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An initial stress within a solid can arise to support
external loads or from processes such as thermal
expansion in inert matter or growth and remodelling
in living materials. For this reason, it is useful to
develop a mechanical framework of initially stressed
solids irrespective of how this stress formed. An ideal
way to do this is to write the free energy density Ψ

in terms of initial stress τ and the elastic deformation
gradient F, so we write Ψ = Ψ (F, τ ). In this paper,
we present a new constitutive condition for initially
stressed materials, which we call the initial stress
symmetry (ISS). We focus on two consequences of
this condition. First, we examine how ISS restricts the
possible choices of free energy densities Ψ = Ψ (F, τ )
and present two examples of Ψ that satisfy the ISS.
Second, we show that the initial stress can be derived
from the Cauchy stress and the elastic deformation
gradient. To illustrate, we take an example from
biomechanics and calculate the optimal Cauchy stress
within an artery subjected to internal pressure. We
then use ISS to derive the optimal target residual stress
for the material to achieve after remodelling, which
links nicely with the notion of homeostasis.

1. Introduction
When all loads are removed, a body can still hold a
significant amount of internal stress, called the residual
stress. In manufacturing, residual stress has long been

2015 The Author(s) Published by the Royal Society. All rights reserved.
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noted to be detrimental to, or enhance, the performance of a material. For biological tissues,
residual stress is used to self-regulate stress and strain, and ultimately preserve ideal mechanical
conditions for the tissue [1,2]. In geophysics, due to gravity and active tectonics, the Earth has
developed extremely high initial stresses within its crust, which greatly influence the propagation
of seismic waves.

Here, we use the term initial stress to broadly mean the internal stress of some reference
configuration, irrespective of how the stress was formed or the boundary conditions. In this sense,
residual stress is a type of initial stress.

The initial stress felt by any region of a material is due to the push and pull of the surrounding
regions. If any region were to be cut out from the material, the stress on its newly formed
boundary would be zero, thus reducing the potential energy in the bulk. Based on this concept,
Hoger developed constitutive laws for residually stressed materials (e.g. [3–5]). Hoger showed
that by taking this idea to its limit and cutting the material into possibly an infinite number of
disconnected regions, the material may be relieved of all of its internal stress in a configuration
called the virtual stress-free state. From that configuration, a hyperelastic energy can be defined as
a function of the strain from the virtual state to the current configuration.

Though the use of this virtual state is technically sound, it leads to challenging calculations
even for simple deformations and rarely yields analytic results, unless great simplifications
are assumed. Moreover, the experimental identification of the virtual state requires cutting
the material, which is not always suitable, especially for living organisms. However, using
a virtual stress-free reference is routinely seen as the only viable option; quoting Chuong &
Fung [6]: ‘To characterize the arterial wall or any other biological soft tissue, we need a stress-
free state’. Conversely, we believe that by developing tools to work directly with initially stressed
reference configurations, without the need for a stress-free state, will be very useful, especially in
biomechanics.

An ideal way to account for the initial stress would be to have a free energy density function
Ψ = Ψ (F, τ ) written explicitly in terms of the deformation gradient F and the initial stress τ ,
without any a priori restrictions. For the development of constitutive laws, there is no need to
distinguish between residual stresses and initial stresses, a view which is shared with Merodio
et al. [7]. The initial stress τ could then be determined from elastic wave speeds [8–10] or by
solving the linear equations of momentum balance.

Having the free energy in the form Ψ (F, τ ) has been used to investigate how residual stress
affects elastic deformations [7,11] and for a mass-growth framework [12]. Wang et al. [13] found
that including one residual stress invariant in the free energy density was a simple way to model
the effects of residual stress in the myocardium. Shams et al. [14,15] made progress towards a
general framework for initially stressed solids. However, a major obstacle still remains: how to
write Ψ (F, τ ) explicitly in terms of the combined invariants of F and τ? (Even when the source
of anisotropy is only due to the initial stress, the free energy still depends on 10 independent
invariants [14].)

Johnson & Hoger [5] developed representations for the Cauchy stress response σ = ς̂ (F, τ ) in
terms of F and τ by first assuming a stress-free virtual state and then inverting numerically the
residual stress–strain equation. However, this approach often requires solving numerical non-
linear implicit equations. In [5,16] it was applied to a material with virtual state composed by a
Mooney–Rivlin strain energy.

In this work, we introduce a new constitutive requirement on Ψ (F, τ ) called the initial
stress symmetry (ISS). ISS restricts the constitutive form of the stress σ = ς̂(F, τ ) by providing
a constitutive equation for the initial stress τ = ς̂ (F−1, σ ) that must hold for every F and τ . To our
knowledge, this symmetry has never been discussed before.

The ISS also helps answer an important question: how much can the Cauchy stress be altered
by adjusting the initial stress? From a modelling perspective, initial stress has been used to make
the material more or less compliant [16], to control the Poynting effect [7] or to maintain an ideal
internal stress [1]. Given a Ψ (F, τ ) that satisfies ISS, then τ = ς̂(F−1, σ ) suggests that, for any choice
of σ , there will exist an initial stress τ that supports σ .
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The basic equations for an elastic material subject to initial stress are summarized in §2,
and then the ISS is presented. ISS is satisfied automatically if the initial stress is due to an
elastic deformation of a stress-free configuration, which we demonstrate in §2b. For this reason,
we develop in §3 an example for Ψ (F, τ ) that satisfies ISS, by deforming an incompressible
neo-Hookean material from a stress-free virtual state.

In §4, we express ISS, in all generality, as nine scalar equations for an incompressible material,
written in terms of Ψ , two undetermined scalars p and pτ , and the invariants of F and τ . This form
of ISS makes it easier to select appropriate representations for Ψ (F, τ ). For example, we show, with
a minor adjustment to the equations, how to use the scalar equations of ISS to deduce an example
of Ψ (F, τ ) for a compressible material.

It is commonly thought that arteries attempt to maintain a homogeneous stress gradient within
their walls [17]. In §5, we calculate this optimal Cauchy stress for a simplified arterial wall model,
and then show how by using ISS we can calculate the residual stress that exactly supports this
optimal Cauchy stress. We finally compare these results against those of the commonly used
opening-angle method [6].

2. Initially stressed elastic materials
A common approach to model the effect of residual stress is to consider a virtual stress-free
configuration B̃, from which the material is deformed and ‘glued’ together to produce a residually

stressed equilibrium state
◦
B. We will use this approach to model an initially stressed material.

An elastic stored energy density Ψ can then be defined as a function of the deformation gradient
F̃ from B̃ to the current configuration B so that Ψ = Ψ (F̃). See figure 1 for a diagram of all the
configurations.

In this paper, we write the free energy density Ψ as a function of the initial stress τ and of the

deformation gradient F :
◦
B → B, so that Ψ = Ψ (F, τ ). Note that

◦
B is not necessarily an unloaded

configuration. We argue that it is natural to consider that initial stress contributes to the potential
energy stored by a material. One extreme example is the Wapa tree, which has been know to
burst open once cut, possibly causing injury, due to its immense level of residual stress [18]
(figure 2).

We assume that F is a purely elastic deformation, but we do not make any assumptions
about the origins of the initial stress τ , except that τ affects the stored energy density Ψ .
Assuming that the body is incompressible, i.e. J ≡ det F = 1 at all times, the Cauchy stress tensor σ

reads [19]:

σ = F
∂Ψ

∂F
(F, τ ) − pI, (2.1)

where p is the Lagrange multiplier associated with the constraint of incompressibility and I is
the identity. If the material is compressible, then p is replaced by −2I3∂Ψ/∂I3, which completely
expresses the dependency of Ψ on I3; for clarity see equation (2.6). Note that we have and will

omit the possible dependence of Ψ on the position X ∈ ◦
B for the sake of simplicity. For the body

in the configuration
◦
B, we have F = I and σ = τ ; thus, we require that

τ = ∂Ψ

∂F
(I, τ ) − ◦

pI, (2.2)

where
◦
p is the value of p when F = I. We call the above equation the initial stress compatibility.

The presence of initial stress generally leads to an anisotropic response of the material in

reference to
◦
B. Here, we assume no other source of intrinsic anisotropy so that Ψ can be written as

a function of all the independent invariants generated by τ and C = FTF, the right Cauchy–Green
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Figure 1. The configuration B is the current configuration with internal stress σ , while the configuration
◦
B is a reference

configurationwith internal stressτ . The virtual stress-free state B̃ is a collection of configurationswhere the body is stress-free.
(Online version in colour.)

Figure 2. An intact Wapa tree is under extremely high levels of residual stresses that help to maintain its ideal mechanical
conditions. When the Wapa tree is cut, the release of residual stress can cause the tree to burst apart. (Image source:
http://www.fao.org.)

deformation tensor. Following Shams et al. [15], we take the following complete set of
10 independent invariants:

I1 = tr C, I2 = 1
2 [I2

1 − tr(C2)], I3 = det C, (2.3)

Iτ1 = tr τ , Iτ2 = 1
2 [I2

τ1
− tr(τ 2)], Iτ3 = det τ , (2.4)

and J1 = tr(τC), J2 = tr(τC2), J3 = tr(τ 2C), J4 = tr(τ 2C2). (2.5)
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The Cauchy stress equation (2.1) can then be written as [15]

σ = 2ΨI1 B + 2ΨI2 (I1B − B2) − pI

+ 2ΨJ1 FτFT + 2ΨJ2 F(τC + Cτ )FT + 2ΨJ3 Fτ 2FT + 2ΨJ4 F(τ 2C + Cτ 2)FT, (2.6)

where B = FFT is the left Cauchy–Green deformation tensor, and ΨI1 , ΨI2 , ΨJ1 , ΨJ2 , ΨJ3 , ΨJ4 are
the partial derivatives of Ψ with respect to I1, I2, J1, J2, J3, J4, respectively. There are no partial
derivatives of Ψ with respect to Iτ1 , Iτ2 and Iτ3 appearing in (2.6) because τ does not depend on F.

The initial stress compatibility equation (2.2) becomes

2
∂Ψ

∂I1
+ 4

∂Ψ

∂I2
− ◦

p = 0, 2
∂Ψ

∂J1
+ 4

∂Ψ

∂J2
= 1 and

∂Ψ

∂J3
+ 2

∂Ψ

∂J4
= 0. (2.7)

Another important physical restriction that can be imposed is the strong-ellipticity condition,
which is satisfied when the fourth-order tensor of instantaneous moduli

A0piqj = J−1FpαFqβ
∂2Ψ

∂Fiα∂Fjβ

satisfies
A0piqjnpnqmimj > 0 for every n, m ∈ R

3, (2.8)

for compressible materials, while for incompressible materials the above need only hold when
n · m = 0. Imposing strong ellipticity implies that plane waves may propagate in every direction
with a real valued speed [20], and other physically expected behaviour [21]. For a representation
of A0piqj in terms of the invariants of τ and F, see [15].

The issue we address now is how to write Ψ explicitly in terms of the invariants (2.3)–
(2.5)? We advocate three criteria. First, the free energy density Ψ should satisfy the initial stress
compatibility (2.7). Second, it should satisfy strong ellipticity (2.8) for all deformations in which
the material is expected to be stable [22], and we call the third criterion the ISS requirement.

(a) Initial stress symmetry
For convenience, let the response function ς̂ be denoted by

ς̂(F, τ , p) := F
∂Ψ

∂F
(F, τ ) − pI, (2.9)

for every F and τ within the elastic domain of the material. The scalar p is arbitrary if the material
is incompressible, and is p = −2I3ΨI3 if the material is compressible.

The ISS states that ς̂ has no preferred reference configuration. Referring to figure 1, if we take
◦
B as the reference configuration, then the Cauchy stress becomes

σ = ς̂ (F, τ , p). (2.10)

However, we can also take B as the reference configuration and
◦
B as the current configuration

and therefore express the initial stress as

τ = ς̂(F−1, σ , pτ ), (2.11)

for some scalar pτ . For a compressible material pτ = −2I3ΨI3 , where F is replaced with F−1τ . In a
more precise form, ISS can be stated as

σ = ς̂ (F, τ , p) and τ = ς̂ (F−1, σ , pτ ), (2.12)

for every F and τ , such that τ = τT and det F = 1 for incompressible materials, and p and pτ are,
respectively, given by p = p̂(σ , F, τ ) and pτ = p̂(τ , F−1, σ ) for some scalar function p̂. The boundary
conditions can determine p through its dependence on σ , and analogously for pτ . The ISS agrees
with the initial stress compatibility, i.e. the condition (2.2), when we have ς̂ (I, τ , p) = τ for every τ .
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Another way to view the ISS requirement is to assume that τ and σ are due to the elastic
deformation of a virtual stress-free state, which we demonstrate in §2b. Hoger emphasized many
times that using the virtual stress-free state does not restrict how the residual stress was formed.
The same can be said about ISS, as only F corresponds to an elastic deformation. Moreover, the ISS
is not restricted to elasticity and should hold, under suitable modifications, for other constitutive
equations such as those encountered in viscoelasticity.

One practical outcome from the ISS is to restrict the possible constitutive choices for ς̂ . For
instance, in §4, we show that the choice Ψ = 1

2 μ(I1 − 3) + 1
2 (J1 − Iτ1 ) proposed in [7] does not

satisfy ISS.
A second practical feature arising from ISS is that we can write the initial stress as a function

of the Cauchy stress (2.11). This proves useful when σ is known a priori, as will be discussed in §5,
where we determine σ from the principle of homeostasis and then use equation (2.11) to derive τ .
The alternative of choosing the initial stress τ first can be far more complicated.

Before developing further the implications of ISS in §4, we introduce in the next section
an example of stored energy Ψ (F, τ ) that satisfies ISS, stress compatibility (2.2) and strong
ellipticity (2.8).

(b) Stress-free configuration implies initial stress symmetry
Referring to figure 1, the virtual stress-free configuration guarantees that, for any τ and F, there

exists an
◦
F such that

σ = ϑ̂(B̃, p) and τ = ϑ̂(
◦
B,

◦
p), (2.13)

where
◦
B = F−1B̃F−T; p and

◦
p are scalar fields where p depends on the boundary conditions on B

and B̃, while
◦
p depends on the boundary conditions on

◦
B and

◦
B; and

ϑ̂(FFT, p) := F
∂Ψ

∂(FTF)
FT − pI.

Note that by setting τ = 0 in equation (2.6), we see that the right side depends only on FFT and p.

Johnson & Hoger [5] demonstrated that it is possible to determine
◦
B from any given τ , together

with appropriate boundary conditions on
◦
B, in order to reach useful constitutive equations

such as

ϑ̂(F
◦
BFT, p) = ς̂(F, τ , p) for any F and

◦
B. (2.14)

As equation (2.13)2 is valid for any F and
◦
B, we can substitute

F for F−1 and
◦

B for B̃ (2.15)

and swap the boundary conditions on B and
◦
B (these substitutions effectively swap B for

◦
B),

so that equation (2.13)2 becomes σ = ϑ̂(B̃, p), where we have assumed that the above together
with the boundary conditions on B has σ as the unique solution. Analogously, equation (2.13)1

becomes τ = ϑ̂(
◦
B,

◦
p).

This means that, when we make the substitutions (2.15) in equation (2.14), we should also
swap τ and σ , so that

ϑ̂(
◦
B,

◦
p) = ς̂ (F−1, σ ,

◦
p). (2.16)

The left-hand side is simply τ and the right-hand side is τ given by ISS (2.12). Finally, the above

condition is identically true, since this result is valid for every F and
◦
B. Moreover, we assumed

that
◦
B can be determined from τ , so equation (2.16) holds for every F and τ .
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3. Initially stressed neo-Hookean material
Here, we derive a simple constitutive equation for an initially stressed body by assuming that
both τ and σ arise from deforming an incompressible neo-Hookean material. The result will
be an explicit representation of Ψ in terms of F and τ , given by equation (3.11) below, that
automatically satisfies ISS, the stress compatibility (2.7) and strong ellipticity (2.8). Both ISS and
stress compatibility hold because τ arises due to an elastic deformation from a stress-free state
(see §2b), and strong ellipticity is satisfied because the material is a neo-Hookean solid [23].

Referring to figure 1, as the material is stress-free in B̃, we have

Ψ = μ

2
(tr C̃ − 3), (3.1)

where μ > 0 is the constant shear modulus and C̃ = F̃TF̃. The Cauchy stress (2.1) then becomes

σ = μF̃F̃T − pI. (3.2)

We can rewrite tr C̃ by substituting F̃ = F
◦
F and using the properties of the trace

tr C̃ = tr(F̃TF̃) = tr(
◦

FTFTF
◦
F) = tr(

◦
F

◦
FTFTF) = tr(

◦
BC),

where
◦
B =

◦
F

◦
FT and C = FTF, which leads to

Ψ = μ

2
[tr(

◦
BC) − 3]. (3.3)

We can write
◦
B in terms of τ by evaluating equation (3.2) at F = I, σ = τ , p = ◦

p and rearranging as
follows:

μ
◦

B = τ + ◦
pI. (3.4)

To write
◦
p as a function of τ , we require that the deformation

◦
F be isochoric, so that det(μ

◦
B) =

det(τ + ◦
pI) = μ3, which results in a cubic equation for

◦
p:

◦
p

3 + ◦
p

2
Iτ1 + ◦

pIτ2 + Iτ3 − μ3 = 0. (3.5)

The real roots for
◦
p are

◦
p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

[
T3 + T1

T3
− Iτ1

]
, T2 ≤ T3/2

1 ,

1
3

[
c1T3 + c∗

1
T1

T3
− Iτ1

]
, −T3/2

1 ≤ T2,

1
3

[
c∗

1T3 + c1
T1

T3
− Iτ1

]
, −T3/2

1 ≤ T2 ≤ T3/2
1 ,

(3.6)

where

T1 = I2
τ1

− 3Iτ2 , T2 = I3
τ1

− 9
2 Iτ1 Iτ2 + 27

2 (Iτ3 − μ3), (3.7)

T3 = 3

√√
T2

2 − T3
1 − T2 and c1 = −1

2
+

√
3

2
i, (3.8)

while if T1 = 0, then
◦
p = μ − Iτ1/3. In terms of the eigenvalues τ1, τ2 and τ3 of τ , we can write

T2 = − 27
2 μ3 + 1

2 [(τ1 − τ2) − (τ3 − τ1)][(τ2 − τ3) − (τ1 − τ2)][(τ3 − τ1) − (τ2 − τ3)]

and T1 = 1
2 (τ1 − τ2)2 + 1

2 (τ1 − τ3)2 + 1
2 (τ2 − τ3)2,

⎫⎬
⎭ (3.9)
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so that, when T1 = 0, we have that τ1 = τ2 = τ3. From the above, we see that T1 ≥ 0 and T3/2
1 ≥ |T2 +

μ327/2| for any1 τ1, τ2, τ3 ∈ R. So if T2 < 0, then clearly T2 < T3/2
1 , else if T2 ≥ 0 then T2 < |T2 +

μ327/2| ≤ T3/2
1 . Therefore T2 < T3/2

1 , and so the condition for the first case for
◦
p in equation (3.6) is

always satisfied. We discard the second and third case for
◦
p because we expect Ψ , and therefore

◦
p, to be continuous for every τ ∈ R

3. When τ1 = τ2 = τ3, the only viable solution for
◦
p is (3.6)1. If τ

moves into a region where (3.6)2 or (3.6)3 becomes real, then
◦
p cannot change from (3.6)1 to (3.6)2

or (3.6)3 because it can be shown that (3.6)1 does not equal (3.6)2 or (3.6)3 for any τ ∈ R
3.

To represent tr(
◦
BC) in terms of the invariants of τ and C, we multiply each side of equation (3.4)

on the right with C and take the trace to get

μtr(
◦
BC) = tr(τC) + ◦

ptr C, (3.10)

which we use to write the free energy density equation (3.3) as

Ψ = 1
2 (

◦
pI1 + J1 − 3μ), (3.11)

with
◦
p given by equation (3.6)1. Note that in the absence of initial stress τ = 0,

◦
p = μ by (3.5), J1 =

I1, and then Ψ reduces to the classical neo-Hookean model, as expected. Equation (3.11) represents
the general extension of the neo-Hookean strain energy function to an initially stressed material,
resulting in a function of only five of the nine independent invariants of C and τ .

Substituting (3.11) in the Cauchy stress equation (2.1), we arrive at the constitutive relation

σ = ◦
pB + FτFT − pI. (3.12)

Taking B as the reference configuration,
◦
B as the current configuration and leaving B̃ as the

stress-free configuration (figure 1), the initial stress becomes σ , the Cauchy stress becomes τ and
equation (3.12) becomes

τ = ◦
pτ C−1 + F−1σF−T − pτ I, (3.13)

where
◦
pτ is given by replacing τ for σ in equation (3.6)1, and pτ is an undetermined scalar.

Substituting (3.12) in (3.13), we find the connection

(
◦
pτ − p)C−1 = (pτ − ◦

p)I. (3.14)

As this equation must hold for every C, we conclude that

◦
pτ = p and pτ = ◦

p. (3.15)

Note that, as is expected of a neo-Hookean material, the above equations do not determine p in
terms of τ or F.

(a) Plane strain
The free energy density (3.11) is simplified when the initial strain has only planar components.

Accordingly, let us assume
◦
B13 =

◦
B23 = 0 and

◦
B33 = 1, which substituted in equation (3.4) results

in τ13 = τ23 = 0 and τ33 = μ − ◦
p. We let BP, CP,

◦
BP, IP, σP and τP be B, C,

◦
B, I, σ and τ restricted

to the (x1, x2) plane, respectively. From equation (3.4), we get

μ
◦

BP = τP + ◦
pIP. (3.16)

1See http://math.stackexchange.com/questions/1255883/prove-that-a2b2c2-geq-2a-b2b-c2a-c21-3/1255907#1255907.
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To obtain
◦
p in terms of τP, we take the determinant of each side of equation (3.16), giving

det(μ
◦
BP) = det(τP + ◦

pIP), so that μ2 = ◦
p

2 + ◦
ptr τP + det τP, (3.17)

where we used det(μ
◦
B) = μ2. We solve the above for

◦
p to get

◦
p± = − 1

2 trτ ± 1
2

√
−4 det τ + (trτ )2 + 4μ2, (3.18)

where −4 det τ + (trτ )2 + 4μ2 = (τ1 − τ2)2 + 4μ2 in terms of the eigenvalues of τ . The solution
◦
p = ◦

p− should be discarded because
◦
p− = −μ when τP = 0, while equation (3.16) shows that

◦
p

should be positive when τP = 0. So for τP = 0, the only viable solution is
◦
p = ◦

p+. Further, as we

expect
◦
p to be continuous in τP for every τP ∈ R

2, and
◦
p− 
= ◦

p+ for every τP, we should completely

discard the solution
◦
p−.

For simplicity, we assume C32 = C31 = 0; then equation (3.3) reads

Ψ = 1
2 μ(tr(

◦
BPCP) − 2) + 1

2 μ(C33 − 1), (3.19)

and substituting
◦

BP from equation (3.16), we get

Ψ = 1
2 tr(τPCP) + 1

2
◦
ptr CP − μ + 1

2 μ(C33 − 1), (3.20)

where
◦
p = ◦

p+ given by equation (3.18). The Cauchy stress equation (2.1) becomes

σP = ◦
pBP − pIP + FPτPFT

P, (3.21)

and σ33 = ◦
p − p + τ33 = μ − p, where we have used that τ33 = μ − ◦

p. For F = I, we have σ = τ and
◦
p = p.

4. The initial stress symmetry equations
In this section, we show how to express the ISS condition (2.12) as a set of scalar equations that
relates the free energy density Ψ ; p and pτ from equation (2.12); and the invariants of τ and C.

Let us first consider a simple example, namely assuming Ψ = I1J1/2. One can check that

this strain energy satisfies the compatibility equations (2.2) with
◦
p = tr τ , but does it satisfy the

ISS (2.12)? We can use the stress in the form (2.1) to write

σ = ς̂ (F, τ , p) = tr(τC)B − pI + tr(C)FτFT, (4.1)

and then from ISS we have that

τ = ς̂(F−1, σ , pτ ) = tr(σB−1)C−1 − pτ I + tr(B−1)F−1σF−T. (4.2)

To check that both equations (4.1) and (4.2) hold for every τ and F, we substitute σ into
equation (4.2), which after some rearranging becomes

(1 − I1I2)τ = (3J1 − 2pI2 + I1Iτ1)C−1 + (I2J1 − pτ )I, (4.3)

where we have used tr(B−1) = I2, which can be shown by applying the Cayley–Hamilton theorem
to B with I3 = 1 (due to incompressibility). In order to satisfy equation (4.3) for every F and τ , the
coefficients of τ , C−1 and I must all be identically zero (this is shown rigorously in the electronic
supplementary material). For the coefficient of τ to be zero, the identity I1I2 = 1 must hold for
every F, which is obviously impossible: so we conclude that Ψ = I1J1/2 does not correctly furnish
the Cauchy stress for every reference configuration.
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In the electronic supplementary material, we reduce the ISS to nine scalar equations, following
a procedure similar to the one above. They are compactly written as

b + P{1}Ψ σ
J1

+ P{2}Ψ σ
J2

+ ΨJn (P{3}
{n}Ψ

σ
J3

+ P{4}
{n}Ψ

σ
J4

) = 0 (4.4)

and

ΨJn (Q{1}
{n}Ψ

σ
J1

+ Q{2}
{n}Ψ

σ
J2

+ Q{3}
{n}Ψ

σ
J3

+ Q{4}
{n}Ψ

σ
J4

) = 0, (4.5)

where n sums over 0, 1, 2, 3, 4, ΨJ0 := 1,

ΨIk = ΨIk (F, τ ), ΨJm = ΨJm (F, τ ), (4.6)

and

Ψ σ
Ik

:= ΨIk (F−1, σ ), Ψ σ
Jm

:= ΨJm (F−1, σ ), (4.7)

for k ∈ {1, 2} and m ∈ {1, 2, 3, 4} with σ given by (2.6),

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2Ψ σ
I2

−2Ψ σ
I1

pτ

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, P{1} = 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ΨI2

p/2
−ΨI1

−2ΨJ2

2I2ΨJ2

−ΨJ1 − 2I1ΨJ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, P{2} = 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p
I2p − 2ΨI1 − 2I1ΨI2

2ΨI2

0
−2ΨJ1

−4ΨJ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

and

Q{1}
{1} = Q{1}

{2} = Q{2}
{1} = Q{2}

{2} = 0, (4.9)

while all other matrices are given explicitly in the electronic supplementary material.
Equations (4.4) and (4.5) represent six and three scalar equations, respectively, for the unknowns
Ψ , p and pτ .

We now look at special cases of Ψ which simplify the ISS equations and lead to more practical
representations for the free energy density.

(a) Free energy independent of J3 and J4
When Ψ is independent of J3 and J4, equation (4.5) is identically zero and only the first three
terms of equation (4.4) are non-zero. The fourth scalar equation of (4.4) becomes −8ΨJ2Ψ

σ
J1

= 0,
which is true, for every F and τ , only when Ψ does not depend on J2 or does not depend on J1.
We investigate the first case in more detail below.

(i) AssumingΨ independent of J2, J3 and J4
If Ψ does not depend on J2, J3 and J4, then equation (4.4) reduces to

4ΨJ1Ψ
σ
J1

= 1,
Ψ σ

I2√
Ψ σ

J1

+ ΨI2√
ΨJ1

= 0, pΨ σ
J1

= Ψ σ
I1

and pτ ΨJ1 = ΨI1 , (4.10)

where we have used equation (4.10)1 to derive the other three equations. We can check if these
equations are consistent with the compatibility equations (2.7) by letting F = I, σ = τ and pτ =
p = ◦

p. This results in ΨJ1 = ± 1
2 , 2ΨI1 = ± ◦

p and ΨI2 (1 ± 1) = 0, which only satisfies equations (2.7) if

ΨJ1 = 1
2 , 2ΨI1 = ◦

p and ΨI2 = 0 for F = I.
Let us apply equations (4.10) to the following example:

Ψ = 1
2 μ(I1 − 3) + 1

2 (J1 − Iτ1 ), (4.11)
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used by Merodio et al. [7]. In this case, equations (4.10)1 and (4.10)2 are satisfied while
equations (4.10)3 and (4.10)4 become p = pτ = μ. However, restricting p to be constant, when
it is normally determined from boundary and/or initial conditions, would result in physically
unexpected behaviour. This is best seen with an example.

Example 4.1. For the free energy density expressed in equation (4.11), the Cauchy stress from
equation (2.6) becomes

σ = μFTF − pI + FτFT. (4.12)

Let us consider a cube in the reference configuration, subject to the initial stress τij = τiδij, aligned
with the axes of the cube. For the current configuration, we impose two clamped conditions
that fix F11 = λ1 and F33 = λ3, then F22 = λ2 = (λ1λ3)−1 due to incompressibility, with all the other
components of F being zero. With this imposed deformation, the Cauchy stress is diagonal with
components σij = δijσi. We can also prescribe the stress σ2, as this will not alter λ1 and λ3 because
they are kept fixed. We choose σ2 = τ2, to ensure compatibility with the reference configuration
when λ1 = λ3 = 1, which results in

τ2 = μλ2
2 − p + λ2

2τ2.

Clearly, it is not possible for p to satisfy the above and be fixed at p = μ so that the ISS is also
satisfied. This means that the free energy density equation (4.11) either results in non-physical
behaviour or does not satisfy the ISS, which implies that the constitutive relation (4.12) does not
hold for every reference configuration.

The choice of Ψ should satisfy equations (4.10) without restricting the deformation F, initial
stress τ or p, otherwise the material is likely to exhibit non-physical behaviour. In this respect, the
free energy densities W = 1

2 μ(I1 − 3) + 1
2 μ̄(J1 − tr τ )2 + 1

2 (J1 − tr τ )2, equation (5.40) in [15], and
W = 1

2 μ(I1 − 3) + 1
4 (J2 − trτ )2, equation (78) in [7], where μ and μ̄ are constants, are also likely

to exhibit non-physical behaviour. Below we present a free energy density Ψ for a compressible
material, inspired by the neo-Hookean example in §3, that satisfies ISS without any unphysical
restrictions.

For a compressible material, we substitute p with −2I3ΨI3 and pτ with −2I−1
3 Ψ σ

I3
in the ISS

equations (4.10). We will now establish under what conditions does the free energy density

Ψ = 1
2 g(τ , I3)I1I−1/3

3 + 1
2 f (τ , I3) + 1

2 J1I−1/3
3 (4.13)

satisfy ISS (4.10) and the stress compatibility (2.7), where f and g are arbitrary scalar functions.
The corresponding Cauchy stress (2.6) is

σ = g(τ , I3)I−1/3
3 B + 2I3ΨI3 I + I−1/3

3 FτFT, (4.14)

with

ΨI3 = 1
2 fI3 (τ , I3) + 1

2 gI3 (τ , I3)I1I−1/3
3 − 1

6 I−4/3
3 [g(τ , I3)I1 + J1]. (4.15)

The ISS equation (4.10)1 is satisfied as ΨJ1Ψ
σ
J1

= ( 1
2 )I−1/3

3 ( 1
2 )I1/3

3 = 1
4 and stress compatibility (2.7)2

is satisfied as 2ΨJ1 = 1 when F = I. By substituting p for −2I3ΨI3 , the remaining compatibility
equation (2.7)1 becomes

g(τ , I3) = −2ΨI3 evaluated at F = I. (4.16)

Equation (4.16) is satisfied if we set fI3 (τ , 1) = trτ/3 − 3gI3 (τ , 1); then equation (4.16) and
equation (4.14) together imply that σ = τ when F = I.

The ISS equations (4.10)3 and (4.10)4 now read, respectively,

− 2I3ΨI3 = g(σ , I−1
3 ) and − 2I−1

3 Ψ σ
I3

= g(τ , I3), (4.17)
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for every F and τ , where fI3 and gI3 are, respectively, the partial derivatives of f and g with
respect to I3. Note that the above two equations are equivalent as equation (4.17)1 becomes
equation (4.17)2 when we substitute F for F−1 and τ for σ . For this reason, it is sufficient to satisfy
equation (4.17)1. If F = I, then equation (4.17)1 is satisfied as it reduces to equation (4.16). The rest
of this section will focus on showing that equation (4.17)1 is satisfied for every F and τ .

By rearranging equation (4.14) and taking the determinant on either side, we get

det(σ − 2I3ΨI3 I) = det(I−1/3
3 FτFT + g(τ , I3)I−1/3

3 B) = I−1
3 det B det(τ + g(τ , I3)I),

and by using incompressibility det B = 1 we find that

I1/2
3 det(σ − 2I3ΨI3 I) = I−1/2

3 det(τ + g(τ , I3)I). (4.18)

If we choose g(τ , I3) such that

I−1/2
3 det(τ + g(τ , I3)I) = k, (4.19)

where k is a constant, then the right-hand side of equation (4.18) is also equal to k, thus σ

must satisfy

I1/2
3 det(σ − 2I3ΨI3 I) = k. (4.20)

By swapping τ for σ and F for F−1, equation (4.19) becomes

I1/2
3 det(σ + g(σ , I−1

3 )I) = k. (4.21)

For g(τ , I3) to satisfy equation (4.19), there are three possible solutions given by replacing μ3 with

kI1/2
3 and g(τ , I3) with

◦
p in (3.6)1, (3.6)2 and (3.6)3, which we, respectively, denote by g1(τ , I3),

g2(τ , I3) and g3(τ , I3). We highlighted in §3 that only g(τ , I3) = g1(τ , I3) is a physically viable
solution. So if we choose g(τ , I3) = g1(τ , I3), then for equation (4.17)1 to be satisfied, we need

g1(σ , I−1
3 ) = −2I3ΨI3 for every F and τ . (4.22)

We will show that the above is a consequence of equations (4.20), (4.21) and stress
compatibility (4.16). Due to equation (4.16), we know that, initially for F = I, equation (4.22)
is true. We can also conclude from equations (4.20) and (4.21) that −2I3ΨI3 will equal either
g1(σ , I−1

3 ), g2(σ , I−1
3 ) or g3(σ , I−1

3 ) for every F. Since −2I3ΨI3 should be a continuous function of
F and τ , it cannot change from g1(σ , I−1

3 ) to another solution gk(σ , I−1
3 ) because it can be shown

that gk(σ , I−1
3 ) 
= g1(σ , I−1

3 ) for every σ and I3. For this reason, if g1(τ , 1) = −2ΨI3 for F = I, then
g1(σ , I−1

3 ) = −2I3ΨI3 for every F.
In conclusion, the model (4.13) satisfies ISS as long as g(τ , I3) = g1(τ , I3), where g1(τ , I3) is given

by replacing μ3 with kI1/2
3 in (3.6)1.

5. Homogeneous stress gradient in a hollow cylinder
It is now well acknowledged that residual stresses in living materials are vital to maintain ideal
mechanical conditions. When an external load changes, growth and remodelling alter the residual
stress to best adapt to the new load. An excellent example is how arteries remodel in response
to the internal pressure. The residual stress in arteries is thought to protect the arterial wall
against strain concentration [24] or stress concentration [1,17]. Here, we adopt the most accepted
hypothesis—that the residual stress in the artery acts to minimize the stress gradient [1,25].
The reasoning behind this hypothesis is that if a given tissue grows in response to stress, then
homeostasis is only possible if the tissue is under similar stress conditions throughout. So by
minimizing the stress gradient, we are selecting the most homogeneous stress possible. We will
also consider a simplified artery with only one layer and no shear stress applied to the interior of
the artery.
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Our strategy is to first choose an optimal Cauchy stress field σ , and then to derive the residual
stress from the ISS equation τ = ς̂ (F−1, σ , pτ ). So first we calculate the Cauchy stress with near
homogeneous circumferential and radial components in §5b, then we find the residual stress that
supports this optimal Cauchy stress in §5c. In §5b, we also show that the optimal Cauchy stress
has a simple asymptotic formula.

We finally compare the results with the corresponding ones obtained using the opening angle
method [6].

(a) Plane strain cylinder
To describe the arterial wall, we use cylindrical coordinates (r, θ , z) with the components of σ

written in terms of unit basis vectors. We assume that the arterial wall retains its cylindrical
symmetry when the internal pressure is removed and that there is no shear stress at the inner
wall. These assumptions imply that, when a pressure is applied in the cylinder, the resulting
deformation is an inflation.

Due to radial symmetry, the Cauchy stress σ is independent of θ and z, so that in the absence
of body forces the equilibrium equations reduce to

∂

∂r
(r2σθr) = 0,

∂

∂r
(rσzr) = 0 (5.1)

and
∂

∂r
(rσrr) − σθθ = 0, (5.2)

with the boundary conditions

σθr = 0, σzr = 0, σrr = −P, for r = a, (5.3)

and
σθr = 0, σzr = 0, σrr = 0, for r = b, (5.4)

where a and b are the inner and outer radius of the loaded artery, respectively. The equilibrium
equations (5.1) together with the boundary conditions lead to σθr = 0 and σzr = 0 for all r. As
neither σzθ nor σzz appear in the equations of equilibrium, they are only restricted by the
constitutive choice and boundary conditions on the cross-section of the artery. We use this degree
of freedom to assume there is no axial torsion σzθ = 0. Note that, for the constitutive choice
equation (2.6), τZZ can be chosen so that σzz is constant, while for the simpler choice of plane
strain equation (3.21) (with σzz = σ33), σzz is determined by p. Finally, the remaining equation of
equilibrium is equation (5.2).

(b) Minimal stress gradient
Here, we develop a method to minimize the stress gradient fields σ ′

rr and σ ′
θθ , where the

prime denotes differentiation with respect to r. We make no assumptions about any reference
configuration nor do we make any constitutive choice. We only make use of the assumptions
from the section above which result in both σrr and σθθ being independent of the coordinates θ

and z; σθr = σzr = σzθ = 0; and, for simplicity, we will not consider σzz.
Once σθθ and σrr are determined, we use ISS equation (2.11) to write the residual stresses τΘΘ

and τRR in terms of σθθ , σrr and the deformation gradient in §5c.
Using the equilibrium equation (5.2), we write σθθ in terms of σrr as

σθθ = σrr + rσ ′
rr, so that σ ′

θθ = 2σ ′
rr + rσ ′′

rr. (5.5)

As aortas and veins are of many different sizes, for the sake of generality, let us introduce the
following dimensionless variables:

ξ = r − a
b − a

and ϕ(ξ ) = σrr(r)
P

, (5.6)
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which result in

σ ′
rr = ϕ′ P

b − a
, σ ′′

rr = ϕ′′ P
(b − a)2 (5.7)

and

σ ′
θθ = P

b − a
(2ϕ′ + (ξ + α)ϕ′′). (5.8)

Our aim is to minimize the stress gradient density

1
b − a

∫ b

a
[(σ ′

rr)
2 + (σ ′

θθ )2] dr = P2

a2 α2
∫ 1

0
[(ϕ′)2 + (2ϕ′ + (ξ + α)ϕ′′)2] dξ , (5.9)

with the constraint

ϕ(1) = 0 and ϕ(0) = −1, giving
∫ 1

0
ϕ′ dξ = 1, (5.10)

where we have introduced the quantity α ≡ a/(b − a).
Using calculus of variations [26], we find that ϕ′ must satisfy the Euler–Lagrange equation

∂f
∂ϕ′ − d

dξ

∂f
∂ϕ′′ = Λ for ξ ∈ (0, 1) and

∂f
∂ϕ′′ = 0 for ξ = 0, 1, (5.11)

where
f = (ϕ′)2 + (2ϕ′ + (ξ + α)ϕ′′)2, (5.12)

and Λ is a Lagrange multiplier due to the constraint (5.10). The solution to (5.11) is given by

ϕ′ = Λ

6
− Λ

6
(
√

13 − 3)
α

√
13/2+1/2 − (1 + α)

√
13/2+1/2

α
√

13 − (1 + α)
√

13
(α + ξ )

√
13/2+1/2

+ 2Λ

3(
√

13 − 3)

α
√

13/2−1/2 − (1 + α)
√

13/2−1(1/2)

α
√

13 − (1 + α)
√

13

(
α(1 + α)
α + ξ

)√
13/2+1/2

. (5.13)

We determine Λ from the constraint (5.10) to be

Λ = 6

[∫ 1

0
1 − (

√
13 − 3)

α
√

13/2+1/2 − (1 + α)
√

13/2+1/2

α
√

13 − (1 + α)
√

13
(α + ξ )

√
13/2+1/2

+ 4√
13 − 3

α
√

13/2−1/2 − (1 + α)
√

13/2−1(1/2)

α
√

13 − (1 + α)
√

13

(
α(1 + α)
α + ξ

)√
13/2+1/2

dξ

]−1

. (5.14)

Realistic values for α = a/(b − a) can be obtained from in vivo measurements of the lumen
radius (inner radius) a and total artery thickness b − a. For the descending thoracic aorta of
healthy men around 51 years old, the mean lumen radius is 20 mm [27] and the mean thickness
is 1.4 mm [28]. These estimates give α−1 ≈ 0.07, making it appropriate to expand ϕ′ and Λ as a
power series in α−1, which gives

ϕ′ = Λ

2

[
1 + (1 − 2ξ )α−1 + 1

3
(9ξ2 − 6ξ − 1)α−2

]
+ O(α−3) (5.15)

and
Λ = 2 + 2

3 α−2 + O(α−3), (5.16)

or simply
ϕ′ = 1 + (1 − 2ξ )α−1 + ξ (3ξ − 2)α−2 + O(α−3). (5.17)

We then substitute ϕ′ in equations (5.5), (5.6) and (5.7) to obtain

σrr = −P(1 − ξ )(1 − ξα−1 + ξ2α−2) + O(α−3) (5.18)

and
σθθ = Pα(1 + α−3ξ2(4ξ − 3)) + O(α−3). (5.19)
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Figure 3. The plots of the dimensionless Cauchy stress against the dimensionless radius ξ , where the colour shades from blue
to red asα−1 (the wall thickness divided by the inner radius) goes from 0.05 to 0.1. (Online version in colour.)
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Figure 4. Graphs of the dimensionless Cauchy stress against the dimensionless radiusξ for the opening anglemethod (dashed
curves) and the optimal stress equations (5.18) and (5.19) (red solid curves), for which we used parameters for the descending
thoracic aorta:a= 20.0 mm,b= 21.4 mm,α−1 = 0.07 andλz = 1. As thedashed curves shade fromyellow togreen (arrow),
P/μ goes through the values 0.05, 0.20 and 0.35 with optimal opening angle φ = 65.9◦, 204.2◦ and 261.7◦; stress-free
reference inner radius 20.3, 25.2 and31.1 mm;and stress-free referenceouter radius 22.0, 27.8 and34.4 mm, respectively. (Online
version in colour.)

We plot the above Cauchy stress for α−1 from 0.05 to 0.10, which is within the physiological
range, in figure 3. A graph for σrr/P would show all the curves bunched along the same straight
line, so instead we have depicted the curves for σrr/P − ξ . Figure 3 reveals that, as the relative
thickness of the arterial wall increases (shading from blue towards red), the circumferential stress
σθθ decreases while the radial stress σrr increases and becomes less homogeneous.

A well-established method to quantify the residual stresses within arteries is the opening angle
method [6]. For a neo-Hookean material (3.1), we will use the opening angle method to minimize
the circumferential stress component

1
b − a

∫ b

a

(
dσθθ

dr

)2
dr, (5.20)

in terms of the opening angle φ, restricted to the boundary conditions (5.3) and (5.4). The only
two parameters with a unit of time and mass are P and μ, so by rewriting P = P0μ the stress will
not depend on μ. The results for P0 = 0.05, P0 = 0.20 and P0 = 0.35 are compared with the optimal
stress equations (5.18) and (5.19) with parameters for the descending thoracic aorta in figure 4.
We see that σθθ for the opening angle method converges to the optimal stress σθθ as P/μ tends to
zero, while the plots for σrr all overlap. Note however that σzz for the opening angle method is
not necessarily homogeneous in r.
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We can now invoke finite elasticity to derive the residual stress τ in the unloaded state
necessary to sustain the optimal homogeneous Cauchy stress, and then compare our results with
the residual stress predicted by the opening angle method. To do so, we let Ψ be a function of
both stress and strain and use the ISS, in the form of equation (2.11), to determine τ as a function
of σ and F.

(c) Residual stress
Here, we use finite elasticity to connect the current state with the unloaded state. Since the
cylindrical symmetry of the artery is maintained when the internal pressure is removed, we
describe the unloaded state with the cylindrical coordinates (R, Θ , Z). Then the deformation
gradient for the unit basis vectors er, eθ , ez, ER, EΘ and EZ becomes

F = ∂r
∂R

er ⊗ ER + r
R

eθ ⊗ EΘ + λzez ⊗ EZ, (5.21)

where we let λz be a constant. Assuming the material is incompressible, we get

det F = 1, or
∂r
∂R

r
R

λz = 1. (5.22)

Let the reference configuration be a hollow cylinder with inner and outer radius A and B,
respectively, so that

r =
√

(R2 − A2)λ−1
z + a2 and

∂r
∂R

= R
r
λ−1

z , (5.23)

which we will use to replace ∂r/∂R wherever it appears. We will assume that the residual stress
τ is homogeneous in Θ and Z, as the deformation, the Cauchy stress from equations (5.18)
and (5.19), and the boundary conditions (5.25) and (5.26) are all homogeneous in Θ and Z.

The equilibrium equations now reduce to

τΘΘ = (RτRR)′ for A < R < B, (5.24)

with the zero-traction boundary conditions

τRR = 0 for R = A (5.25)

and
τRR = 0 for R = B. (5.26)

After making a constitutive choice for Ψ , the residual stresses τRR and τΘΘ will be completely
determined from F, σ and pτ due to ISS (2.11).

(i)Ψ independent of I2, J2, J3 and J4
To simplify, we assume Ψ independent of I2, J2, J3 and J4, so the Cauchy stress (2.6) becomes

σ = 2ΨI1 FFT − pI + 2ΨJ1 FτFT, (5.27)

and, from ISS (2.12), we can swap τ , F and p with σ , F−1 and pτ , respectively, to get

τ = 2Ψ σ
I1

F−1F−T − pτ I + 2Ψ σ
J1

F−1σF−T. (5.28)

Substituting F from equation (5.21) into the above equation, we arrive at

τRR = 2λ2
z

r2

R2 (Ψ σ
I1

+ Ψ σ
J1

σrr) − pτ (5.29)

and

τΘΘ = 2
R2

r2 (Ψ σ
I1

+ Ψ σ
J1

σθθ ) − pτ . (5.30)

We remark that τZZ has not been derived since we have not taken into consideration σzz in §5b.
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Figure 5. The loaded arterywall is illustratedby the redhorizontal lines,while the unloaded arterywall is illustratedby the blue
curves. The y-axis gives the position of the loaded and unloaded walls measured from the centre of the artery. The stress in the
loaded geometry is taken to be the optimal Cauchy stress (5.18) and (5.19), and we assume a residually stressed neo-Hookean
material (3.20). (Online version in colour.)

To compare unloaded arteries of different sizes, we write r and R in terms of the dimensionless
radius ξ ,

r = (b − a)ξ + a and R =
√

A2 + λz[(a + (b − a)ξ )2 − a2], (5.31)

which we use to rewrite the ordinary differential equation (5.24) in the form

R
dτRR

dR
+ τRR − τΘΘ = R

dτRR

dξ

dξ

dR
+ τRR − τΘΘ = dτRR

dξ
R

(
dR
dξ

)−1
+ τRR − τΘΘ = 0, (5.32)

which implies that

dτRR

dξ
+ 1

R
dR
dξ

(τRR − τΘΘ ) = 0. (5.33)

Integrating both sides in ξ and using the unloaded boundary condition (5.25) and (5.26), we reach

τRR =
∫R

0

τΘΘ − τRR

R
dR
dξ

dξ = 0 and
∫ 1

0

τΘΘ − τRR

R
dR
dξ

dξ = 0. (5.34)

Equation (5.34)2 is independent of pτ and can be used to solve for one of the parameters P, a, b, A,
λz or μ (note that B depends on the other parameters because equation (5.23) evaluated at R = B
gives B2 = A2 + λz(b2 − a2)). The only two parameters with a unit of time or mass are P and μ, so
by rewriting P = P0μ equations (5.34) will not depend on μ.

To illustrate, we adopt the neo-Hookean material model (3.20), which results in Ψ σ
J1

= 1
2 and

2Ψ σ
I1

= ◦
p(σ ), where

◦
p is given by substituting τ for σ restricted to (r, θ ) in

◦
p+ of equation (3.18).

To calculate the residual stress that supports the optimal Cauchy stress, we substitute σθθ and
σrr from equations (5.18) and (5.19) into τΘΘ and τRR in equations (5.29) and (5.30). We then use
equation (5.34)2 to determine the unloaded geometry from the loaded geometry. To illustrate, we
take the parameters for the descending thoracic aorta, as used in the previous section, a = 20 mm,
b = 1.4 mm and λz = 1. We can then determine the unloaded inner radius A for different values of
P0, which is shown in figure 5. Surprisingly, the unloaded geometry given by the opening angle
method is approximately the same as shown in figure 5.

We can also investigate the residual stress in the unloaded state. Once A is determined from
equation (5.34)2, we can use equation (5.34)1 to determine τRR, and then τΘΘ from equation (5.24).
To compare with the opening angle method, we choose P/μ = 0.05, 0.20 and 0.35, which all give a
reasonable unloaded geometry (figure 5). The results are shown in figure 6.
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Figure 6. The dimensionless residual stress against the dimensionless radius ξ . The dashed curves are from the opening angle
method and the solid curves are from equation (5.24) together with the optimal stress equations (5.18) and (5.19). As P/μ goes
through the values 0.05, 0.20 and 0.35 (arrows), the dashed curves shade from yellow to green and the solid curves shade from
blue to red. The unloaded geometry for both methods is approximately the same as shown in figure 5. The other parameters
are a= 20.0 mm, b= 21.4 mm,α−1 = 0.07 andλz = 1. (Online version in colour.)
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Figure 7. (a) Comparison of the dimensionless strain energy densityΨ/P versus the dimensionless radius ξ resulting from the
opening anglemethod, yellow (green) dashed curves, with themodel (3.20) whose residual stress maintains the optimal stress
equations (5.18) and (5.19), the red (blue) solid curves. The parameters used are given in figure 6. (b)Ψ/P from the opening
angle method minusΨ/P from the model (3.20), which we denote as�Ψ/P. (Online version in colour.)

Biological tissues are very energy efficient. It is a common line of reasoning that biological
systems adapt so as to minimize their potential energy. So it is possible that biological materials
remodel their residual stress to lower their potential energy. Figure 7a shows the free energy
density Ψ for the opening angle method and for the model (3.20) with the optimal stress
equations (5.18) and (5.19). In all cases, Ψ is approximately a straight line that decreases as
ξ increases away from the pressured boundary ξ = 0 (r = a). Figure 7b shows the difference
between Ψ/P from the opening angle method minus Ψ/P from the model (3.20), which we denote
as �Ψ/P. The integral of �Ψ/P over ξ ∈ [0, 1] is positive if the opening angle method has on
average a larger free energy density than the model (3.20), with the optimal stress equations (5.18)
and (5.19). We found that as P/μ increased, so did the total free energy in the cylinder cross-section∫1

0 �Ψ/P(b − a)(ξ (b − a) + a) dξ ; for instance, this integral evaluates to −1.6410−4 for P/μ = 0.05,
2.3710−3 for P/μ = 0.20, and 4.2510−3 for P/μ = 0.35.

Essentially, we can see from figures 4 and 7 that the optimal stress equations (5.18) and (5.19)
with the neo-Hookean material (3.20) produce a more homogeneous stress and a lower free
energy than the opening angle method, though the two methods gave very similar results. The
advantage in using the ISS (2.12) for a homeostasis hypothesis for the Cauchy stress σ is twofold.
First, we have the freedom to choose σ so as to satisfy the homeostasis hypothesis, which with
ISS becomes a separate step from choosing a constitutive equation. Second, it can be relatively
straightforward to use ISS (2.12) to quantify the residual stress needed to support the chosen σ .
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6. Conclusion
In order to quantify the initial stress within a solid using non-destructive experimental techniques,
it is advantageous to write the free energy density in terms of the deformation gradient F and the
initial stress τ as Ψ = Ψ (F, τ ).

In this article, we presented a new constitutive condition, the initial stress symmetry (ISS),
that aids in proposing suitable constitutive relations for Ψ = Ψ (F, τ ) by providing nine scalar
equations (equations (4.4) and (4.5)). One immediate result is that guessing a functional
dependence for Ψ = Ψ (F, τ ) is not a trivial task. In fact all choices for Ψ (F, τ ) used in the literature
so far do not satisfy ISS. Conversely, using ISS, we proposed two simple choices for Ψ = Ψ (F, τ ),
one incompressible equation (3.11) and one compressible equation (4.13), which can be viewed as
initially stressed neo-Hookean materials.

One consequence of ISS is that the initial stress can be derived from the Cauchy stress.
Furthermore, ISS suggests that it is possible to first choose the Cauchy stress, and second to make
a constitutive choice and then use equation (2.11) to determine the corresponding initial stress.
We illustrated this method in §5 for a simplified arterial wall model, where we chose the ideal
Cauchy stress by using a minimal stress gradient hypothesis as the homeostatic condition, and
then we calculated the optimal residual stresses of the unloaded remodelled artery. It is reasonable
that other tissues with smooth muscle cells may also remodel to minimize their stress gradient.
This means that the approach we developed for the arterial wall could be used to help test this
hypothesis for other tissues, such as those found in the heart.

Since initial stresses are widespread in both inert and living matter, the proposed constitutive
restriction can be used in many applications towards a non-destructive quantification of initial
tensions in solids. Future research includes determining a wider class of material behaviours,
e.g. taking into account natural material anisotropy, and linking the initial stress to elastic wave
speeds.
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