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a b s t r a c t

We find the strain energy function for isotropic incompressible solids exhibiting a linear
relationship between shear stress and amount of shear, and between torque and amount
of twist, when subject to large simple shear or torsion deformations. It is inclusive of the
well-knownneo-Hookean and theMooney–Rivlinmodels, but also can accommodate other
terms, as certain arbitrary functions of the principal strain invariants. Effectively, the extra
terms can be used to account for several non-linear effects observed experimentally but not
captured by the neo-Hookean and Mooney–Rivlin models, such as strain stiffening effects
due to limiting chain extensibility.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Many soft incompressible materials have a linear
response in shear and in torsion, including rubbers and soft
tissues (Fig. 1). But how should that property be modeled?
The strain energy functions that come to mind are those of
the neo-Hookean and theMooney–Rivlin [1] materials,

WnH =
1
2C1(I1 − 3),

WMR =
1
2C1(I1 − 3)+

1
2C2(I2 − 3), (1)

respectively, where C1 > 0, C2 > 0 are constants, and
I1 = tr C , I2 = tr(C−1) are the first two principal in-
variants of the right Cauchy–Green deformation tensor C .
These models provide indeed an exact linear relationship
between the Cauchy shear stress component T12 and the
amount of shearK , and between the torqueM and the twist
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ψ . This can be checked directly by recalling the general re-
lationships

T12 = 2

∂W
∂ I1

+
∂W
∂ I2


K ,

M = 4πψ
 a

0
r3


∂W
∂ I1

+
∂W
∂ I2


dr, (2)

(where r is the radial distance and a is the radius of the
twisted cylinder [2]) because the term in the parentheses
is a constant for these two models.

However popular, these models present some signifi-
cant limitations when it comes to capturing certain non-
linear effects: (1) Poynting effect: experiments show that a
normal stress develops for soft solids in simple shear [3],
but this cannot be captured by models that depend on I1
only, like the neo-Hookean model, because their normal
stress component T22 = −2(∂W/∂ I2)K 2 is zero; (2) Strain-
stiffening effect: for large extensions, rubber-like materials
stiffen rapidly and give an up-turn in the Mooney plot [4],
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Fig. 1. (a) Shear stress response in the simple shear of porcine brain matter; experiments conducted at University College Dublin, see Ref. [3] for details.
(b) Torsion of a right cylinder of rubber with radius a = 1.27 cm; digitized data from Ref. [2]. The straight lines represent linear fittings, indicating that the
shear modulus is µ = 163 Pa for brain and 38.2 kPa for rubber.
but the neo-Hookean and the Mooney–Rivlin models only
yield straight lines in that representation; (3) Non-linear
elastic response:with only one or twomaterial constantsC1,
C2 at their disposal, the neo-Hookean and Mooney–Rivlin
models cannot reflect fourth-orderweakly non-linear elas-
ticity [5] properly,

W4th = µ tr(E2)+
A
3
tr(E3)+ D tr(E3), (3)

that involves three constants (here E = (C − I)/2 is the
Green strain tensor, µ is the infinitesimal shear modulus
and A, D are the Landau constants of third- and fourth-
order elasticity) [5].

Here we show that there exist, in fact, more general
strain energies satisfying the linearity property and able to
overcome these shortcomings.

2. Results

We arrive at the desired linear relationships by enforc-
ing that the strain energy function W satisfy ∂W/∂ I1 +

∂W/∂ I2 = constant. Furthermore, compatibility with the
linear theory imposes that ∂W/∂ I1 + ∂W/∂ I2 = µ/2. We
note that theMooney–Rivlinmaterial (1) is a particular so-
lution of that inhomogeneous partial differential equation,
with C1+C2 = µ. Thus the general solutionmay bewritten
as

W = WMR + H(I1, I2), (4)

where H is an arbitrary function of the two variables I1, I2.
Then, after substitution, we obtain a homogeneous partial
differential equation for H ,

∂H
∂ I1

+
∂H
∂ I2

= 0. (5)

The general solution of this equation is simply H = H(I1 −

I2) where H remains an arbitrary function, but now of the
single variable I1 − I2. We call the corresponding class of
solids, the generalized Mooney–Rivlin materials,

W =
1
2C1(I1 − 3)+

1
2C2(I2 − 3)+ H(I1 − I2). (6)
As an illustration we consider the following example of
a generalized Mooney–Rivlin material,

WgMR = WMR −
1
2C3Jmln


1 −

I1 − I2
Jm


. (7)

This model is chosen in an attempt to capture the strain-
hardening effects which occur for moderate to large
extensions of rubber, and which cannot be captured by the
Mooney–Rivlin model alone [4]. The final term of WgMR
is obtained from Gent’s model [6] after substituting I1 by
I1− I2, andwe expect that it will be able to capture limiting
chain extensibility by tuning the parameter Jm.

For WMR and WgMR we perform curve fitting to the
uni-axial extension data of Treloar [7], by minimizing the
relative error. The engineering tensile stress σ is given by

σ(λ) =
∂W
∂λ

= 2(λ− λ−2)


∂W
∂ I1

+ λ−1 ∂W
∂ I2


, (8)

where λ is the stretch along the direction of extension, and
the Mooney-plot scales these variables as g(z) := σ/(λ −

λ−2) against z := λ−1. For the Mooney–Rivlin material
WMR the fit is made over the first seven data points only,
which correspond to the linear regime in theMooney-plot,
see [4] for details and the lower (green) curves of Fig. 2.
Over that limited range (1 ≤ λ . 2), it gives a maximal
relative error of 1.70% by adjusting C1 and C2 appropriately
(explicitly, C1 = 1.7725, C2 = 2.7042.) Over the entire
range (1 ≤ λ . 8) it gives a terrible fit because it
cannot accommodate the upturn in the Mooney-plot, only
its early, linear part. For the model WgMR we perform the
fitting over the entire range of stretches: we keep the same
C1 and C2 throughout, and adjust the parameters C3 and Jm.
The fitted curves for WgMR are plotted as the upper (red)
graphs of Fig. 2; the maximum relative error over the full
range is 4.89%, which is well within the experimental error
of Treloar.

Further, in the fourth-order expansion [8] of these
models, we find the following connections forWgMR,

µ = C1 + C2, A = −4(C1 + 2C2 + 2C3),

D = C1 + 3C2 + 4C3.
(9)
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Fig. 2. (a) Curve-fitting to Treloar’s uni-axial data [7] (circles); Fitted λ− σ curve the first seven points of the data using the Mooney–Rivlin model (lower
curve) and all the data using model WgMR (upper curve). (b) Mooney plots for the same models and data. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
3. Conclusion

We note that the generalized Mooney–Rivlin models
still exhibit some special mechanical behavior. Indeed,
when we calculate the coefficient of non-linearity of non-
linear acoustics [9]β = (µ+A/2+D)/(2µ)weobtainβ =

0, not only for the specific example (7) but for the entire
class of generalized Mooney–Rivlin materials. As a result,
these materials cannot be used to model non-linear shear
wave propagation. Moreover, because β = 0, they will
not predict unbounded growth for the bending moment of
a rectangular block with increasing values of the product
of the block aspect ratio by the bending angle [10,8]. To
overcome these problems associated with the linearity of
the models in shear and in torsion, we have to recognize
that the linearity property exists only over a limited range
of stretches, and we then have to undertake a completely
different approach to the modeling, as explained in a
recent contribution onmathematicalmodels of rubber-like
materials [11].

Nonetheless, the class of generalized Mooney–Rivlin
materials achieves Mooney’s aspiration [1] of a model
obeying Hooke’s law in shear over a wide range of de-
formation and for which neither the force–elongation nor
the stress–elongation relationship agrees with Hooke’s law
in simple extension. The models proposed improve on the
predictions of the Mooney–Rivlin model in simple exten-
sion over the whole range of admissible deformations and
hence provide a rich alternative to the model first pro-
posed by Mooney [1] and later re-elaborated by Rivlin and
co-authors [2].
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In this supplementary material we
present an earlier version of the paper, which
included the most general strain energy
function for isotropic incompressible solids
exhibiting a linear relationship between shear

stress and amount of shear, see Equation (7)
below. It was removed from the printed ver-
sion of the paper following the suggestion of a
referee. We also provide the experimental
data used for Figure 1(a).
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We find the strain energy function for the most general isotropic incompressible
solid exhibiting a linear relationship between shear stress and amount of shear, and
between torque and amount of twist, when subject to large simple shear or torsion
deformations. It is inclusive of the well-known neo-Hookean and the Mooney-Rivlin
models, but also can accommodate an infinity of other terms, as certain arbitrary
functions of the principal strain invariants. E↵ectively, the extra terms can be used
to overcome some of the limitations of the neo-Hookean and Mooney-Rivlin models,
in order to account for several non-linear e↵ects observed experimentally.

Many soft incompressible materials have
a linear response in shear and in torsion, in-
cluding rubbers and soft tissues (FIG.1). But
how should that property be modeled? The
strain energy functions that come to mind are
those of the neo-Hookean and the Mooney-
Rivlin1 materials,

WnH = 1
2
C1(I1 � 3),

WMR = 1
2
C1(I1 � 3) + 1

2
C2(I2 � 3), (1)

respectively, where C1 > 0, C2 > 0 are con-
stants, and I1 = trC, I2 = tr(C�1) are
the first two principal invariants of the right
Cauchy-Green deformation tensor C. These
models provide indeed an exact linear re-
lationship between the Cauchy shear stress
component T12 and the amount of shear K,
and between the torque M and the twist  .
This can be checked directly by recalling the

general relationships

T12 = 2

✓
@W

@I1
+
@W

@I2

◆
K,

M = 4⇡ 

Z a

0

r3
✓
@W

@I1
+
@W

@I2

◆
dr, (2)

(where r is the radial distance and a is the
radius of the twisted cylinder2) because the
term in the parentheses is a constant for these
two models.

However popular, these models present
some significant limitations when it comes
to capturing certain non-linear e↵ects. For
instance, the neo-Hookean model predicts
that the normal stress component T22 =
�2(@W/@I2)K2 should be zero, in direct con-
tradiction with the experimentally observed
Poynting e↵ect3. The Mooney-Rivlin mate-
rial does predict a positive Poynting e↵ect,
but cannot be used to model the up-turn in
the Mooney-plot observed for the large ex-
tension of rubbers4. Also, with only two ma-
terial constants C1, C2 at its disposal, the

1
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Mooney-Rivlin model cannot reflect fourth-
order weakly non-linear elasticity5 properly,

W4th = µ tr(E2) +
A

3
tr(E3) +D tr(E3), (3)

that involves three constants (here E = (C�
I)/2 is the Green strain tensor, µ is the in-
finitesimal shear modulus and A, D are the
Landau constants of third- and fourth-order
elasticity)5. Here we show that there exist, in
fact, more general strain energies satisfying
the linearity property and able to overcome
these shortcomings.

FIG. 1: (a) Shear stress response in the
simple shear of porcine brain matter;

experiments conducted at University College
Dublin, see Ref.3 for details. (b) Torsion of a
right cylinder of rubber with radius a = 1.27
cm; digitized data from Ref.2. The straight
lines represent linear fittings, indicating that
the shear modulus is µ = 163 Pa for brain

and 38.2 kPa for rubber.

We arrive at the desired linear relation-
ships by enforcing that the strain energy
function W satisfy @W/@I1 + @W/@I2 =

constant. Furthermore, compatibility with
the linear theory imposes that @W/@I1 +
@W/@I2 = µ/2. We note that the Mooney-
Rivlin material (1) is a particular solution of
that inhomogeneous partial di↵erential equa-
tion, with C1 + C2 = µ. Thus the general
solution may be written as

W = WMR +H(I1, I2), (4)

where H is an arbitrary function of the two
variables I1, I2. Then, after substitution,
we obtain a homogeneous partial di↵erential
equation for H,

@H

@I1
+
@H

@I2
= 0. (5)

The general solution of this equation is sim-
ply H = H(I1�I2) where H remains an arbi-
trary function, but now of the single variable
I1 � I2. We call the corresponding class of
solids, the generalized Mooney-Rivlin materi-
als,

W = 1
2
C1(I1 � 3) + 1

2
C2(I2 � 3) +H(I1 � I2).

(6)
In passing, note that for simple shear and
pure torsion we have I1 = I2, so that we may
generalize the solution further by introducing
additional terms which tend to zero in the
limit I1�I2 ! 0. Therefore a general solution
is

W =1
2
C1(I1 � 3) + 1

2
C2(I2 � 3)

+H(I1 � I2) +
X

k�1

(I1 � I2)
kFk(I1, I2),

(7)

where the Fk are arbitrary non-constant func-
tions of the two principal invariants and the
exponents k are real numbers.

As an illustration we consider the follow-
ing example of a generalized Mooney-Rivlin
material,

WgMR = WMR � 1
2
C3Jmln

✓
1� I1 � I2

Jm

◆
.

(8)
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This model is chosen in an attempt to capture
the strain-hardening e↵ects which occur for
moderate to large extensions of rubber, and
which cannot be captured by the Mooney-
Rivlin model alone4. The final term of WgMR

is similar to the Gent model6, and we expect
that it will be able to capture limiting chain
extensibility by tuning the parameter Jm.

For WMR and WgMR we perform curve
fitting to the uni-axial extension data of
Treloar7, by minimizing the relative error.
The engineering tensile stress � is given by

�(�) =
@W

@�
= 2(����2)

✓
@W

@I1
+ ��1@W

@I2

◆
,

(9)
where � is the stretch along the direction of
extension, and the Mooney-plot scales these
variables as g(z) := �/(� � ��2) against
z := ��1. For the Mooney-Rivlin material
WMR the fit is made over the first seven data
points only, which correspond to the linear
regime in the Mooney-plot, see4 for details
and the lower (green) curves of FIG.2. Over
that limited range (1  � <⇠ 2), it gives
a maximal relative error of 1.70% by ad-
justing C1 and C2 appropriately (explicitly,
C1 = 1.7725, C2 = 2.7042.) Over the entire
range (1  � <⇠ 8) it gives a terrible fit be-
cause it cannot accommodate the upturn in
the Mooney-plot, only its early, linear part.
For the model WgMR we perform the fitting
over the entire range of stretches: we keep the
same C1 and C2 throughout, and adjust the
parameters C3 and Jm. The fitted curves for
WgMR are plotted as the upper (red) graphs
of FIG.2; the maximum relative error over
the full range is 4.89%, which is well within
the experimental error of Treloar.

Further, in the fourth-order expansion8 of
these models, we find the following connec-
tions for WgMR,

µ = C1 + C2, A = �4(C1 + 2C2 + 2C3),

D = C1 + 3C2 + 4C3. (10)

Note however that the generalized
Mooney-Rivlin models still exhibit some

FIG. 2: (a) Curve-fitting to Treloar’s
uni-axial data7 (circles); Fitted �� � curve
the first seven points of the data using the
Mooney-Rivlin model (lower curve) and all
the data using model WgMR (upper curve).
(b) Mooney plots for the same models and

data.

special mechanical behavior. Indeed, when
we calculate the coe�cient of non-linearity of
non-linear acoustics9 � = (µ+A/2+D)/(2µ)
we obtain � = 0, not only for the specific
example (8) but for the entire class of gener-
alized Mooney-Rivlin materials. As a result,
these materials cannot be used to model
non-linear shear wave propagation. More-
over, because � = 0, they will not predict
unbounded growth for the bending moment
of a rectangular block with increasing values
of the product of the block aspect ratio by
the bending angle8,10. To overcome these
problems associated with the linearity of the
models in shear and in torsion, we have to

3



recognize that the linearity property exists
only over a limited range of stretches, and we
then have to undertake a completely di↵erent
approach to the modeling, as explained in a
recent contribution on mathematical models
of rubber-like materials11.

Nonetheless, the class of generalized
Mooney-Rivlin materials achieves Mooney’s
aspiration1 of a model obeying Hooke’s law
in shear over a wide range of deformation
and for which neither the force-elongation
nor the stress-elongation relationship agrees
with Hooke’s law in simple extension. The
models proposed improve on the predictions
of the Mooney-Rivlin model in simple exten-
sion over the whole range of admissible defor-
mations and hence provide a rich alternative
to the model first proposed by Mooney1 and
later re-elaborated by Rivlin and co-authors2.
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