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The equations governing the appearance of flexural
static perturbations at the edge of a semi-infinite
thin elastic isotropic plate, subjected to a state of
homogeneous bi-axial pre-stress, are derived and
solved. The plate is incompressible and supported
by a Winkler elastic foundation with, possibly,
wavenumber dependence. Small perturbations
superposed onto the homogeneous state of pre-stress,
within the three-dimensional elasticity theory, are
considered. A series expansion of the plate kinematics
in the plate thickness provides a consistent expression
for the second variation of the potential energy, whose
minimization gives the plate governing equations.
Consistency considerations supplement a constraint
on the scaling of the pre-stress so that the classical
Kirchhoff–Love linear theory of pre-stretched elastic
plates is retrieved. Moreover, a scaling constraint
for the foundation stiffness is also introduced.
Edge wrinkling is investigated and compared with
body wrinkling. We find that the former always
precedes the latter in a state of uni-axial pre-stretch,
regardless of the foundation stiffness. By contrast,
a general bi-axial pre-stretch state may favour
body wrinkling for moderate foundation stiffness.
Wavenumber dependence significantly alters the
predicted behaviour. The results may be especially
relevant to modelling soft biological materials, such
as skin or tissues, or stretchable organic thin-films,
embedded in a compliant elastic matrix.
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1. Introduction
The edge buckling phenomenon is ubiquitous in nature and it can be observed at the boundary
of almost all biological thin structures. Examples include, among many, lettuce leaves, flower
petals or the gut tube in animals, see the review by Li et al. [1]. There, the driving force behind
edge wrinkling is undoubtedly growth. In Kabir et al. [2], growth-induced buckling of cell
microtubules embedded in a compressed kinesin substrate is shown experimentally and it is
modelled as instability of a beam-plate supported by a Winkler elastic foundation. Alongside
biological systems, thin-film flexible materials, with special regard to organic films, easily develop
stress-induced instability and, with it, a great potential for integrated applications in moving
parts and complex geometries. In particular, stretchability (i.e. elasticity under tensile strain) and
flexibility have been identified as key material properties required to develop collapsible and
portable devices [3], bio-sensors and textile integration [4], energy scavengers [5] and embedded
capacitors and batteries. Lipomi et al. [6] experimentally investigated pre-stressed stretchable
organic photovoltaic cells laid on an elastic substrate as an application of body buckling to
increase integration compliance in portable devices.

From a mechanical standpoint, modelling of edge buckling is related to edge wave
propagation, whose consideration dates back to 1960 and is now credited to Konenkov [7], despite
a long history of discovery and rediscovery, see the overview by Norris et al. [8] and the more
recent contributions [9–13]. However, to move from edge waves to edge wrinkles, we must add
the effects of a large enough pre-deformation such that the edge wave speed drops to zero. In this
way, a localized static solution might exist in the neighbourhood of this pre-deformation.

Alongside some established mathematical tools, such as Gamma convergence and the
asymptotic method [14], results which consistently separate flexural and extensional effects can
be obtained through a Taylor expansion of the potential energy in powers of the plate thickness h,
as in [15–17]. Kaplunov et al. [18] used an asymptotic technique to analyse vibrations of thin
elastic pre-stressed incompressible plates in the low-frequency limit η = kh � 1, where k is the
wavenumber, for the special case of plane deformation. Pichugin & Rogerson [19] provided an
extension to the three-dimensional case. Tovstik [20] considered the vibrations of a pre-stressed
transversely isotropic infinite thin plate that is supported by an elastic foundation with inertial
contribution. Remarkably, no consistent attempt at considering edge wrinkles in pre-stressed
elastic plates can be traced in the literature, to the best of the authors’ knowledge.

In this paper, we derive the equations governing edge wrinkling of a homogeneously
pre-stressed plate made of incompressible isotropic hyperelastic material, together with the
corresponding boundary conditions, when the plate is bilaterally supported by a Winkler elastic
foundation [21,22]. As in [17], we adopt a through-the-thickness expansion for the second
variation of the plate energy, with the differences that our material is incompressible and the
plate is elastically supported. These assumptions are introduced to better model soft solids
and thin-films embedded in an elastic matrix. It is worth emphasizing that consideration of
different scalings for the pre-stress σ leads to a diverse mechanical response. In this paper, we
assume that the pre-stress is small as it scales as h2 and the plate is thin, i.e. h � 1. Besides, the
Winkler foundation is soft and its stiffness κ scales as h3. As a result, a flexural behaviour for
the supported plate is considered. By contrast, in [18,19] attention is set on a large pre-stress,
for σ =O(1) independently of h. Consequently, in-plane deformation (membrane regime) takes
over. Indeed, we show that the scaling assumed for the pre-stress determines the leading term
in the energy expansion, while consistency considerations suggest the proper scaling for the
foundation stiffness.

The paper is structured as follows. Section 2 introduces the problem and presents the
variational framework. We carry out the through-thickness energy expansion in §3 and minimize
the second variation of the potential energy in §4. The plate governing equation as well as the
boundary conditions are given in §5. We draw a comparison with the classical Kirchhoff–Love
theory of pre-stressed plates in §6. In §7, we seek solutions in the form of edge wrinkles and
derive the corresponding bifurcation curve. Body wrinkling is considered in §8 and its occurrence
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is compared with that of edge wrinkling as a function of the foundation stiffness and wavenumber
dependence. Finally, conclusions are drawn in §9.

2. Formulation of the problem
Consider a hyperelastic plate B occupying the region B, named equilibrium configuration, of the
three-dimensional Euclidean space E and let {e1, e2, e3} denote a fixed orthonormal basis set
for E along the axes {x1, x2, x3}. The plate is incompressible and it has been homogeneously
pre-deformed. The equilibrium configuration takes the form

B = ω × [− 1
2 h, 1

2 h], (2.1)

where h > 0 denotes the plate thickness and the region ω in the plane x3 = 0 is named the plate mid-
plane. Here, we assume that e3 is a principal axis for the homogeneous pre-deformation, while no
such provision is taken for e1 and e2. Hence, the plate is pre-deformed by the application of a
constant Cauchy stress σ such that σ13 = σ23 = 0, whereas the other shear stress components are
generally non-zero (see figure 1 for the case of a uni-axial stress). For simplicity, we further assume
σ33 = 0.

Having been homogeneously pre-stretched, the plate undergoes a small incremental motion.
Thus, the deformation reads

χ = χ (0) + εχ (1), (2.2)

where χ (0) is the homogeneous pre-stretch and εχ (1) the small incremental deformation, where
|ε| � 1. Let F = grad χ (0) be the homogeneous gradient of the pre-deformation.

In this paper, we focus on flexural edge wrinkles arising in a thin plate, where thin is to
be understood in the sense that the plate thickness h is small compared with the wrinkle
wavelength � = 2πk−1, i.e. kh � 1. The plate is uniformly and bilaterally supported along e3
by an elastic Winkler foundation with stiffness κ > 0. Besides, to fix ideas, we assume that the
foundation reaction is directly applied to the plate mid-plane, although this restriction will prove
unnecessary. Consequently, the plate top and bottom faces are stress-free, i.e.

σe3 = 0 at x3 = ±h
2

. (2.3)

The gradient of the incremental displacement (deprived of the small parameter ε) is

Γ = grad χ (1) = χ
(1)
i,j ei ⊗ ej. (2.4)

Likewise, let the incremental nominal stress [23]

Σ = AΓ + pΓ − ṗI, (2.5)

with components

Σji =AjilkΓkl + pΓji − ṗδij. (2.6)

Here, A is the fourth-order tensor of the instantaneous elastic moduli, which is endowed with the
major symmetry property [24, eqn (2.10)]

Aijkl =Aklij, (2.7)

while the scalar p is a Lagrange multiplier due to the internal constraint of incompressibility and ṗ
is its increment. We recall the connections among the instantaneous elastic moduli [24, eqn (3.6)],

Ajikl − Aijkl = (σjk + pδjk)δil − (σik + pδik)δjl, (2.8)

whence, multiplying through by Γlk and summing over repeated indexes, we get

Σji − Σij = σjkΓik − σikΓjk. (2.9)
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Figure 1. Hyperelastic semi-infinite plate resting on a Winkler foundation. Here the plate has been homogeneously
pre-stretched along x1 (equilibrium configuration) by the application of a uni-axial stressσ11.

As the deformation χ is a one-parameter family in ε, we can write the potential energy E of the
system as a function of ε,

E(ε) =
∫

B
W dV −

∫
∂B

t · χ dS + EW(ε), (2.10)

where W = W(F + εΓ ) is the elastic energy stored in B, t denotes the traction applied on ∂B, the
boundary of B, and the last integral accounts for the contribution of the foundation. Following
[15,17], when the potential energy E(ε) is expanded as a Taylor series about ε = 0, the first
variation vanishes because the current configuration is an equilibrium one. The second variation
of the potential energy is

E′′(0) = E′′
B(0) + E′′

W(0), (2.11)

where the body contribution, E′′
B(0), is developed in §4 while the Winkler foundation contribution

is simply

E′′
W(0) =

∫
ω

κw2 dS, (2.12)

where κ > 0 is named the Winkler modulus or the foundation stiffness.

3. Through-the-thickness expansions
Unless otherwise stated, the summation convention over twice repeated indexes is adopted, with
the understanding that all Greek subscripts take on values in the set {1, 2}, while Roman subscripts
range in the set {1, 2, 3}. A comma is used to denote partial differentiation with respect to the
relevant coordinate, i.e. w,1 = ∂w/∂x1. We assume that the incremental fields admit the following
through-the-thickness expansions in x3 ∈ [−h/2, h/2]

χ (1) = v + we3 + x3a + 1
2 x2

3b + 1
6 x3

3c + · · · (3.1a)

and
ṗ = ṗ(0) + x3ṗ(1) + 1

2 x2
3ṗ(2) + · · · , (3.1b)

where v, a, b, c and w, ṗ(0), ṗ(1), ṗ(2) are functions of x1 and x2 (see also [25,26]). Note that, at leading
order, the displacement of the mid-plane has been decomposed as the in-plane displacement vαeα ,
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plus the transverse displacement we3. Consequently, it may be assumed that v3 = 0 without loss
of generality.

For the gradient operator, we use the decomposition

grad f = f ,i ⊗ ei = f ,α ⊗ eα + f ,3 ⊗ e3 = ∇f + f ,3 ⊗ e3, (3.2)

where ∇ denotes the two-dimensional nabla operator through which the two-dimensional
divergence of a vector, ∇ · f = fα,α , of a tensor, (∇ · Σ)j = Σαj,α , and the two-dimensional gradient
of a vector, ∇f = fi,βei ⊗ eβ , may be defined. Then, from (2.4) we obtain

Γ = Γ (0) + x3Γ
(1) + 1

2 x2
3Γ

(2) + · · · , (3.3)

where

Γ (0) = ∇v + w,αe3 ⊗ eα + a ⊗ e3, (3.4a)

Γ (1) = ∇a + b ⊗ e3 (3.4b)

and Γ (2) = ∇b + c ⊗ e3, (3.4c)

or, in terms of components,

Γ
(0)
αβ = vα,β , Γ

(0)
α3 = aα , Γ

(0)
3β

= w,β , Γ
(0)

33 = a3, (3.5a)

Γ
(1)
αβ = aα,β , Γ

(1)
α3 = bα , Γ

(1)
3β

= a3,β , Γ
(1)

33 = b3 (3.5b)

and Γ
(2)
αβ = bα,β , Γ

(2)
α3 = cα , Γ

(2)
3β

= b3,β , Γ
(2)

33 = c3. (3.5c)

Upon substituting (3.3) into (2.5), we obtain

Σ = Σ (0) + x3Σ
(1) + 1

2 x2
3Σ

(2) + . . . , (3.6)

where, clearly,

Σ
(0)
ji =AjilkΓ

(0)
kl + pΓ

(0)
ji − ṗ(0)δij (3.7a)

and

Σ
(1)
ji =AjilkΓ

(1)
kl + pΓ

(1)
ji − ṗ(1)δij, (3.7b)

and so forth.
The stress-free boundary conditions at the top and bottom surfaces of the plate, equations (2.3),

extend to the incremental stress and give

Σ
(0)
3i ± Σ

(1)
3i

1
2 h + Σ

(2)
3i

1
8 h2 ± O(h3) = 0, (3.8)

at x3 = ±h/2. Then, adding and subtracting together the two conditions, we get, to leading order
[17, eqn (51)],

Σ
(0)
3i = −Σ

(2)
3i

1
8 h2 (3.9a)

and

Σ
(1)
3i = −Σ

(3)
3i

1
48 h2. (3.9b)

We observe that equation (3.8) shows that the assumption that the foundation reaction acts
directly at the plate mid-plane may be abandoned with no harm provided that, as it will appear
later, the foundation is soft and its reaction is O(h3).
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The incremental incompressibility condition, div χ (1) = 0, applied to the expansion (3.1a), gives

∇ · v + x3∇ · a + 1
2 x2

3∇ · b + a3 + x3b3 + 1
2 x2

3c3 + · · · = 0 (3.10)

and because the above expression needs to vanish for any value of x3, the coefficients of this
polynomial in x3 vanish independently, i.e.

∇ · v + a3 = 0, ∇ · a + b3 = 0 and ∇ · b + c3 = 0 . . . . (3.11)

We only consider flexural deformations, so we may set vα = 0. It then follows, from the first of
equations (3.11) that

a3 = 0. (3.12)

Now, taking i = α in (3.9a) and making use of equations (3.5a) and (3.7a), we obtain

Σ
(0)
3α

=A3α3βaβ + (A3αβ3 + pδαβ )w,β =O(h2), (3.13)

from which we deduce, with the help of equations (2.7), (2.8) and σ33 = 0, that

aα = −w,α + O(h2). (3.14)

To leading order, this result amounts to the well-known assumption in the Kirchhoff–Love plate
theory of zero shear deformation along the cross-section, the latter remaining orthogonal to the
mid-plane. Taking i = 3 in (3.9a) yields ṗ(0) =O(h2) and it follows from equations (3.5a), (3.7a) and
(3.14) that

Σ
(0)
αβ =O(h2). (3.15)

Together, the second equation of (3.11) and equation (3.14) give

b3 = −aα,α = w,αα + O(h2). (3.16)

In a similar manner, taking i = α in equation (3.9b) and using (3.5b), (3.7b) and (3.12), we obtain

bα =O(h2), (3.17)

which, up to O(h2) terms in (3.1a), amounts to the Kirchhoff–Love hypothesis that cross-sections
remain plane during bending. Using the last of equations (3.11) with (3.17), we find c3 =O(h2).
Besides, taking i = 3 gives the leading term in the incremental pressure

ṗ(1) =A33βαaα,β + (p + A3333)b3 + O(h2). (3.18)

Therefore, we have, up to O(h) terms,

a3 = 0, bα = 0, c3 = 0 and ṗ(0) = 0 (3.19)

and the kinematics of the plate (3.1a) simplifies to

χ (1) = we3 − x3w,αeα + 1
2 x2

3(∇2w)e3 + 1
6 x3

3c + · · · . (3.20)

It is emphasized that, in the foregoing derivations, c rests undetermined.
A comparison of the results with the literature shows that the plate kinematics (3.20)

encompasses eqns (3.17,23,29,30) of Kaplunov et al. [18]. For instance, the linear-through-the-
thickness-ζ expression for the axial displacement U[2] = �(u(0)

1 + η2u(2)
1 ), given by their eqns (3.17)

and (3.23)1, using equation (3.31) and (3.33) corresponds to the one-dimensional version of the
second term in (3.20) here, given that V[2] = �(U(0,0)

2 + η2U(0,2)
2 + · · · ) corresponds to w. Likewise,

equation (3.23)2 brings in the quadratic term in the transverse displacement u2, corresponding to
the third term in (3.20), which is proportional to the curvature. Finally, equation (3.23)3 gives the
last of equations (3.19) for the leading term in the pressure increment. Conversely, the governing
equation for pre-stressed plates (7.4) cannot be directly obtained from the static limit of (3.56)
of Kaplunov et al. [18], in the light of the fact that the latter equation is obtained under the
assumption of pre-stress σ11 =O(1), plate thickness 2h and in the absence of the foundation.
However, once such assumptions are modified, correspondence can be achieved. We observe that
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in the works of Dai & Song [27] and Wang et al. [28] a theory for, respectively, compressible and
incompressible thin plates is developed through an expansion of the plate kinematics about the
lower surface x3 = −h/2, which is then fed into the governing equations.

4. Variational formulation
We begin with the following general expression for the second variation of the total potential
energy of a hyperelastic body B:

E′′
B(0) =

∫
B

Σ · Γ dv. (4.1)

The integration domain B may be the configuration of any pre-stressed body and, in the following,
it is identified with the set (2.1). Hereinafter, a general material and a general state of pre-stress
σαβ are considered. Besides, in order to restrict the formulation to bending, we assume that the
pre-stress scales as h2, i.e. σαβ =O(h2). The essence of the approach is to reduce the right-hand
side of (4.1) consistently to order h3, and then obtain the reduced boundary-value problem by
energy minimization [17]. Consequently, in the following derivation, terms of order higher than
h3 are neglected.

With the help of the results established in the previous sections, we can proceed to simplify
the second variation (4.1). First, by substituting (3.3) and (3.6) into (4.1) and integrating along the
thickness of the plate, we obtain, up to O(h3) terms,

E′′
B(0) =

∫
ω

{
hΣ

(0)
ji Γ

(0)
ij + h3

12

(
1
2
Σ

(0)
ji Γ

(2)
ij + Σ

(1)
ji Γ

(1)
ij + 1

2
Σ

(2)
ji Γ

(0)
ij

)}
dS

=
∫
ω

{
hΣ

(0)
ji Γ

(0)
ij + h3

12

(
Σ

(0)
ji Γ

(2)
ij + Σ

(1)
ji Γ

(1)
ij

)}
dS,

=
∫
ω

{
hΣ

(0)
ji Γ

(0)
ij + h3

12

(
Σ

(0)
α3 b3,α + Σ

(1)
βαaα,β

)}
dS, (4.2)

where, in obtaining the last expression, use has been made of the results (3.5a), (3.5b), (3.19) and
of the boundary condition (3.9a). Indeed, the latter indicates that the term Σ

(0)
3α

cα + Σ
(0)
33 c3 =O(h2)

brings a higher order contribution which may be omitted in the round brackets. For the first term
in (4.2), using equations (3.5a), (3.12), (3.14) and (3.19), we get

Σ
(0)
ji Γ

(0)
ij = Σ

(0)
α3 w,α + Σ

(0)
3α

aα = (Σ (0)
α3 − Σ

(0)
3α

)w,α + O(h4) = σαβw,αw,β + O(h4) (4.3)

and the last expression is deduced with the aid of (2.9). It is observed that hΣ
(0)
ji Γ

(0)
ij =O(h3). For

the second term in (4.2), we have
∫
ω

Σ
(0)
α3 b3,α dS =

∫
ω

{(
Σ

(0)
α3 b3

)
,α

− Σ
(0)
α3,αb3

}
dS =

∫
∂ω

Σ
(0)
α3 b3nα ds −

∫
ω

(
∇ · Σ (0)

)
3

b3 dS, (4.4)

where nα is the unit vector normal to the mid-plane boundary ∂ω. On the account of the
incremental equilibrium equation in the absence of incremental body forces, i.e. div Σ = o and
with (3.9b), it is Σ

(0)
αi,α = −Σ

(1)
3i =O(h2), whence, in the absence of incremental surface traction,

∫
ω

Σ
(0)
α3 b3,α dS =O(h2). (4.5)

Thus, with equation (3.14), the second variation (4.2) becomes, to leading order,

E′′
B(0) =

∫
ω

{
hσαβw,αw,β − h3

12
Σ

(1)
βαw,αβ

}
dS. (4.6)

Note that both terms in this expression are O(h3) as we have assumed that σαβ =O(h2). In fact, it
is this very assumption that makes our expansion self-consistent.
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Finally, we have, with the help of equations (3.5b) and (3.18) and up to O(1),

Σ
(1)
βα =AβαlkΓ

(1)
kl + pΓ

(1)
βα − ṗ(1)δαβ

=Aβαγ δaδ,γ + Aβα33b3 + paβ,α − ṗ(1)δαβ

= (Aβαγ δ − A33γ δδαβ )aδ,γ + (Aβα33 − pδαβ − A3333δαβ )b3 + paβ,α

= −(Aβαγ δ − A33γ δδαβ )w,δγ + (Aβα33 − pδαβ − A3333δαβ )w,γ γ − pw,αβ , (4.7)

where we used (3.14) and (3.16) in the last equality. Therefore, the second variation of the potential
energy can be written as

E′′
B(0) =

∫
ω

{
hσαβw,αw,β + D̂αβδγ w,δγ w,αβ

}
dS, (4.8)

whose first and second terms are quadratic forms in ∇w and ∇∇w, and where

D̂αβδγ = h3

12

{Aβαγ δ − A33γ δδβα − A33βαδγ δ + (A3333 + p)δαβδδγ + pδβγ δαδ

}
. (4.9)

The fourth rank tensor D̂ exhibits the major symmetry, yet it may be equally well replaced by
its minor-symmetric part D, which has six independent components out of 16. Furthermore,
expanding the instantaneous moduli in powers of the thickness h about the undeformed state
λi = 1 only the leading order term may be consistently retained, i.e. D is a constant tensor. Indeed,
we have [29, eqn (3.16)]

Aβαγ δ = μδβγ δαδ + O(h) (4.10)

and p = μ, whence equation (4.9) gives

Dαβδγ = 1
4D{δβγ δαδ + δβδδαγ + 2δαβδδγ }, (4.11)

where we have introduced the classical plate flexural rigidity [30]

D= Eh3

12(1 − ν2)
, ν = 1

2
, (4.12)

in the light of the connection μ = E/(2(1 + ν)) between the shear modulus, μ, and Young’s
modulus, E. In this context, the only non-zero elements of D are

D1111 =D2222 = 2D1122 = 2D2211 = 4D1212 = 4D2112 = 4D1221 = 4D2121 = D. (4.13)

5. Plate governing equation
Let us define the moments (per unit length) by

Mαβ = −Dαβδγ w,δγ . (5.1)

In particular, the bending moments are

M11 = −D
(

w,11 + 1
2 w,22

)
and M22 = −D

(
w,22 + 1

2 w,11

)
, (5.2)

while the twisting moments are

M12 = M21 = − 1
2Dw,12. (5.3)

Likewise, let us define the shearing force (per unit length)

qα = hσαβw,β + Mβα,β . (5.4)

It follows that

E′′
B(0) =

∫
ω

qαw,α dS −
∫
∂ω

Mαβw,αnβ ds. (5.5)
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Taking the first variation of (5.5) with respect to w, we obtain

1
2
δE′′

B(0) = −
∫
ω

qα,αδw dS +
∫
∂ω

(qαδw − Mβαδw,β )nα ds. (5.6)

The last term in the boundary integral is better expressed in terms of the normal and the tangential
(with respect to the boundary) derivatives, making use of the formula [31, §36.4]

δw,β = τβ
∂δw
∂τ

+ nβ
∂δw
∂n

. (5.7)

Setting to zero the first variation inside ω gives the plate governing equation

∇ · q = 0 in ω, (5.8)

which reads
D∇2w − hσ11w,11 − 2hσ12w,12 − hσ22w,22 = 0 (5.9)

and it amounts to enforcing out-of-plane equilibrium of a plate element. Here, ∇2w = w,1111 +
2w,1122 + w,2222 is the biharmonic operator applied to w. In the same fashion, setting to zero the
first variation of the boundary integral yields the natural boundary conditions

Vnδw = 0 and Mnδ
∂w
∂n

= 0, on ∂ω, (5.10)

where Vn = qαnα + (∂/∂τ )(τβMβαnα) is the well-known Kirchhoff equivalent shearing force and Mn =
nβMβαnα is the bending moment, both acting on a surface with unit normal nα . Setting n = cos θe1 +
sin θe2, they read

Vn = qn − Mnτ ,1 sin θ + Mnτ ,2 cos θ (5.11)

and
Mn = 1

2 (M11 + M22) + 1
2 (M11 − M22) cos 2θ + M12 sin 2θ , (5.12)

where we have let qn = q1 cos θ + q2 sin θ and

Mnτ = 1
2 (M22 − M11) sin 2θ + M12 cos 2θ . (5.13)

6. Stress distribution and comparison with the classical theory
Equations (3.15), (4.7) and (4.9) give the normal stress distribution (no sum over α in this section)

Σαα = x3Σ
(1)
αα + O(h2) = −12

h3 x3Dααβγ w,βγ + O(h2), (6.1)

that is, using (4.13) and to leading order,

Σ11 = −12
h3 x3D(w,11 + 2w,22) and Σ22 = −12

h3 x3D(w,22 + 2w,11). (6.2)

It is a straightforward matter to show that, up to O(h3), the bending moments (5.2) are obtained
integrating along the plate thickness the normal stress couples, i.e.

Mαα =
∫ h/2

−h/2
x3Σαα dx3. (6.3)

Similarly, for the in-plane shear stress, we have, to leading order,

Σαβ = x3Σ
(1)
αβ = −12

h3 x3Dαβγ δw,δγ , (6.4)

which is symmetric owing to the minor symmetry of Dαβγ δ and it reads

Σ12 = Σ21 = − 6
h3 x3Dw,12. (6.5)
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By integrating along the thickness and up to O(h3), it gives the twisting moment (5.3)

Mαβ =
∫ h/2

−h/2
x3Σαβ dx3. (6.6)

Equations (3.9) allow us to write the out-of-plane stress Σ3α consistently at O(h2)

Σ3α = 1
2

(
x2

3 − h2

4

)
Σ

(2)
3α

, (6.7)

which amounts to the classical ad hoc assumptions that the out-of-plane stress is of higher
order than the in-plane stress and its distribution along the thickness is parabolic (cf. [30]). From
equations (3.5c) and (2.8) and to leading order,

Σ
(2)
3α

=A3αβ3(cβ + w,γ γβ ) + p(cα + w,γ γα), (6.8)

which, in the light of (4.10), reduces to

Σ
(2)
3α

= μ(cα + w,γ γα). (6.9)

The so-far-undetermined vector cα may be obtained, to leading order, through the incremental
equilibrium equation div Σ = o, i.e.

Σ
(2)
3α

= −Σ
(1)
βα,β , (6.10)

whence its components are

c1 = 3(w,111 + 3w,122) and c2 = 3(w,222 + 3w,112). (6.11)

Thus, through equations (5.4), (6.4), (6.6) and (6.10), the shearing force may be related to the out-
of-plane stress distribution and the pre-stress as

qα = hσαβw,β +
∫ h/2

−h/2
x3Σβα,β dx3 = hσαβw,β +

∫ h/2

−h/2
x2

3Σ
(1)
βα,β dx3

= hσαβw,β −
∫ h/2

−h/2
x2

3Σ
(2)
3α

dx3 = hσαβw,β − h3

12
Σ

(2)
3α

, (6.12)

which gives the classical formula [30, §21], corrected to account for the pre-stress, namely

Σ3αmax = 3
2h

(qα − hσαβw,β ) =O(h2). (6.13)

Besides, integrating equation (6.7) along the thickness and comparing with the last of equations
(6.12), we may write

qα = hσαβw,β +
∫ h/2

−h/2
Σ3α dx3, (6.14)

which corresponds to the classical definitions of Qx and Qy, respectively, in eqns (106,107) of
[30], corrected to incorporate the pre-stress. The bending moments (5.2) as well as the twisting
moment (5.3) correspond to the classical definitions (101,102) of Timoshenko & Woinowsky-
Krieger [30, §21]. The Kirchhoff shearing force (5.11) amounts to the corresponding definition (g)
of [30], provided that we take M12 = Myx = −Mxy. The governing equation (5.9) coincides with
the classical equation for combined bending and compression (or tension) of thin plates, first
derived by Saint Venant [32]. Finally, we observe that equation (3.20), up to O(h)-terms, parallels
the classical plate kinematics, the remaining terms being a higher order correction.
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7. Edge wrinkling solution
Let us consider the hyperelastic plate B to occupy the semi-infinite region (figure 1)

B =
{
|x1| < ∞, 0 ≤ x2 < ∞, |x3| ≤ h

2

}
. (7.1)

From now on, we assume that the ei are directed along the principal axes of the underlying
homogeneous deformation, in which case the deformation gradient has a diagonal representation,
namely

F = gradχ (0) = diag(λ1, λ2, λ3). (7.2)

In particular, given that the plate edge corresponds to the plane x2 = 0, we have θ = π/2 and the
boundary conditions (5.11) and (5.12) now specialize to

2M21,1 + M22,2 = 0 and M22 = 0, (7.3)

respectively. The governing equation equation (5.9) is now supplemented by the Winkler
term (2.12)

D∇4w − hσ11w,11 − hσ22w,22 + κw = 0. (7.4)

It is emphasized that, for the expression (2.11) of the second variation E′′(0) to be consistent,
we need to assume that κ1 = κ/h3 is of order O(1). This assumption is analogous to the scaling
requirement for a thin-coated half-plane [33]. Similarly, the boundary conditions (7.3) may be
written as

w,11 + 2w,22 = 0 and 3w,112 + 2w,222 = 0. (7.5)

We look for a wrinkling solution to equation (7.4), which varies sinusoidally along the edge and
decays away from it as x2 → ∞, in the form [9,13]

w(x1, x2) = 
 {[A1 exp(−γ1kx2) + A2 exp(−γ2kx2)] exp(ıkx1)
}

, (7.6)

where A1, A2 are yet-undetermined amplitude constants, γ1, γ2 the attenuation coefficients, such
that 
(γα) > 0 and k > 0 is the wavenumber (see figure 2 for an illustration). Substitution into the
plate equation (7.4) shows that γ1 and γ2 are the roots of the bi-quadratic equation

γ 4 − 2γ 2 + 1 + σ + κ̂

d0
= 0, (7.7)

where the following O(1) quantities (with physical dimension of stress) have been introduced:
d0 = D/h3 = μ/2, σ = (σ11 + σ22)/(kh)2 and κ̂ = κ1/k4 = κh/(kh)4.

Enforcing the boundary conditions (7.5) gives a homogeneous linear algebraic system of two
equations in the two unknowns A1 and A2

(1 − 2γ 2
1 )A1 + (1 − 2γ 2

2 )A2 = 0 and

[3 − 2γ 2
1 ]γ1A1 + [3 − 2γ 2

2 ]γ2A2 = 0,
(7.8)

which admits non-trivial solutions provided that the determinant of the coefficient matrix is zero.
Hence we arrive at the bifurcation condition,

(γ1 − γ2)[4γ2γ1 + 3 − 2(γ 2
1 + γ 2

2 ) + 4γ 2
1 γ 2

2 ] = 0. (7.9)

The bifurcation condition (7.9) is satisfied whenever γ1 = γ2 or when the term in square
brackets vanishes. It can be shown that the former case is spurious, whereas the latter yields√

1 + σ + κ̂

d0
+ σ + κ̂

d0
+ 3

4
= 0 (7.10)

and the plus sign has been chosen for the square root in the light of the requirement 
(γα) > 0.
Equation (7.10) expresses the bifurcation criterion for the appearance of wrinkles on the edge of
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Figure 2. Buckling wrinkles with wavenumber k localized near the edge of a compressed thin plate with thickness h.

1.00

0.95

0.90

0.85

0.80
0 0.2

l1

0.4 0.6 0.8 1.0

(kh)2

Figure 3. Bifurcation curves for the appearance of edge wrinkles with scaled wavenumber kh on a thin plate made of
incompressible elastic material with flexural rigidity D, resting on a Winkler foundation with elastic modulus κ = 3�−4

s D.
The curves are for uni-axial pre-stress and foundation relative compliance h/�s = 0 (dotted), 1/3 (solid) and 1/2 (dashed). In
the first case (no Winkler foundation), the plate buckles as soon as it is compressed laterally.

a semi-infinite plate compressed by a lateral stress. It can be rationalized by squaring and then
solved to yield

σ11 + σ22 = −(kh)2
[

1
4 d0(1 + 2

√
2) + κ̂

]
, (7.11)

which shows that, as it was assumed, σ11 + σ22 =O(h2). Besides, in the absence of the supporting
foundation (i.e. κ1 = 0), equation (7.11) is trivially satisfied by kh = 0, which amounts to a zero pre-
stress condition and, consequently, to a critical buckling stretch of λ = 1. In other words, without
the substrate, the plate would buckle as soon as it is laterally compressed.

Substituting the expansion λα = 1 + (kh)2λ
(2)
α and retaining terms up to h2, we find the

bifurcation condition
1
2

(λ1 + λ2) = 1 − (kh)2

96

(
1 + 2

√
2 + 8

(�sk)4

)
(7.12)
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l1
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Figure 4. Bifurcation curves for the appearance of edge wrinkles on a thin plate resting on a local foundation whose elastic
modulus κ = (h/�s)4μk is proportional to the wavenumber k. The curves are for uni-axial pre-stress and foundation relative
compliance h/�s = 0 (dotted), 1/3 (solid) and 1/2 (dashed).

in terms of the characteristic length �s = 4
√

μ/κ1 = 4
√

3D/κ , expressing the relative flexural rigidity of
the plate compared with the stiffness of the foundation. It is observed that �s =O(1). In the case
of uni-axial pre-stress, λ2 = 1/

√
λ1 and equation (7.12) becomes

λ1 = 1 − (kh)2

6

(
1
4

+
√

2
2

+ 2
(�sk)4

)
. (7.13)

In figure 3, the bifurcation curves (7.13) are plotted considering three values of the foundation
relative compliance h/�s. Typically, curves go through a maximum which determines the effective
critical stretch of contraction as well as the edge wrinkles wavenumber. A similar pattern is shown
in figure 4 where the foundation stiffness is taken to be proportional to the wavenumber k, which
is the situation of a linear elastic half-space foundation considered in [20,34]. By contrast, when the
foundation stiffness scales as the wavenumber squared, bifurcation curves become straight lines
and edge wrinkling starts at zero wavenumber. This is indeed the nonlinear correction considered
by Brau et al. [34] and it may be argued that appearance of edge wrinkles at zero wavenumber is
a good test for such an assumption. Furthermore, any dependence of the foundation stiffness on
powers of the wavenumber greater than 2 leads to bifurcation at λ1 = 1 and zero wavenumber.

8. Body versus edge wrinkling
The body wrinkling solution takes the form

w(x1, x2) = 
{exp[ık(n1x1 + n2x2)]}, n2
1 + n2

2 = 1, (8.1)

which, when plugged into equation (7.4) and expanded for λα = 1 + (kh)2λ
(2)
α , gives the wrinkling

condition

(3 − 2λ1 − λ2)n2
1 + (3 − λ1 − 2λ2)n2

2 = 1
4

(kh)2
[

1 + 2
1

(�sk)4

]
. (8.2)

This equation may be plotted for different values of n2, thus giving the bifurcation curves for
bulk wrinkling. In the special case of uni-axial pre-stress along x1 (i.e. n2 = 0, n1 = 1), equation
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Figure 5. Edge (solid) versus body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a Winkler
foundation with relative compliance h/�s = 0, 1/3, 1/2 in a state of bi-axial pre-stretch (λ1 < 1, λ2 = 1.05). Body wrinkling
takes place in compression and parallel to the edge (i.e. n2 = 0); it occurs prior to edge wrinkling for h/�s = 0 and 1/3 and
after it for h/�s = 1/2. (Online version in colour.)
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Figure 6. Edge (solid) versus body (dashed) bifurcation curves for a thin incompressible elastic plate resting on a local
foundationwith stiffnessκ = (h/�s)4μk proportional to thewavenumber k and relative compliance h/�s = 0, 1/3, 1/2, in a
state of bi-axial pre-stretch (λ1 < 1, λ2 = 1.05). Bodywrinkling takes place in compression and always prior to edgewrinkling.
(Online version in colour.)

(8.2) simplifies to

λ1 = 1 − (kh)2

6

[
1 + 2

(�sk)4

]
. (8.3)
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Comparing this equation with (7.13), it is concluded that, under uni-axial pre-stress, body
wrinkling takes place in compression with n2 = 0 at a critical stretch λ∗

1 body which is a little
smaller than the corresponding threshold for edge wrinkling λ∗

1 edge > λ∗
1 body, i.e. edge wrinkling

is preferred to body wrinkling. This result holds regardless of the foundation stiffness and it is
not affected by the foundation responding to the wrinkles’ wavenumber. However, in the general
bi-axial pre-stressed case, this is not always the case. Indeed, for n2 = 0, equation (8.2) gives

λ1 = 3 − λ2

2
− (kh)2

8

[
1 + 2

(�sk)4

]
(8.4)

which may be greater than the edge wrinkling bifurcation curve for λ2 > 1. Figure 5 shows
that body buckling may be preferred to edge buckling in a bi-axially pre-stretched scenario,
where transverse extension λ2 = 1.05 favours body wrinkle formation in compression, i.e. λ1 < 1,
up to moderate values of foundation compliance. Similarly, figure 6 compares body and edge
wrinkling for a thin plate supported by a Winkler foundation whose stiffness is proportional to
the wavenumber k: in this situation, body wrinkling is preferred to edge wrinkling up to large
values of foundation compliance.

9. Conclusion
In this paper, a consistent model for flexural edge wrinkling of bi-axially pre-stressed thin
incompressible elastic plates, supported by a local elastic foundation, is developed and solved.
The governing equations and boundary conditions are derived from minimizing a reduced form
for the second variation of the potential energy, which is obtained by expanding the three-
dimensional kinematics through the plate thickness. Small deviations from the homogeneously
pre-stressed state are investigated. Consistency of the expansion demands that, to obtain purely
flexural deformations, the pre-stress scales as the plate thickness squared. Besides, it demands
that the foundation stiffness scales as the plate thickness cubed. Within such assumptions, the
classical Kirchhoff–Love theory of pre-stressed elastic plates is obtained. Furthermore, the ad hoc
assumptions on the stress distribution are also retrieved, while parabolic and cubic terms are
introduced to correct the classical linear (along the thickness) plate kinematics. Edge wrinkling
is described by means of bifurcation curves and it is compared with body wrinkling. It is found
that edge wrinkling always occurs prior to body wrinkling in a uni-axially pre-stressed situation,
regardless of the foundation stiffness. The bifurcation landscape is more involved in a bi-axial
condition and body wrinkling may precede edge wrinkling for moderate foundation stiffness.
The situation where the foundation reaction depends on the wavenumber k is also discussed. In
particular, it is observed that dependence on k2 determines buckling at zero wavenumber while
dependence on kβ , β > 2 produces buckling at λ = 1. Such results may be employed to infer the
mechanical behaviour of the supporting matrix in flexible embedded systems, with special regard
to biological tissues or organic thin-films.
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