components. Algois the current mass density, related to the densityf the
material in the undeformed state through

o = 11712p. (2.9)
2.2. Homogeneously deformed Hadamard material

Now, we assume that a Hadamard material undergoes a finite pure homogeneous static deformation, bringing
particle initially atX in the undeformed state toin the deformed state. Let (@ j, k) be a rectangular Cartesian
coordinate system defined by an origin O and the unit vectprk along the three directions of principal stretches.

Then the finite homogeneous deformation is given by

X = A Xi + A2Y] + A3Zk, (2.10)

wherei,, @ = 1, 2, 3 are the stretch ratios in each principal direction. Throughout the paper, it is assumed that
these ratios are distinct and ordered as

A1 > A2 > A3. (2.11)

LetF andB be the deformation gradient and left Cauchy—Green strain tensor corresponding to this deformation.
Then

F = diag(A1, A2, A3), B = diag(’2, 13, 13), (2.12)
and the corresponding strain invariaisl, I11 are
I=23423+423, N=a3+23054+2322%, 1l =22233 (2.13)
Inthis deformed state, two specific directions play an important role with respectto the propagation of finite-amplituc
homogeneous plane waves. They are the so-called acoustic axes, whose directions are the only ones along whic
finite-amplitude circularly polarized waves may propagate. It has been proved [5] for a Hadamard material that the

acoustic axes are the normals to the planes of central circular sectionsibfthedlipsoid (x - B~1x = 1), which
are along the unit vectors® defined by

Y
ni:ai:tyj, 0l2+y2=1, o= % Y =
A3t A
P27+ =050 yA+add - a3 =aBAN0g% - 92 (2.14)

These unit vectora® also appear in the Hamilton cyclic decomposition of Bé tensor [11]:
Bt=2%1-303% -2 AT ®n +n @n'], (2.15)

where® denotes the dyadic product.
Finally, the constant Cauchy stress teriBarecessary to maintain the finite homogeneous deformation (2.10) is
given by [5]:

T = [all 1172 4+ g(1NY?)]1 + bIN~Y2B — all1Y/2B2, (2.16)
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3. Small-amplitude plane waves in a deformed Hadamard material

Now we consider the propagation of an infinitesimal plane wave of complex exponential type in a Hadamard
material held in a state of static finite homogeneous deformation. The emphasis is on inhomogeneous plane waves.
We derive the equations of motion and the corresponding acoustical tensor.

3.1. Plane waves of complex exponential type

We assume that a plane wave of complex exponential type is superposed upon the finite static deformation
described in Section 2.2. This motion, which brings a particle fpgiven by (2.10), t& in the current configuration
of the material, is written as [6]:

X=X+ se(Ad*VCXD 4oy, (3.1)

Here,e is a small parameter, such that terms of ordeor higher may be neglected in comparison with first order
terms,A (amplitude) andC (propagation) are complex vectors (or ‘bivectors’ [G}) the real frequencyN the
complex scalar slowness, and ‘c.c.’ the complex conjugate.

An ellipse may be associated with a bivector [6]. Thus, if the biveDtbas real and imaginary pais™ andD™,
so thatD = DT +iD~, then the equation of the corresponding ellipse is Dt cosf + D~ sing, 0 < 6 < 27.
The ellipse is a circle iD - D = 0, and degenerates to a line segmei i D = 0.

In the case where the amplitude bivecfois such that

A-A=0, (3.2)

the wave described by (3.1) is circularly polarized and the amplitude biv&dsmaid to be ‘isotropic’. IAAA = 0,
the wave is linearly polarized, amfdlhas ‘a real direction’.
In general, the propagation bivec®@may be written as [11]:

C = mm +if, (3.3)

wherem is a real numbe¢n > 1) andrh, fi are real orthogonal unit vectors. By suitable choices of andf, all
possible propagation bivectoGsare determined [6].

3.2. Strain increments

Let the deformation gradient corresponding to the motion (3.1.H&is given by

_ % 1 .

o g_; = [1+ SelioNA ® Ce*NCX0) 1 coIF. (3.4)
The left Cauchy—Green tensBr= FFT and its invers&® 1 are, up to ordee, given by

B =B+ 1e{ioN[A ® BC +BC ® A]e*VCX=D 4 cc), (3.5)

Bl=B"'- lefioN[C®B A +B A ®Cle“NVC* ) 1 ccl). (3.6)
The corresponding strain invariantsil, TIT are given by

[ =1+¢elioNA -BC)e*NC*1 4 ccy, (3.7)

=11+ e{ioN[II(A - C) — lII(A - B~1C)] e ®NCx=D 4 cc), (3.8)

M =11+ elll{ioN (A - C) °NCX=1 4 cc). (3.9)

Finally, the mass density in the current configuration is
p=1"2p1— LefioN(A - C)NEXD 1 cc)y. (3.10)
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3.3. Equations of motion and acoustical tensor

The Cauchy stresE necessary to support the motion (3.1) is [5]:

T = [T Y2 4 g(TYH11 4 T Y28 — ol V?B2, (3.11)
Using (3.5)—(3.11), we find that
T =T+ LelioNT 2N 1 ccy, (3.12)

whereT is given by

T={A Og +a[trB"H(A-C)—2A-BLO)HIY21 - b(A - O)III~Y?B
+bl1I"Y2[A ® BC + BC ® A] — a(A - O)INY2B 1 + allY?[C  B~'A + B 1A ® C]. (3.13)

Now, in the absence of body forces, the equations of motion (2.8), written for the motion (3.1), &fe=dix. In
our context, they yield

—?N?T - C = —pa®II"Y2A or Q(C)A = pN2A, (3.14)
where theacoustical tensor Q(C) is given by
Q(C) = b(C-BC)L+ (lllg' +alhC®C+alll[(C-C)Bt—CoBC-BCxC]. (3.15)

By inspection of the form of)(C), we deduce two facts about the acoustical tensor.
First, the acoustical tensor is a complex symmetric tensor

Q=qQT, (3.16)

and, therefore, eigenbivectors@fC) corresponding to distinct eigenvalues will be orthogonal to each other (e.g.
[11)).
Second, the propagation bivectdris an eigenbivector af)(C) with eigenvalue)oNH*2 (say) given by

pNj? =b(C-BC) + (lllg’ +all)(C - C) —alll(C-B~*C). (3.17)

We now seek small-amplitude circularly polarized inhomogeneous plane wave solutions to the equations of
motion in a deformed Hadamard material. These solutions correspond to a double root of the acoustical tensor, o
equivalently [6], to an isotropic amplitude eigenbivectofor Q(C). We follow the usual [12,13] procedure for
inhomogeneous solutions of complex exponential type, which consists in separating the cases where the propagatio
bivectorC is non-isotropiaC - C # 0), from the cases where it is isotrogi€ - C = 0).

4. Circularly polarized inhomogeneous plane waves with a non-isotropic propagation bivector C

Here we determine all possible circularly polarized solutions of complex exponential type with a non-isotropic
bivectorC: C-C # 0. Itis seen that these waves can be constructed not only as ‘transverse’ waves—in the sense that
A - C = 0, but also as the superposition of a transverse wave and ‘longitudinal’ wave—in the serse that 0.

Explicit solutions are presented.
Assuming that the ellipse @ is not a circle, so that - C # 0, the acoustical tens@(C) may be written

Q(C) = b(C -BC)1+[lllg’ +all —allIC* -B~1C*]C ® C 4 alll(C - O)x, (4.1)
where
c* < x=NBM, MN=1-c*®c’' MN?=1, TC=0 (4.2)

= (C . C)1/2’
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Also ITA = A whenA - C = 0. The tensoll is called the ‘complex projection operator’. Detailed propertieH of
are given in Appendix A. In particular, propertiesyfre presented there.
We recall thatQ(C) has eigenbivecta€ with eigenvalueoN“‘2 given by (3.17):

Q(C)C = ,oNH_ZC. (4.3)

We wish to determine the other eigenbivectors. Four cases have to be considered (see Appendix A):

Case (iyn* -IIn" £ 0,n~ - IIn~ # 0.

Case (iaynt - IIn" =0,n= -IIn~ # 0.
Case (iib)n* -IIn" £ 0,n~ - IIn™ = 0.
Case (ii):nt - IIn" =0,n~ - TIn™ = 0.

4.1. Case(i): superposition of transverse and longitudinal waves

Here,n™ - TIn™ % 0,n~ - TIn~ # 0. It follows that the orthogonal projection of the ellipse@ipon either
plane of central circular section of tii1-ellipsoid is not a circle. It will be seen that the acoustical tensorthas
as an eigenbivector, so that the corresponding wave may be called longitudinal, and two further distinct orthogonal
eigenbivectors both orthogonal@ so that the corresponding waves may be called transverse. The transverse wave
slownesses are distinct, so that for a gignf two wave slownesses are to be equal, then this possibility will only
occur if the wave slowness for one of the transverse waves is equal to the wave slowness of the longitudinal wave.
It will be seen that there is an infinite number of possible choic&fof which this is so. Then the corresponding
waves are circularly polarized. Any possililehas an ellipse which is similar and similarly situated to the ellipse
in which the plane oC cuts a certaiM-ellipsoid, with the two exceptions when the planed€oincides with a
plane of central circular section of tiié-ellipsoid.

It may be shown (see Appendix A) thathas unit orthogonal eigenbivectoks”, given by

- +
" Kt £K " IIn

= Kf= —— 4.4
R+ KT K72 = 52’ “4

and corresponding distinct eigenvalués given by
85 =252 - 1032 = A7dlnT - Inh)(n™ - MnH]Y2KT . K~ £ 1). (4.5)

Also, A* are orthogonal t€, the other eigenbivector of, with corresponding eigenvalue zero.
So the eigenbivectors @(C) are:C, with eigenvaluepNH*Z, andA*, with corresponding distinct eigenvalues

bC - BC + alll(C - C)s*. Because the eigenvalues correspondindtoand A~ are distinct, the only way in
which an isotropic eigenbivector §f(C) will arise is when the eigenvalurﬁN”*2 is equal to one of the eigenvalues

corresponding to eithek™ or to A~. Thus, for an isotropic eigenbivector we ne@dio satisfy

[pN; % —bC - BC —alll(C - C)s*][pN; ? — bC - BC — alll(C- C)57] =0. (4.6)
Using (3.17) and (A.22), this equation may be written

C-MC =0, (4.7)
whereM is the tensor defined by

M = (g)?I11+ ag[ll1 — 1IB~Y + ¢°B. (4.8)
We note thaiM is coaxial withB and has eigenvalueeg, given by

n2 =@ +ag (Il — A% + 4?22, «=1,23 (4.9)
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Using (2.6) and (2.11), we find that
,u% > ,u% > ,u% > 0. (4.10)

Thus M is a positive definite tensor, determined by the finite static deformation, and the associatedgi¥adec1
is an ellipsoid.

So, now ifC is chosen to satisfy (4.7), i.e. if the plane of the ellips€aluts theM-ellipsoid in an ellipse which
is similar and similarly situated to the ellipse @f thenQ(C) has a double eigenvaIUﬁNH‘Z, corresponding to
the eigenbivecto€, and also either tA™* or to A~. Consequently, all isotropic eigenbivectérof the acoustical
tensorQ(C) must be orthogonal tA™ (or A™), be such tha# - A = 0, and consequently, up to a scalar factor, be
of the form

A=C*+iA~ or C*+iAt, (4.11)

with corresponding eigenvaluﬂvn_z. Of course, the amplitude bivectaiis a combination o€*, which corresponds
to a longitudinal wave in the sense that the amplitude bivector is ‘parallel’ to the propagation biveatat of the
amplitudeA~, which corresponds to a transverse wave in the sense that the amplitude biveésdorthogonal’
to the propagation bivectds.

There is an infinity of possible choices fGrwhich satisfy (4.7). Any elliptical section of thd-ellipsoid may be
chosen foIC, apart from the two central circular sections—we recall @atay not be isotropic. These ‘forbidden’
isotropicC, in the planes of central circular section of fifeellipsoid, are

Cy@+23)Y2 . ala+23g)Y?

— = itijF—>—k. 4.12
ha@+ 22072 T @+ a2 @12
4.2. Example: superposition of transverse and longitudinal waves

Let C be writtenC = C1i + C2j + C3k. The condition (4.7) i€212 + C2u3 + C3u3 = 0. Recalling (4.10) we
choose

C = poi +inij. (4.13)
Then
IIn* = —;‘L| +yk — i 2 (4.14)
Mz_Ml MZ_'U“l

It may be checked that* - IInT = n~ . IIn~, so thatA* are parallel tdIn* & IIn~. Thus,
. . . 2,2
i—i AT% — u2ag
At = M1 5?2 A™ =Kk, 8+:A+.XA+:A+.E%71A+:'M1 12 H“22 ,
(12 — u3)v 13 — ul
5" =A"-xA"=A"-B7lA" =32 (4.15)
Using (4.9), we have
C-C=ud—u2=a(3-23)(a+g13),
(03 =AD" + ag'll + a?(A3 + A )]
242
)‘1)‘2
PN % = (05 = DI + arz?)(a® - by). (4.16)

-1 2,2 —2
C-B™°C=pus5r] —,ul)L

It then follows that the difference between the eigenvalues correspondigridA~ is
pN;?—=bC-B~*C —alllxz°C-C = (g’ +all)C-C —aliC-B~'C —alllx;°C-C =0. (4.17)
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Thus the isotropic eigenbivector corresponding to the eigen\peik(h‘e2 for the above choice (4.13) & is

pol +ipaj |
i e Y (4.18)
(1§ — u3)1/?

Then, assuming that® — bg' > 0, the corresponding explicit solution is given by

x+e [L} e~ “NIHY cosw (Nypax — 1),

X =
(u3 — )12
= M“1 —wN
y=y+e| ——=5 | €I cosw(Njuax — 1),
|:(M§ — M%)1/2:|
7 =z4 ee NI sinw (Nypuax — 1). (4.19)

Here (x, y,z) = (A1X, A2Y, A3Z), Ny is given by (4.16)s, and 1, u2 by (4.9). One radius of the circle of
polarization is along, an orthogonal radius alongj + (Mi - Mg)l/Zk. The waves travel in the-direction with
speed Ny u2)~L, and are attenuated in tiyedirection.

4.3. Remark: special caseC-j =0

It is shown (Appendix A, Case (i)) thdInt andIIn~ are parallel ifC - j = 0. The eigenbivectors of are
thenC*, K, j. Using (4.1), the eigenbivectors @(C) are alscC*, K, j in this case. However, becausg = 0,
(Ci‘)2 + (Cg‘)2 =1, it follows that equating any two of the eigenvalue€fC) will lead to aC* which is a ‘real’
bivector—a scalar multiple of a real vector.

The conclusion is therefore thatGf- j = 0, then the only possible circularly polarized waves are homogeneous.

4.4. Case(iia): Transverse circularly polarized waves

Here,n~ -TIn~ 0 andn* - IIn* = 0, so thaflIn™ is isotropic. The projection, of the ellipse 6fupon the
plane of central circular section of e 1-ellipsoid with normah™, is a circle.

Using the results in Appendix A relating to Case (iia), we concludelht is an eigenbivector of(C) with
eigenvalugoN 2, given by

pN 2 =b(C-BC)+alll(C-Cvy, vi =riy2—21(z%2—279nT -IIn" = 1Iy. (4.20)
See (A.15). The eigenvrclll,uaf\ll2 is a double root of the secular equation because one root is zero and the sum of the
otherrootsis 2(C-BC) +alll(C-C)Iy = ZpNIZ. Allisotropic eigenbivectorsh | (say), ofQ(C), corresponding
to pNIZ, are parallel tdIn™, and orthogonal t€ (see Appendix A). Becaus®- A, = 0, we refer to these waves

as transverse.
Using the fact thah™ - IIn*T = 0, we deduce thaE has the form

C=pnt +s(Ant £ij), (4.21)

wherep ands are arbitrary constants. To relate this to the expression (3.8) fernrn+ifi, forwhichC.C = m2—1,
C - C = m?+ 1, we conclude that

C=vm2—1nt +&%(jant xij) = (@vVm?2 —1+y )i +tie’] + (yvVm2—1—a ek, (4.22)

wheref andm are arbitrary.
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Also, becausd\ | is parallel tolIn™, it may be written

AL =€ AnT +ij). (4.23)
Now, using (2.14), we find that
C-BC=1142, v, =vm2—14,, (4.24)
where
Ay =V — D32+ d /3,2 - 72 ig? - 1,2 (4.25)
Hence, from (4.20),
pNT2=1IAL(bAL +aVm? —1). (4.26)

Remark. Forbidden choices df.

Throughout, it has been assumed that- IIn™ = 0 andn~ - IIn~ # 0, and alsaC - C # 0. The condition
C-C # 0 meansthat given by (4.22) must be such thats£ 1 or equivalenthyC-n* £ 0. The propagation bivector
C given by (4.22) always satisfies™ - IIn™ = 0. However, as shown in Appendix A, Case (iii); - IIn” = 0
also, if eitherC -i = 0 or C - k = 0. There are thus three forbidden choiceafiven by (4.22)C-i = 0 or
C-k=0orC.-nt=0.

Any other choices of given by (4.22) lead to circularly polarized transverse waves, all of which have the common
amplitude bivectoA | given by (4.23). We note tha& | is determined byr*, which, in turn, is determined by
the basic static homogeneous deformation. There is thus an infinity of circularly polarized transverse waves all
propagating with common amplitude bivec®dr given by (4.23). We now present an example.

4.5. Example: transverse circularly polarized waves

We takefd = 0, and then from Eqs. (4.22)—(4.25), we deduce the following circularly polarized plane wave
solution

2,2
As S — A .
%= %e‘wl"ﬂ cosw(mN_p-X —1), j=y—eeYsino(mN.ip-x—1),
Az" =2y
Az2 =252
7= =2 e N cosw(mNLp- X —1). (4.27)
A — A7
3 1

Here(x, y, z) are the coordinates in the state of finite static deformation given by (2:18)]1 is arbitrary,N is
given by (4.22), with A = A, 2/m? — 1+ \/,\52 - Al—z\/xgz — %52, andp is the unit vector defined by

mp=jAnt4+m2—1nt, (4.28)

The radius of the circle of polarization @t, y, z) is e e=®N1¥, two orthogonal radii being alorjgandj A nT. This
wave propagates with spe@aiN, )1 in the direction ofp, and is attenuated in the direction joforthogonal to
p. Note thathomogeneous circularly polarized plane waves can only travel in the directidrof an acoustic axis
[5]. In the present example, the normal to the planes of constant phpseligch may lie in any direction in the
xz-plane, asn varies from 1 tax.
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4.6. Case (iib): further transverse circularly polarized waves

Here,n™ -IIn~ = 0,n* - IIn™ # 0. This is identical to Case (iia), whert andn~ are interchanged, i.e. when

y is replaced by-y. Accordingly, many details will be omitted.

Using the results in Appendix A relatlng to Case (iib), we conclude that the isotropic bivHetoris an
eigenbivector of)(C) with elgenvalueoNl say, given by

pN?=b(C-BC)+all(C-C)dy, DL =2r,%2—303%—279Hn" 1n", (4.29)
precisely the same form as (4.20), but different in substance. All isotropic eigenbivécltofsay) of Q(C),

corresponding tp N2, are parallel tdIn—, and orthogonal t&.
As in Case (iia), we deduce the form Gf

C=pn +5G AN £ij) = (@Vm2—1—yd)i+ie’] — (yv/m2 — 1+ a k. (4.30)
Also,

AL =€%G An +ij), (4.31)
and

C-BC=1I1A%2, 9, =vm2—14,, (4.32)
where

AL =vVm2—1,% - ei9\/x52 - x;z\/,\gz — 352 (4.33)
Then
pNT2=1NAL(bAL +avm? - 1). (4.34)

Thus, as in Case (iib), apart from the three cases whén= 0orC-k = 0orC-n~— = 0, any choice o€ given by
(4.30) will lead to a circularly polarized transverse wave. There is an infinity of such waves, all sharing a common
amplitude bivectoA | given by (4.31), which is determined by the basic static homogeneous deformation.

4.7. Case(iii): principal circularly polarized waves

Heren® .- IIn" = 0,n= - IIn™ = 0, so that botdIn* andIIn™ are isotropic. As shown in Appendix A, Case
(iii), the propagation bivecto€ must satisfy either

(@ C-i=0 or (b C-k=0. (4.35)
It is not possible to have bof® -i = 0, andC - k = 0, because the@ Aj = 0, and(C-n*)2 =0,C-C # 0. The
possible forms fo€C are

C=k =i, (4.362)
and

C=i+iyj. (4.36b)

As shown in Appendix AIIn* andIIn~ are linearly independent eigenbivectorsypfvith common eigenvalue
Az‘z. So these bivectoln™ andIIn™ are isotropic eigenbivectors of the acoustical tefe2), with eigenvalues

pN;2, pN, 2 (say) given by
b+ ar?)r3(r3 — 13
2 2
)‘1 - )‘3

pN; 2 =b(C-BC) +alll(C-C)r;% = , (4.37a)
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and
(b + ar3)r3(02 —12)
2 2 :
)‘1 - )‘3

pN, 2 =b(C-BC) +alll(C-C)az? = (4.37b)

Thus, in Case (a), corresponding@ayiven by (4.36a), there are three eigenbivector€faC), namelyC given
by (4.36a) with eigenvalue zerbIn* with eigenvalugo N2, andIIn—, also with eigenvalug N, 2. Here,IIn™
andIIn™ are, respectively, parallel to the bivectdrs andA, say, given by

Al=yi—akFij, Az=yitak=ij. (4.38)

Similarly, in Case (b), there are three eigenbivectors¢€) — C given by (4.36b), andIn™ andIIn~, also
with common eigenvaluyaN;z. Here, the bivector§In™ andIIn~ are again parallel to the bivectoAs andA,
given by (4.38).

It may be noted that there are two circularly polarized waves with amplitude bivectorBiohgiven by (4.38),
one with propagation bivector given by (4.36a), and complex slowness given by (4.37a), the otl@gwith by
(4.36b), and complex slowness given by (4.37b). Similarly, there are two circularly polarized waves with amplitude
bivector alondIn™ given by (4.38).

Using (2.6), we note thaytNa‘z, ,oNb_2 are both real and positive. Consequently, the direction of propagation,
which in general is parallel to the real part¥tC, see (3.1), is here parallel @', i.e.k in Case (a) o in Case
(b). Similarly, the direction of attenuation, which in general is parallel to the imaginary parCofsee (3.1), is
here parallel taC—, i.e.j. Hence, the direction of propagation is either along the principal axis corresponding to
the largest strain or along the principal axis corresponding to the least strain, whilst the direction of attenuation is
along the intermediate axis. Such inhomogeneous waves for which the planes of constant phase and the planes «
constant amplitude are normal to principal axes of the basic homogeneous strain, may be called ‘principal’ waves
[14]. Here, their circle of polarization has a radius along the intermediate axis and orthogonal radii along either
nt Ajorn= Aj.Here is a specific example.

Example (Principal circularly polarized waves). L& =i+ iyj.

In this case, we find the following two special principal circularly polarized waves,

¥ =x+eye Y cosw(Nyx — 1), j=y+ee M sing(Npyx —t),
7=z Feae ®MY cosw(Npx — 1), (4.39)

where(x, v, z) = (A1X, A2Y, A3Z) andw is arbitrary. For these waves, the propagation is in the directiontiog
attenuation in the direction ¢f and the speed i, %, whereN, is given by (4.37b).

Hence, we have investigated all possible circularly polarized inhomogeneous plane waves of small-amplitude
propagating in a finitely deformed Hadamard material, with a non-isotropic bivecitinere are two types of such
solutions. One type corresponds to waves whose amplitude bivedsorthogonal to the propagation bivector
C; another type corresponds to waves whose amplitude bivéciothe sum of a bivector orthogonal @and a
bivector parallel taC.

Central to this investigation was the use of the teddaiven by (4.2) for which it was assumed ti@at C £ 0.

Now we examine in detail the cases wh&eC = 0.

5. Circularly polarized inhomogeneous plane waves with an isotropic propagation bivector C

Here we seek circularly polarized inhomogeneous plane waves with an isotropic bi@ett@ seen that such
waves can propagate in the deformed Hadamard material as long as the dédatenaft similarly situated to either
of the central circular sections of tiie1-ellipsoid.
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5.1. The acoustical tensor

WhenC - C = 0, the acoustical tens@y(C) given by (3.15) reduces to
Q(C) =bh(C-BC)1+ (lllg +al)C®C —all[CBC+BC®C], (5.1)
andC is an isotropic eigenbivector ¢§(C) with eigenvalue)oNo_2 (say), given by
pNy? =b(C-BC) —alll(C-B'C). (5.2)

Because the eigenbivect@ris isotropic, the eigenvaIL;eN(;2 is at least double [11]. LethfZ be the remaining
eigenvalue of)(C), possibly equal t(pNO_Z. This quantity can be deduced from the equalit@(C) = 2,0N0_2 +
pN{?, using (5.1) and (5.2). Itis given by

pNy?=b(C-BC). (5.3)

Also, the bivectolC A B~1C is clearly an eigenbivector dp(C), with eigenvalueoN{z.
Hence, we see that the two eigenvalues given by (5.2) and (5.3) are distinct or equal according as to whether or
notC - B~1C is equal to zero. Consequently, we consider in turn the following cases:

1.c.-Blc=0,c.C=0;
2.C-Blc#0,C-C=0.

5.2. Case(1): C-C = C-B~1C = 0: longitudinal circularly polarized waves

In this casepNO‘2 = b(C - BC) is a triple eigenvalue d)(C). The condition
c.c=cC-Blc=o, (5.4)

means that the plane 6f must coincide with either plane of central circular section offihé-ellipsoid [11]. Let
A be an eigenbivector @(C). ThenQ(C)A = pNO_ZA is equivalent to

[alll(A - C)]B~IC = [(Illg’ +all)(A - C) —alll(A - B~1C)]C. (5.5)

HoweverB~1C andC can never be parallel. Indeed, if we HAd!C = A—2C for C = h+if\, thenB~1h = A2,
B~ = 22, andr—2 would have to be a double real eigenvalueBot, which is not possible. So, the coefficients
of B-1C andC in (5.5) must be zero, which yield in turn

A-C=0 and A-B~!C=0. (5.6)

ThereforeA is parallel toB~1C A C, which itself is parallel tcC.
We conclude that when (5.4) holds, all eigenbivector®(@E) are isotropic and parallel ©. The corresponding
circularly polarized waves are said to be longitudinal.

Example (Longitudinal circularly polarized waves). We I€t= p + ij, wherep = yi + k.

With this choice, (5.4) is satisfied, and all amplitude bivectors are paralfel ithe corresponding eigenvalue
pNg 2 is given by

pNy2=b(C-BC) = b, 2(12 — 2512 — 33 > 0. (5.7)
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Thus an example of a longitudinal circularly polarized wave propagating in a deformed Hadamard material is

¥ =x+eye N0V cosw(Nop - X — 1), j=y—ee NYsinw(Nop - X — 1),

Z=2z+eae MY cosw(Nop - X — t). (5.8)

Here (x, y,z) = (AMX, A2Y, A3Z) andw is arbitrary. This wave travels in the direction pfwith speedNO_l
given by (5.7), and is attenuated in the direction.ofhe vectorp andj are two orthogonal radii of the circle of
polarization.

5.3. Case(2): C-C=0,C-B1C # 0. Other circularly polarized waves

Because the ellipse @ is a circle, the condition
C-BlC 0, (5.9)

means thaC may not lie in either plane of central circular sections offiné-ellipsoid. An immediate consequence
of this condition and of the isotropy @ is that the bivector€, B~1C, andC A B1C are linearly independent, so
that any bivector may be written as a linear combinatioB,d~1C, andC AB~1C. In particular, the eigenbivectors
A of Q(C) with eigenvalueoNo‘2 must be orthogonal t&€ A B—1C, the eigenbivector of)(C) with eigenvalue

pN12 (# pNy?), and may therefore be written as
A =a1C+aB~1C (5.10)

for some complex scalasg, anda. We seek to determing; andas.
Now, Q(C)A = pN, ?A yields

{(gHINI(EC -B~IC) + a[lI(C - B~1C) — 1I(C - B™?C)]}az = 0O (5.11)
or using the Cayley—Hamilton theorem and the isotrop of
(C-®C)ap =0, where ® = (g)IIIB~!—aB. (5.12)

Therefore, there are two possibilities for the eigenbivectof@(@):

Case (ap2 = 0, and the eigenbivectors = «1C are all isotropic and parallel 16, and

Case (byy # 0,C - ®C = 0, and there is a double infinity of eigenbivectors, of the form (5.10).

Now we examine the consequences of this result for the possibility of circular polarization.

In Case (a), all eigenbivectors of the acoustical tensor with the eigeryyaﬂg% are isotropic and the correspond-
ing waves are therefore circularly polarized. They are longitudinal waves, in the sense that the amplitude bivector
A is parallel to the propagation bivectGr

In Case (b)e2 is arbitrary and we choose it to makegiven by (5.10) isotropic. We have, up to a complex factor,

A=C and A=(C-B2C)C-2C -BC)BC. (5.13)

Also, we note that it is always possible to find an isotropic bive€tstch that the equatidd- ®C = 0 is satisfied.
Indeed, becaus€ - C = 0, this equation can be written &- [® + $21]C = 0, whereg is an arbitrary real
scalar. By choosing sufficiently large, we can ensure that the diagonal tero#-[521] is positive definite, and
prescribe the circle o€ to lie in either of the planes of central circular sections of the ellipsoidd® + £21]
x=1.

As an example, we prescribe an isotropic bive@amnd write the corresponding longitudinal circularly polarized
wave.
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Example (Longitudinal circularly polarized wave). L& = g + ij, where the real unit vectay is defined by

B \/ (45 29t +a). \/ (2 —13)(g'23 +a)
02 -2 (gr2+a) (A2 = 23)(g'A3 + a)
It can be checked that this bivect@rsatisfiesC - B~'C £ 0 andC - C = C - ®C = 0.

The eigenvalu@No‘2 given by (5.2) reduces to
(A% — 2505 — 25 (bg — a?)
g’k% +a

pNy? = , (5.14)

and turns out to be real. Of course, its sign depends on whisghisrgreater or smaller tharf. We consider these
two possibilities in turn and introduce the quantity which has the dimension of a speed, and is defined by

(2 = 23) (13 — 23)|bg — a?|

. 5.15
g/)»§+a ( )

2
PVy =

If by’ > a?, then a solution to the incremental equations of motion in a deformed Hadamard material, corresponding
to a longitudinal circularly polarized wave, is given by

L (A5 —29)(g'r +a)
Xx=x+¢ 32— 32)(a 2
( 1 3)(8 2+a)

)LZ _ AZ /)\'2
i=z+ E\/Ek; );;Eg’xg j: a; e W cosk(q - X — vot). (5.16)
1~ Mg AT a

e W cosk(q - x — vor), y=y—ece Ysink(q-x — vor),

If by’ < a2, then a solution is given by

(A3 =23 (g'Af +a)
xte 52 _ 32) (/12
( 1 3)(8 5+ a)

e*kq'x cosk(y — vot), y=y—¢€ eﬁkq'x Slnk(y — vot),

X =

O‘% — A%)(g/)% +a) —kq-x
R ey S N €
A —2A3)(g'A5+a)

In both cases(x, y, z) = (AX, A2Y, A3Z) andk is arbitrary. Wherbg' > a2, the wave propagates in the direction
of g and is attenuated in the directionjpfvhenbg’ < a2, the wave propagates in the directiorj ahd is attenuated
in the direction ofg. In both cases, the wave travels with spegdjiven by (5.15) and is circularly polarized, the
vectorsq andj being two orthogonal radii of the circle of polarization.

Ccosk(y — vot). (5.17)

[\l

6. Concluding remarks: homogeneous plane waves

The analysis carried above (Sections 4 and 5) can be applied to the consideration of homogeneous plane waves,
simply by taking
C=n, (6.1)

wheren is areal unit vector in the direction of propagation of the wave. However, the case of an isotropic propagation
vectorC - C = 0 (Section 5) does not arise, because @MC = n-n = 1. Also, transverse and longitudinal waves



304 M. Destrade, M. Hayes/ Wave Motion 35 (2002) 289-309

cannot be superposed (Section 4.1) to form a circularly polarized homogeneous wave because the condition (4.7)
which reduces here 6 - MIC = n-Mn = n%uf + n%ug + n%u% = 0, cannot be satisfied. Now, for completeness,
we consider briefly the propagation of circularly polarized homogeneous plane waves.

First, we recall that homogeneous longitudinal plane waves may propagate in every dineictiatHadamard
material maintained in a state of finite static homogeneous deformation. Two transverse plane waves may alsc
propagate in every direction If the corresponding directions of polarization are albny forming an orthonormal
triad with n, then it has been shown [5] that B—1I = 0, so thath andl must lie along the principal axes of the
elliptical section of th& ~-ellipsoidx-B~1x = 1 by the central plane-x = 0. Here we present a simple derivation
of this result.

The acoustical tens@(n) for homogeneous plane waves may be obtained from the expression (3.Q&fpr
by replacingC with n. Indeed

Q) =b(n-Bn)l+ (llg +alhn@n+allBt—n®Bn—Bthxn), (6.2)
and

Q(mn = [b(n - Bn) + g’ 4+ all —alll(n - B~ n)]n. (6.3)
Becauséh, | are eigenvectors d@@(n), both orthogonal tm, we have

Q(mh = [b(n - Bn) +alll(h - B~ th)]h, (6.4)

QM)l =[b(n-Bn) +alll( - B~H]I. (6.5)

Thus, for circularly polarized homogeneous plane wamenpst be such that

h-B~th=1-B™1, h-B~1 =0, h-1=0, (6.6)
and hencen = n*, the normals to the planes of central circular sections oBthkellipsoid. The corresponding
speed of propagation, say, is given by

pv? = b(n-BN) +alllriy? = A;2(bA;% +alll). (6.7)

This result was established for finite-amplitude plane waves by Boulanger et al. [5]. We note that on reéplacing
by n* in (4.29),v; becomes., 2, and then we obtain (6.7) on replacing 2 by v2.
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Appendix A. Propertiesof the complex projection operator

Here we present some properties of the complex projection opé&tatiefined in (4.2). In particular, we determine
the eigenvalues and eigenbivectorgcE B 11, the tensor which arises in the expression (4.1) for the acoustical
tensorQ(C). Many of these properties may be found in [13], but are included here for completeness. The material
is self-contained.

If his areal unit vector, the defined by

¢=1-h®h,  ¢j=38—hih,, (A1)
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is a projection operator with the properties

$’=¢, ¢h=0 ¢l=1 VI:l-h=0. (A.2)
For any second order tensgyrthe projection ofj on the plane with unit normdd, is ¢ g ¢, with components
(@ 9D)ij = dimgmpdp) = (8im — hilum) gp(Sp — hph). (A.3)

In the case of bivectors, |€ be a non-isotropic bivecto€ - C # 0. LetC* = C/(C - C)Y/2. Then the complex
projection operatokl, defined by

N=1-C*®C* (A.4)
is such that corresponding to (A.1) for the real projection opekbtave have
>=11, Ic*=0, IID=D VD:D-C=0. (A.5)
We consider the complex tensprdefined by
x=MB"L  xj= (Gim— C;Cp)Brp(@s — CiC). (A.6)
whereB~1is real, positive definite, and symmetric.

A.1l. General propertiesof x

Recalling Eq. (2.15)
Bl=x%1-3032-2AInT®n +n @n'], (A7)
it follows that
X =12l = 332 = A7)[MnT @ IIn~ +IIn~ @ Mn™]. (A.8)
Equivalently, provideah* - IIn™ £ 0,n~ - TIn~ # 0, x may be written
X =252 = 332 = a7d)[nT - In)(n™ - MInH]Y KT @ K™+ K~ @ KT, (A.9)
whereK * are unit bivectors given by
. IIn"

= (A.10)

A.2. Eigenvaluesof x

We note thak is symmetric. AlsoyC* = 0, so thaty has one zero eigenvalue corresponding to its eigenbivector
C*. The other eigenvalues are the roetspf the quadratic,

o® — Iya +1ly =0, (A.11)

where

Iy=trx=tr@IB D) =trB~* - C* . B'C*,
2(C*-B~1Cc*)

2y = (Iy)? —tr(x?) = (Ix)* —tr(B~%) + 2C* - B~'C* — (C* - B~'C*)* = o

(A.12)

The condition that the quadratic have a double rootfts that

12 =4l (A13)
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or equivalently,
NtrB~t — C*.B~1C*)? = 4C* . BC*. (A.14)

If this is satisfied, the double root of the quadrati&iéay), given by

o1 1. _ 2C*-B7lcy ., 1., _ _
a=3lx=f5UB t_cr.Blch = — = Ayl — E()\32 — A5t TIn7), (A.15)
on using (A.8).
The quadratic has a zero root providég = 0 or

in which caseC* is any bivector whose ellipse is similar and similarly situated to a section @-&lépsoid, other
than a central circular section (throughout this Appendix A, it is assumeg@tisatot an isotropic bivector). There
is thus an infinity of possibl€* satisfying (A.16)—or equivalently an infinity of possible choice<dffor which
X has two zero eigenvalues. In this instance, the third eigenvallyeastr x.

The conditions that the quadratic have a double zero roatyare O, Iy = 0, or

C*.®C* =0, C*.BC* =0, (A.17)
where® is the real positive definite tensor given by
®=trBH1-B L (A.18)

In general, any central plane will cut the ellipsoids associated €itind withB in a pair of concentric ellipses.
There are two ‘exceptional’ central planes for which each of these ellipses is similar and similarly situated to the
other ellipse [11]. The two bivecto* which satisfy (A.17) may be obtained by choos@igto lie in an exceptional
central plane such that its ellipse is similar and similarly situated to the elliptical section@foh@® ellipsoid by

the exceptional plane. In general, there are just two bive@bdnahich satisfy (A.17). Thus, in general, there are

just two bivectorsC* for whichx has a triple zero root.

A.3. Eigenbivectorsof x
How to proceed to determine the eigenbivectorg ofill depend upon whether or nat" - TIn* andn— - TIn~
are zero. Accordingly, we consider the four cases:

Case ()nt-IIn* £0,n™ -IIn~ #0.

Case (iia)n* - IInt = 0,n~ - IIn~ # 0.
Case (ib)nt -TInt £0,n~-IIn™ = 0.
Case (ii):nt - IInt =0,n= -IIn” =0.

Case(i): nt -IIn™ £ 0,n~ - IIn~ # 0. The form of (A.9) immediately gives the eigenbivectorsyofVe have
XAT = sTAE, (A.19)

where

8t =22~ %(xgz —AD[T - TInH)(n™ - Tn)Y2KT - K™ £ 1),

N K+ K-

= AT KT KT (A.20)
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We note that [13]
MA* =A%, AT AT =1,
At.A” =0, At .BTIAT = TIAT) - B IIIA") = At . xA™ =0. (A.21)
We also note, on using (A.20) and (A.21), that

8T =87 =—(z2 = A7AHIT - MnT)(n~ - Mn)]Y2,
ST+ =AT . xAT+A” . xA"=AT .BAT+ A" B A" =trBt—C*.BIC*
C* . BC*

o (A.22)

1
= <m) —Cc*.B1c, §t6" = (AT -BTIATAT -BTIAT) =

Thus, the eigenbivectors of are A*, with corresponding distinct eigenvalug$, and C with corresponding
eigenvalue zero.

Remark. Special cas€ -j = 0.

We note that
_[CAMTAOIAICA (N AC)]

Int ATIn™ C.C? =[(n* An7).C*]C* = 2ay(C* - |)C*. (A.23)

Assuming that neitheFIn™ norIIn™ is zero, it follows that it is only whe@* - j = 0 thatlIn™ andIIn™ are
parallel. Assuming* - j = 0, then

Int = (@C} — yCH(C3i — Cik), IIn™ = (aC} + y C)(C3i — CiK). (A.24)

We digress to consider the possibility that3 = y C7, in which casdIn®™ = 0. Then, usingC; = 0, it follows
thatC* = Cjn™ /a so thalC* is a ‘real’ bivector, that is, a scalar multiple of a real vector. We exclude consideration
of this possibility because it leads to homogeneous waves. Similarly, we exclude consideration of the possibility
thataC3 = —y C7 so thatlIn™ = O and usingC; = 0, leads taC* = Cin~ /«, again a real propagation bivector,
leading to homogeneous waves.

Returning now to (A.24) withe2(C3)? # y2(C;)?, it follows from (A.9) that

X =157 — 05% =A@ (€57 — Y2 (CHIKT @ KT +15% @],
+
Kt = P—n = C}i — Cik. (A.25)
aC3; —yCy
The eigenbivectors of are nowC*, K+, andj, with corresponding eigenvalues)()z’2 — (Agz — AIZ)(aZ(Cg‘)Z -
yz(CI)Z), andxgz. Because&”; =0 and(Cik)2 + (C§)2 =1, it follows that equating any two of these eigenvalues
will lead to aC* which is a real bivector. So, isotropic eigenbivectors are only possible when the propagation
bivectorC is a real bivector. Accordingly, only homogeneous circularly polarized waves are possibl€yke.
Thus, this special cage - j = 0 plays no role in the study of circularly polarized inhomogeneous plane waves.
Case(jiia): n™ -IInt = 0,n~ -IIn~ # 0. In this casgIIn™) - (IIn™) = 0, so thalIn™ is an isotropic bivector.
Indeed, the orthogonal projection of the ellipseXifonto the plane with normal™ is a circle. So

xIIn* = v, IIn*, v =2,2 - 1032 —279Hnt - TIn~. (A.26)
We also havexC = 0, IIC = 0. It may be checked that there is no bivectbn™ + ¢IIn~ (¢ # 0) which is

orthogonal to the eigenbivect@ and forming withIIn™ a third eigenbivector ok. Thus,IIn" is an isotropic
eigenbivector ofy with eigenvalue; .
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Case (iib): n* - IInt £ 0,n~ - IIn~ = 0. This is similar to Case (iia). In this casHn~ is an isotropic
eigenbivector of with eigenvalue | . Also, of courselln™ is orthogonal taC, the eigenbivector with eigenvalue
zero.

Case (jiii): nT - IIn™ = 0,n~ - IIn~ = 0. Here botHIn™ andIIn™ are isotropic bivectors—the ellipse 6f
when projected upon a plane with normal is a circle, and so is its projection onto a plane with nornial Also,
nt.IInT =0,n"-IIn” =0, lead to

c*.(nt£n7) =0, (C* - ntH)2 =1, (A.27)

so that the ellipse oE* lies either in a plane with normal along™® + n~ (= 2«i, recall (2.14)), which is along the
internal bisector of the angle betwegh andn—, or in a plane with normal along™ — n~ (= 2yKk, recall (2.14)),
which is along the external bisector of the angle betweem@ndn~. Thus, there are only two cases:

@ C*-i=0, (by C*-k=0. (A.28)
In case (a), we find (recall (2.14)) from (A.27),
cr= UK 2202 yIInt = 57 2MIn* (A.29)
14

Also, these isotropic eigenbivectdin™ andIIn™ are linearly independent. IndeedIiin™ = uIIn~ for some
scalaru, then 0= nt - IIn*T = un* - IIn™ = 2ue?, so thatu = 0.
In case (b), we find
iy
c="2M ntin =22 xIInt = 4320t (A.30)
o

As before, the isotropic eigenbivectorsyflIn® andIIn™ are linearly independent. Thughas eigenvalues zero
and double eigenvaluika{2 (in case (a)), 0&52 (in case (b)), and corresponding eigenbivectoand isotropic
eigenbivectordIn™ andIIn. Of courseC, IIn™, andIIn~ are linearly independent. Indeed, if for some scalars
py C];

C* = plIn™ +¢IlIn™, (A.31)
then
0=TIC* = pIInT +4IIn", (A.32)

so thatlIn™ is a scalar multiple ofIn~. But we have already seen tHdn™ andIIn~ are linearly independent.
ThusC, IIn™, andIIn™ are linearly independent.
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