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Abstract

Small amplitude inhomogeneous plane waves are studied as they propagate on the free surface of a predeformed semi-in/nite
body made of Bell constrained material. The predeformation corresponds to a /nite static pure homogeneous strain. The
surface wave propagates in a principal direction of strain and is attenuated in another principal direction, orthogonal to the free
surface. For these waves, the secular equation giving the speed of propagation is established by the method of /rst integrals.
This equation is not the same as the secular equation for incompressible half-spaces, even though the Bell constraint and the
incompressibility constraint coincide in the isotropic in/nitesimal limit. ? 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The so-called ‘Bell constraint’ was established em-
pirically by Bell in the 1980s, by conducting a great
body of experiments on certain metals [1]. Having
subjected various annealed metals to di<erent /nite
deformations, he concluded that the condition trV=3,
where V is the left Cauchy–Green tensor, was always
satis/ed for his samples. Later, Beatty and Hayes [2]
viewed this constraint as a purely kinematical one and
used the theory of constrained /nite elasticity to model
the behaviour of the materials studied by Bell; it turned
out that their theoretical predictions agreed remark-
ably with the experimental results (a detailed account
of these advances, as well as references to Bell’s orig-
inal articles, can be found in a recent review article
by Beatty [3].) Hence a new branch of constrained
/nite elasticity was born and a substantial literature
followed, on topics such as: /nite homogeneous [2]
and non-homogeneous [4] deformations, small defor-
mations superimposed on large [5], universal relations
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[6] and motions [7], non-linear fracture mechanics [8],
stability analyses [9–12], Cauchy stress /eld analy-
sis [13], etc. Small amplitude waves propagating in a
/nitely deformed ‘Bell material’ were examined in an
unbounded media for the case of homogeneous plane
waves [5,11] and in a long circular cylinder for the
case of torsional waves [14]. The object of this paper
is to establish the equation giving the speed of waves
propagating on the plane free surface of a homoge-
neously deformed half-space made of Bell material
(the secular equation).
Elastic surface waves on solid half-spaces were

/rst studied by Rayleigh [15] in the context of lin-
ear isotropic elasticity. Subsequently, the theory of
elastic surface waves evolved in a parallel manner
in the /elds of linear anisotropic elasticity [16,17]
and of /nite elasticity under initial stress [18,19].
Interestingly, although Rayleigh treated the case of
incompressibility in his paper, surface waves propa-
gating in internally constrained, triaxially prestressed,
elastic materials received only tardy attention (see
for instance Dowhaik and Ogden [20], Chadwick
[21], or Rogerson [22].) Recently, Destrade proposed
a method, inspired by Mozhaev [23], to derive the
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explicit secular equation for surface acoustic waves
in monoclinic elastic crystals [24]. In that paper, it
was claimed that taking the /rst integrals of the trac-
tions rather than of the displacements (as in [23]) to
obtain the secular equation was a procedure that could
‘easily accommodate internal constraints’. Here, this
claim is validated by the consideration of the Bell
constraint for small amplitude surface waves trav-
elling in a principal direction of a homogeneously
deformed half-space.
In Section 2, the incremental equations correspond-

ing to a small amplitude displacement superposed on
a large deformation [5] are recalled. These equa-
tions are specialized to the consideration of a sur-
face wave in a deformed Bell material in Section 3,
where the equations of motion and the boundary
conditions are written for the tractions on planes
parallel to the free surface. Next in Section 4, the
secular equation is obtained from the vanishing of a
2× 2 determinant. This secular equation is compared
to that obtained for incompressible 2nitely prestressed
bodies [20] and it is found that one secular equation
may not be deduced from the other. However, be-
cause a Bell material behaves in in2nitesimal motions
like an incompressible one [2], the secular equation
written when the half-space is undeformed should co-
incide with that found by Rayleigh for incompressible
isotropic materials — it is proved that such is indeed
the case.

2. Small motion superposed on a large deformation

Beatty and Hayes established the equations govern-
ing the elastic behaviour of a Bell constrained material
subjected to /nite deformations [2,4], as well as those
describing small deformations superimposed on large
[14]. Here, their results are recalled in the context of
small amplitude plane waves propagating in a homo-
geneously deformed Bell constrained half-space.
For a general hyperelastic Bell material, the strain

energy density� depends only on I2 and I3, the respec-
tive second and third invariants of the left Cauchy–
Green tensor V,

�= �(I2; I3); where I2 = [(trV)2 − tr (V2)]=2;

I3 = detV: (2.1)

Also, the Bell constraint imposes that I1, the /rst in-
variant of V, satisfy

I1 = trV = 3 (2.2)

for all deformations and at all times. Because of this
constraint, a workless stress pV is introduced in the
stress–strain relationship, where the scalar p is to be
determined from the equations of motion and bound-
ary and initial conditions. Hence the constitutive equa-
tion relates the Cauchy stress tensor T to the left
Cauchy–Green tensor as [2]

T= pV + !01+ !2V2: (2.3)

Here, the material response functions !0 and !2 are
de/ned by

!0 =
@�
@I3
; !2 =− 1

I3

@�
@I2

(2.4)

and these quantities should satisfy the Beatty–Hayes
A-inequalities [2]

!0(I2; I3)6 0; !2(I2; I3)¿ 0: (2.5)

A solid half-space made of hyperelastic Bell ma-
terial is now considered. In an isotropic undeformed
reference state, the positions of its material particles
are denoted by X. Next, the half-space is subjected to
a /nite static pure homogeneous deformation, so that
particles originally at X have moved to x = x(X; t).
Using the principal directions of strain as a rectangu-
lar Cartesian coordinate system, this deformation is
expressed as x
=�
X
 (
=1; 2; 3, no sum), where the
principal stretch ratios �1; �2; �3 satisfy �1+�2+�3=3,
according to (2.2). Also, for this deformation,

I2 = �1�2 + �2�3 + �3�1; I3 = �1�2�3: (2.6)

The surface x2 = 0 is assumed to be free of tractions
and the following Cauchy stress tensor T0 satis/es the
equations of equilibrium [2]:

(T0)

 = p0�
 + !0 + �2
!2; 
= 1; 2; 3;

(T0)
� = 0; 
 �= �; (2.7)

where !0 and !2 are evaluated at I2, I3 given by (2.6),
and

p0 =−(!0 + �22!2)=�2: (2.8)
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Next, the particle at x undergoes an incremental dis-
placement �u(x; t) (with associated incremental con-
straint parameter �p∗(x; t)), so that this further motion
is of the form x+ �u(x; t) (and the constraint param-
eter is of the form p0 + �p∗(x; t)), where � is a small
parameter. Throughout the rest of the paper, terms of
order higher than � are neglected. The corresponding
incremental Cauchy stress T∗ is given by Beatty and
Hayes [5]:

T ∗
11 = �1p

∗ + (�1p0 + C11)
@u1
@x1

+C12
@u2
@x2

+ C13
@u3
@x3
;

T ∗
22 = �2p

∗ + C21
@u1
@x1

+ (�2p0 + C22)
@u2
@x2

+C32
@u3
@x3
;

T ∗
33 = �3p

∗ + C31
@u1
@x1

+ C32
@u2
@x2

+(�3p0 + C33)
@u3
@x3
;

T ∗
12 = b3

(
�22
@u1
@x2

+ �21
@u2
@x1

)
;

T ∗
23 = b1

(
�23
@u2
@x3

+ �22
@u3
@x2

)
;

T ∗
13 = b2

(
�23
@u1
@x3

+ �21
@u3
@x1

)
; (2.9)

with

C
� = 2�2
�
�!2 − �2�(!02 + �2
!22)

+ �1�2�3(!03 + �2
!23);

b� = !2 + p0=(3− ��); (2.10)

where the derivatives !0�, !2� (�=2; 3) of the mate-
rial response functions !0, !2 are taken with respect
to I� and evaluated at I2, I3 given by (2.6). The incre-
mental Bell constraint yields

�1
@u1
@x1

+ �2
@u2
@x2

+ �3
@u3
@x3

= 0; (2.11)

and the components of the incremental traction on
planes parallel to the free surface x2 = 0 are [5]

t∗12 = T
∗
12 − (�1p0 + !0 + �21!2)

@u2
@x1
;

t∗22 = T
∗
22;

t∗32 = T
∗
32 − (�3p0 + !0 + �23!2)

@u3
@x2
: (2.12)

Finally, the incremental equations of motion read

@T ∗
ij

@xj
= �

@2ui
@t2
; (2.13)

where � is the material density of the half-space, when
it is maintained in the state of static homogeneous
deformation.

3. Principal surface waves

Now the analysis of small amplitude motions in a
deformed Bell half-space is specialized to the consid-
eration of a plane wave propagating sinusoidally on
the free surface x2 = 0, in the x1-direction, with atten-
uation in the x2-direction. Without loss of generality,
the component u3 is taken to be zero.
Hence, the wave may be modelled as

u�(x1; x2; t) = U�(x2)eik(x1−vt);

p∗(x1; x2; t) = kP(x2)eik(x1−vt); (3.1)

where � = 1; 2; k is the real wave number, v is the
real wave speed of propagation, and the speci/c de-
pendence of the amplitudes U� and P on x2 need not
be speci/ed [23]. Consequently, the incremental Bell
constraint (2.11) now reduces to

i�1U1 + �2U ′
2 = 0; (3.2)

where, here and henceforward, the prime denotes dif-
ferentiation with respect to kx2. The other incremental
expressions recalled in Section 2 are also simpli/ed.
The incremental Cauchy stress components are now

given by

T ∗
11 = k[�1P + i(�1p0 + C11)U1 + C12U ′

2];

T ∗
22 = k[�2P + iC21U1 + (�2p0 + C22)U ′

2];
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T ∗
33 = k[�3P + iC31U1 + C32)U ′

2];

T ∗
12 = kb3(�

2
2U

′
1 + i�21U2);

T ∗
32 = T

∗
13 = 0: (3.3)

The third incremental equation of motion (2:13)3 is
automatically satis/ed, while the two others reduce to

iT ∗
1� + (T ∗

�2)
′ =−k�v2U�; (� = 1; 2): (3.4)

Also, the expressions for the tractions t∗12, t
∗
22, t

∗
32 (2.12)

have reduced to

t∗12 = T
∗
12 − ik(�1p0 + !0 + �21!2)U2;

t∗22 = T
∗
22; t∗32 = T

∗
32 = 0: (3.5)

Now a system of four /rst-order di<erential equa-
tions can be written, for the non-zero displacements
U1, U2, and for the quantities t1, t2, de/ned in terms
of the tractions as

t1 = k−1t∗12; t2 = k−1t∗22: (3.6)

Taking Eqs. (2.8), (2.10), and (3.2) into account, this
system can be written as

t′1 + i�1�−1
2 t2 − (�1�−1

2 C − �v2)U1 = 0;

t′2 + it1 − [b3(�21 − �22)− �v2]U2 = 0;

U ′
2 + i�1�−1

2 U1 = 0;

b3�22U
′
1 + ib3�22U2 − t1 = 0; (3.7)

where C is de/ned by

C = �−1
1 �2C11 + �1�−1

2 C22 − C12

−C21 − 2!0 − (�21 + �
2
2)!2; (3.8)

and the following expression for b3�22, obtained from
(2.10) and (2.8), has also been used:

b3�22 =−(!0 − �1�2!2)=(1 + �1�−1
2 ): (3.9)

The system must be solved when subject to the fol-
lowing boundary conditions. First, the surface x2 = 0
remains free of traction, so that

t∗�2(0) = 0; (� = 1; 2) (3.10)

and second, the displacement must vanish at in/nite
distance from the free surface, so that

U�(∞) = 0; P(∞) = 0; (� = 1; 2): (3.11)

4. Secular equation

Here the secular equation is derived by applying the
method of /rst integrals to the system (3.7).
Proceed as follows. First, rewrite the boundary

conditions (3.10)–(3.11) as

t�(0) = t�(∞) = 0; (� = 1; 2): (4.1)

These last conditions, together with (3:7)1;2, imply that

t′�(∞) = 0; (� = 1; 2): (4.2)

Next, obtain U� in terms of t�, t′� from (3:7)1;2, and
U ′
� in terms of U�, t� from (3:7)3;4, or equivalently,

in terms of t�, t′�. Finally, substitute these expressions
into the derivatives of Eqs. (3:7)1;2 to get,

[b3(�21 − �22)− �v2]t′′1 + i�12t′2

− 1
b3�22

(�1�−1
2 C − �v2)(b3�21 − �v2)t1 = 0;

(�1�−1
2 C − �v2)t′′2 + i�12t′1

−�21�−2
2 [b3(�21 − �22)− �v2]t2 = 0; (4.3)

where (3.9) has been used, and �12 is de/ned by

�12 = �1�−1
2 [b3(�21 − �22) + C]− (1 + �1�−1

2 )�v2:
(4.4)

The quantity �12 does not play any role in the secular
equation, as is now seen. Multiply (4:3)1 by t′1 and
(4:3)2 by t′2, and integrate with respect to kx2 between
x2 = 0 and x2 =∞, to obtain, using (4.1) and (4.2),

[b3(�21 − �22)− �v2]t′1(0)2 − 2i�12

∫
t′1t

′
2 = 0;

(�1�−1
2 C − �v2)t′2(0)2 − 2i�12

∫
t′1t

′
2 = 0; (4.5)

and therefore,

[b3(�21 − �22)− �v2]t′1(0)2

−(�1�−1
2 C − �v2)t′2(0)2 = 0: (4.6)
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Similarly, multiply (4:3)1 by [b3(�21 − �22)− �v2]t′1 +
i�12t2 and (4:3)2 by (�1�−1

2 C − �v2)t′2 + i�12t1, and
integrate with respect to kx2 between x2=0 and x2=∞,
to obtain, using (4.1) and (4.2),

[b3(�21 − �22)− �v2]2t′1(0)2 − 2i�12
1
b3�22

×(�1�−1
2 C − �v2)(b3�21 − �v2)

∫
t1t2 = 0;

(�1�−1
2 C − �v2)2t′2(0)2

− 2i�12�21�
−2
2 [b3(�21 − �22)− �v2]

∫
t1t2 = 0

(4.7)

and therefore,

[b3(�21 − �22)− �v2]3�21�−2
2 t

′
1(0)

2

− 1
b3�22

(�1�−1
2 C − �v2)3(b3�21 − �v2)t′2(0)2 = 0:

(4.8)

The two linear homogeneous equations (4.6) and
(4.8) for the two unknowns t′1(0)

2 and t′2(0)
2 yield

non-trivial solutions only when the corresponding de-
terminant is zero. This condition provides the secular
equation for surface waves propagating in a principal
direction
of a deformed Bell material as

(b3�21 − �v2)(�1�−1
2 C − �v2)2

= b3�21[b3(�
2
1 − �22)− �v2]2: (4.9)

This equation is distinct from that obtained for
deformed incompressible materials by Dowaikh and
Ogden [20], which reads as

(b̃3�21 − �v2)(C̃ − �v2)2

= b̃3�22[b̃3(�
2
1 − �22)− �v2]2; (4.10)

where b̃3 and C̃ are de/ned in terms of the stretch
ratios �1, �2 and the stored energy density W of the
incompressible material as

b̃3 =
(
�1
@W
@�1

− �2 @W@�2

)/
(�21 − �22);

C̃ = �21
@2W
@�21

− 2�1�2
@2W
@�1@�2

+ �22
@2W
@�22

+ 2�2
@W
@�2
:

(4.11)

Although Eqs. (4.9) and (4.10) share a similar
left-hand side, their right-hand sides are di<erent and
could not have been a priori deduced one from an-
other. In particular, b3 and �1�−1

2 C can formally be
transformed into b̃3 and C̃, respectively, to get from
the left-hand side of (4.9) to the left-hand side of
(4.10), but this transformation does not work for the
right-hand sides of the equations, because the factor
�21 is replaced by �22. Hence, when the inNuence of
the prestrain on the propagation of surface waves is
studied [20], the behaviour of Bell materials is in
contrast to that of incompressible materials, except
in the special degenerate case of a bi-axial prestrain
such that �1 = �2.
However, when the Bell material is unstrained for

the problem at hand (�1 =�2 =�3 =1), only in/nitesi-
mal deformations (the surface wave) occur in the now
isotropic half-space. In such a case, Beatty and Hayes
[2] show that the Bell constraint is equivalent to the
incompressibility constraint. Here, the quantities C, b3
are then given by

�1�−1
2 C = C = 2(!2 − !0) = 4b3; (4.12)

and the secular Eq. (4.9) reduces to

(1− !)(4− !)2 = !2 or

!3 − 8!2 + 24!− 16 = 0; (4.13)

where != 2�v2=(!2 − !0). This last equation is that
established by Rayleigh [15] for surface waves in
isotropic linearly elastic incompressible half-spaces.
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