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We provide an energetic insight into the catastrophic nature of thinning instability in soft electroactive
elastomers. This phenomenon is a major obstacle to the development of giant actuators, yet it is neither
completely understood nor modeled accurately. In excellent agreement with experiments, we give a simple
formula to predict the critical voltages for instability patterns; we model their shape and show that
reversible (elastic) equilibrium is impossible beyond their onset. Our derivation is fully analytical, does not
require finite element simulations, and can be extended to include prestretch and various material models.
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Consider a thin dielectric plate with conducting faces:
when will it break if a voltage is applied? If it is rigid, it will
break once its dielectric strength is overcome by the voltage.
However, what if it is highly stretchable, like the elastomers
used for soft actuators, stretchable electronics, or energy
harvesters? The precise answer to that question is not
known. Experiments show that it will break when highly
localized thinning deformations occur and, furthermore, that
this process is catastrophic, as the deformations can neither
be controlled nor restrained once they have started.
Here, we unveil the physical meaning of catastrophic

thinning, based on energy minimization arguments; we
derive a unifying and simple formula giving very accurate
predictions of the voltage thresholds for the creasing
instability (one-side constrained plates, with a compliant
electrode on one face and a rigid electrode on the other face)
and the pull-in instability (unconstrained plates with fully
compliant electrodes glued on both faces); we calculate the
shape of the instability patterns at their onset, and we show
that they are not sustainable but that they give the path to
final breakdown; we generalize the results to include
prestretch.
Typically, thin dielectric elastomers are highly deform-

able (isotropic, incompressible) polymeric or silicone
electroelastic films, brushed with conductive carbon grease
[1]. With an applied electric field, the attractive Coulomb
forces between the electrodes compress the thickness of the
film, which expands in its plane. At first, the rectangular
film deforms homogeneously into another rectangle, until a
critical voltage is reached. Then a sudden, irreversible,
and nonhomogeneous thinning localization occurs (usually
accompanied by a spark and a popping sound [2]),
anticipating the dielectric breakdown of the film, forming
holes, and significantly reducing its capacitance (Fig. 1).
Call E the following nondimensional measure [4] of the

electric field:

E ¼
ffiffiffi
ϵ
μ

r
V
h
; ð1Þ

and Ec its critical value. Here, V is the applied voltage, ϵ is
the dielectric permittivity of the elastomer, μ its initial shear
modulus, and h its initial thickness. For unconstrained
plates, experiments [5] give an Ec in the range 0.678–0.686
at the onset of pull-in instability, corresponding to a
contraction of 30%–34% in the layer’s thickness. For
one-side constrained plates, experiments [6] reveal that
Ec ≃ 0.85. Finally, extensive experimental studies docu-
ment that dead loads (for unconstrained films) and

FIG. 1. (Right panels a,b) First recorded experimental evidence of
catastrophic localization of thinning deformations (pull-in insta-
bility). Reprinted from [3], with the permission of AIP Publishing.
(Left panel) Sketch of the experimental setting and qualitative
description of the localizations.
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prestretch (for one-side constrained films) play a beneficial
role in delaying the onset of instabilities [7–9].
However, despite the abundance of experimental data,

the critical values of the electric field to date have not been
predicted by theory in an entirely satisfying manner. Many
papers establish a connection between pull-in and snap-
through instabilities for unconstrained films [4] using the
so-called Hessian method, but when dead loads are applied,
these predictions fail to account for the actual delay of
instability, a key factor for technological applications [7].
Indeed, dead loads can suppress snap-through instability,
but not the catastrophic thinning leading to failure. For
unconstrained films, there were attempts at introducing
linearized [10–13] and nonlinear [14] inhomogeneous
bifurcation modes on top of the homogeneous deformation,
but they require lengthy calculations, do not explain the
catastrophic nature of localized deformations, and do not
quantify the beneficial effects of prestretch. The situation is
even worse for one-side constrained films. So far, electro-
creasing has been studied only with entirely numerical
methods based on finite element method (FEM) simula-
tions: in the absence of prestretch, they lead to an estimate
of Ec ≃ 1.03, which is more than 20% off the experimental
mark [6] of Ec ≃ 0.85. There are no theoretical predictions
available when prestretch is applied.
Our analysis [15] does not require the machinery of

classical bifurcation methods. It provides a new paradigm
for understanding electromechanical instability, which we
find corresponds to a threshold where the electroelastic
energy does not possess minimizers in a general class of
homogeneous and nonhomogeneous deformations. For
both unconstrained and constrained films, with and without
prestretch and for a quite general class of incompressible
materials, we obtain the following simple unifying formula
for the critical electric field:

Ec ¼
2ffiffiffi
3

p

ffiffiffiffiffiffiffiffiffiffiffiffi
W0ðIÞ
μ

s

min
"
1

λ1
;
1

λ2

#
; ð2Þ

where λ1 and λ2 are the principal stretches in the plane of the
thin layer, W is the elastic energy density, and I ¼ λ21 þ
λ22 þ ðλ1λ2Þ−2 is the first invariant of deformation [and
hence, μ ¼ 2W0ð3Þ]. For unconstrained films, the principal
stretches are determined by the homogeneous solution; for
constrained films, they are the fixed prestretches imposed
prior to attachment to the rigid substrate.AboveEc, no stable
configurations exist, neither homogeneous nor nonhomo-
geneous.As soon asEc is attained, failure precursors appear,
opening the way for a catastrophic failure of the film. The
initial pattern of these precursors is a permanent signature
for the subsequent inelastic processes; see Figs. 2 and 3.
To assess how formula (2) predicts the onset of catastrophic

thinning, we first consider one-side constrained films for the
creasing instability; see the sketch in the inset of Fig. 4.
For small stretches (λ1, λ2 ≤ 1.5), the constitutive response

can be modeled as neo-Hookean: W ¼ μðI − 3Þ=2, and
formula (2) further simplifies to Ec ¼

ffiffiffiffiffiffiffiffi
2=3

p
minð1=λ1;

1=λ2Þ. Without prestretch (λ1 ¼ λ2 ¼ 1), this formula gives

Ec ¼
ffiffiffiffiffiffiffiffi
2=3

p
¼ 0.816, less than 4% off the value Ec ≃ 0.85

obtained experimentally [see Ref. [6], Fig. 3(b)] and closer
than the estimate Ec ¼ 1.03 obtained by FEM simulations
[see Ref. [6], Fig. 4(b)]. For small values of uniaxial
prestretch (λ1 ¼ λ > 1, λ2 ¼ 1), experiments [8] report an
initial reduction of the critical electric field, in agreement
with the prediction of formula (2) here, Ec ¼

ffiffiffiffiffiffiffiffi
2=3

p
λ−1.

Beyond this initial negative effect, larger values of prestretch
were measured as beneficial in increasing the critical electric
field [8,9], an effect that has not yet been explained
theoretically or numerically. To demonstrate the ability of
formula (2) to reproduce this effect, we use a material model
W which accounts for the strain stiffening induced by the
limit chain extensibility of the elastomer in large deforma-
tions. Figure 4 shows the good agreement reached between
our theory and the experiments (see the Supplemental
Material [15] for the calibration of the model).
We then consider unconstrained films to study the

onset of the pull-in instability; see the sketch in the inset
of Fig. 5. For equibiaxially stretched films (λ1 ¼ λ2 ¼ λ) in
the absence of dead loads, the homogeneous extension of
the neo-Hookean elastomer is described by E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−2 − λ−8

p
(see Ref. [4] and the Supplemental Material

FIG. 2. (Left panel) Experimental creasing instability for non-
prestretched one-side constrained films. Reprinted from [30],
with the permission of AIP Publishing. (Right panel) Predicted
failure precursor.

FIG. 3. (a) Alignment of creases in the direction of higher
prestretch as voltage increases for one-side constrained films.
Reprinted from [8], with the permission of John Wiley & Sons,
Inc. (b) Failure precursors with λ1 ¼ 2, λ2 ¼ 1.
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[15]). It reaches EcðλÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
λ−1 for λ ¼ 31=6, where

Ec ¼
ffiffiffi
2

p
=32=3 ¼ 0.680, falling squarely within the range

of the experimental values 0.678–0.686 in the absence of
prestretch [5]. Thus, in the absence of dead loads, our
analysis is close to the Hessian approach, which gives an
estimate of Ec ¼ 0.687 [4].
Things change drastically when the film is prestretched

by applying dead loads prior to the voltage; then

experiments show that giant areal gains can be achieved
[7,31,32]. Theoretical models based on the Hessian
approach fail to predict the actual gain, particularly for
higher dead loads. That is because the Hessian criterion
detects the points where the voltage-stretch curve ceases to
be increasing [4]. However, elastomers stiffen greatly at
large strains, and sufficiently high dead loads will make the
voltage-stretch curve monotonically increasing: this
phenomenon can lead to the erroneous conclusion that
electromechanical instability can be eliminated by high
prestretch, in contrast to experiments [7,33]. Consider, for
example, experiments on voltage-actuated silicone disks,
prestretched by dead loads, as carefully conducted and
described in Ref. [7]. Based on the experimental results
reported for the purely mechanical behavior of VHB™
silicone, we obtain the homogeneous loading curves for
different values of dead loads using a strain-stiffening
model [15]. For lower prestretches (Fig. 5), the voltage-
stretch curves have a peak, corresponding to the failure
resulting from the Hessian condition, but this peak dis-
appears for higher values of prestretch, and the Hessian
condition is no longer violated. Nonetheless, the exper-
imental plots have a maximum, clearly corresponding to
failure; see the last upper experimental dots in Fig. 5.
Our theory predicts failure whenever the homogeneous

loading curves intersect the critical threshold curve
described by formula (2). It gives a clear correspondence
between the experimental and theoretical thresholds, as
seen in Fig. 5.
We may thus conclude that the simple formula (2),

coupled to that based on snap-through (Hessian) modeling
[4,34], provides a complete picture of the electric break-
down experienced by unconstrained and one-side con-
strained voltage-actuated thin dielectrics; see the summary
in Table I.
Our theory is based on energy minimization arguments

[14]. Stable equilibrium configurations minimize the elec-
troelastic free energy Ψ ¼ U −QV=2 −W, where U is the
elastic energy, Q the total charge on the electrodes, V the
voltage, and W the mechanical work [15], while surface
energy terms are negligible [8]. When the membrane is thin
and curvature effects are neglected [35], the electric field in
the film can be approximated as V=ðhλ3Þ, where λ3 is the
thickness stretch. With these assumptions, the total free
energy depends only on the deformation.
Thinness of the dielectric film leads to a Taylor expan-

sion of Ψ in powers of h. Truncating oðh3Þ terms gives the
minimal tools for detecting the onset of localization
instabilities (higher-order terms are required for postcritical
analysis, which is beyond the scope of this work). Denote
by S the constrained (lower) surface for creasing, and
the midsurface for pull-in. Then Ψ ¼

R
S ψda, where the

surface energy density ψ is expanded as

ψðλi;∇λ3Þ ¼ hφðλiÞ þ h3½α1ðλiÞλ23;1 þ α2ðλiÞλ23;2&: ð3Þ

The stretches λi are functions of the planar coordinates
(x1, x2), while the gradient ∇λ3 ¼ ðλ3;1; λ3;2Þ accounts for
deformation inhomogeneities.

FIG. 4. Creasing instability after uniaxial prestretch. Compari-
son of experiments (the dashed line) [8] and theory (the solid
curves, plotted for different values of n, the number of links in the
Arruda-Boyce model). Here, Ēc ¼ Ec=

ffiffiffiffiffiffiffiffi
2=3

p
; see the Supple-

mental Material [15] for model calibration. A thick solid curve
shows the previous qualitative trend based on dimensional or
FEM analysis [8].

FIG. 5. Pull-in instability in equibiaxially strained films pre-
stretched by dead loads. A comparison of experimental (dots) [7]
and theoretical (solid curves) critical voltages (in kilovolts).
Curves a, b, c, and d correspond to dead loads weighing 20,
25.5, 31, and 35.6 g, respectively: they describe homogeneous
paths until failure and are modeled by the solid curves. Their
intersection with the Vc curve [given by Eq. (2)] corresponds to
catastrophic thinning (see the Supplemental Material [15] for
details on the calibration). The Hessian approach can predict only
one failure, denoted by x.
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When higher-order terms are not considered, only homo-
geneous configurations can be described. They are charac-
terized by the Euler-Lagrange equations ∂φ=∂λi ¼ 0 and
their stability is assessed through the convexity of φ, which
is the so-called Hessian approach [4,34]. When applied to
pull-in, this approach cannot predict instability, neither for
nonequibiaxial states of deformation nor for large deforma-
tions [7]. When applied to creasing (for undeformed or
prestretched films), it predicts stability for any voltage,
which is clearly contradicted by the experiments.
These shortcomings are addressed by considering the

whole energy (3),which imposesmore stringent requirements
for the existence of minimizers. Indeed, they exist provided
that ψ is convex in∇λ3, meaning that the functions α1 and α2
must both be positive. This is the case as long as the electric
field is less than the critical threshold Ec defined by (2) [15].
Above Ec, the total free energy becomes concave in ∇λ3

and no energy minimizers exist (be they homogeneous or
belonging to a wide class of nonhomogeneous ones).
Immediately above Ec, inhomogeneous failure precursors
become possible: as soon as they appear, they are ener-
getically more favorable than the homogeneous state since
they lower the total free energy, albeit without finding a
minimum (Fig. 6): this explains the catastrophic nature of
localized thinning. Experiments on one-side constrained
films show that, when the film is not prestretched, locali-
zation mainly takes place in circular spots, whereas, when
the film is prestretched in one direction prior to bonding to
the rigid substrate, the resulting thinning localizations align
in the direction of higher prestretch [8]; see Figs. 2 and 3.
Both findings are easily covered by our theory.
Indeed, linearizing the Euler-Lagrange equation based

on Eq. (3), we find that failure precursors of the type
λ3ðx1; x2Þ ¼ λo3 þ wðx1; x2Þ, with λo3 being a constant and w
small, solve [15]

α1w;11 þ α2w;22 − Γw ¼ 0; ð4Þ

where α1, α2, and Γ are functions of the underlying stretch
and the electric field. For almost incompressible materials,
Γ is always positive, whereas, as we have seen, α1 and α2
become negative above the critical voltage defined by
Eq. (2). For undeformed or equibiaxially stretched layers,
α1 ¼ α2, and they become negative together for E > Ec,

meaning that polar symmetric solutions of the Bessel type
become possible; see Fig. 2. When the film is prestretched
with λ1 > λ2, for example, the first coefficient that becomes
negative is α2, leading to sinusoidal solutions in the
direction of least stretch; see Fig. 3.
With this Letter, we improved the current understanding

of the catastrophic nature of electroelastic instabilities in
thin films. This unsolved problem goes back as early as
1880, when Röntgen [33] stretched natural rubber using
sprayed-on electric charges. In 1955, Stark and Garton [36]
detected a previously unrecognized form of breakdown due
to the mechanical deformation of electrically irradiated thin
films of cross-linked polythane. The first experimental

TABLE I. Experiments vs previous and present theories.

Creasing Pull-in

Prestretch (dead load) 1 1–2.5 2.5–6 1 (20 g) (25.5 g) (31 g) (36.5 g)

Ec [or Vc (kV)] experiments 0.85 ✓ ✓ 0.678–0.686 ✓ ✓ ✓ ✓
[6] [8] [8] [5] [7] [7] [7] [7]

Ec [or Vc (kV)] other theories 1.03 x x 0.687 ✓ x x x
FEM [6] dima [8] x Hb [4] H [7] x x x

Ec [or Vc (kV)] our theory 0.816 Fig. 4 Fig. 4 0.680 Fig. 5 Fig. 5 Fig. 5 Fig. 5
aFor this stretch range only, a qualitative behavior was obtained in Ref. [8] through dimensional analysis.
bHessian method.

FIG. 6. Electroelastic free energyψ=μ for a one-side constrained
film without prestretch (λ1 ¼ λ2 ¼ 1Þ. The film is a slightly
compressible neo-Hookean material of thickness h ¼ 0.01L,
where L is a typical lateral length scale and κ=μ ¼ 1000, with
κ being the initial bulk modulus [see Eqs. (7) and (8) in the
Supplemental Material [15]]. For E < Ec ¼ 0.816, the homo-
geneous solution with λ3 ¼ 1 is the unique energy minimizer; see
the upper surface. Above Ec, the energy is still convex in λ3, but it
becomes nonconvex in ∇λ3; see the lower surface. Failure
precursors are then energetically favored, but no energy minimiz-
ers exist. In the shaded Hessian plane (at ∥∇λ3∥ ¼ 0), Hessian
stability takes place; there, the energy is convex in λ3 and the
failure threshold cannot be captured.

PRL 118, 078001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

078001-4



evidence that dielectric breakdown is due to strong thinning
localization was by Blok and LeGrand 1 in 1969, who
provided clear optical evidence (Fig. 1) in voltage-
controlled polymer films. They speculated that it is exper-
imentally impossible to deform the entire area of the
dielectric without using an immense stress, thus inferring
the energetic convenience of localizing deformations above
a critical voltage. Here, we further their intuition and find a
completely new paradigm for the analysis of electro-
mechanical instabilities in dielectric films, both one-side
constrained and unconstrained. A great majority of tech-
nological applications based on dielectric elastomers are
dependent on whether wrinkling may or may not be
anticipated by electromechanical instability, e.g., tunable
adhesion, open-channel microfluidics, etc. [37,38], and on-
demand fluorescent patterning [39]. By redefining and
furthering the concept of the electromechanical instability
of dielectric films, this Letter implies that new experimental
campaigns and new analytical studies based on formula (2)
are now required to generate a finer physical picture of the
catastrophic thinning phenomenon.

Authors acknowledge funding from Italian Ministry
MIUR-PRIN voce COAN 5.50.16.01 code 2015JW9NJT.

*giuseppe.zurlo@nuigalway.ie
[1] R. E. Pelrine, R. D. Kornbluh, Q. Pei, and J. P. Joseph, High-

speed electrically actuated elastomers with strain greater
than 100%, Science 287, 836 (2000).

[2] J. Huang, S. Shian, R. M. Diebold, Z. Suo, and D. R. Clarke,
The thickness and stretch dependence of the electrical
breakdown strength of an acrylic dielectric elastomer,
Appl. Phys. Lett. 101, 122905 (2012).

[3] J. Blok and D. G. LeGrand, Dielectric breakdown of
polymer films, J. Appl. Phys. 40, 288 (1969).

[4] X. Zhao and Z. Suo, Method to analyze electromechanical
stability of dielectric elastomers, Appl. Phys. Lett. 91,
061921 (2007).

[5] R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Electro-
striction of polymer dielectrics with compliant electrodes as
a means of actuation, Sens. Actuators A 64, 77 (1998).

[6] Q. Wang, L. Zhang, and X. Zhao, Creasing to Cratering
Instability in Polymers under Ultrahigh Electric Fields,
Phys. Rev. Lett. 106, 118301 (2011).

[7] J. Huang, T. Li, C. C. Foo, J. Zhu, D. R. Clarke, and Z. Suo,
Giant, voltage-actuated deformation of a dielectric elasto-
mer under dead load, Appl. Phys. Lett. 100, 041911
(2012).

[8] Q. Wang, M. Tahir, J. Zang, and X. Zhao, Dynamic
electrostatic lithography: Multiscale on-demand patterning
on large-area curved surfaces, Adv. Mater. 24, 1947
(2012).

[9] Q. Wang, M. Tahir, J. Zang, and X. Zhao, Electro-creasing
instability in deformed polymers: Experiment and theory,
Soft Matter 7, 6583 (2011).

[10] K. Bertoldi and M. Gei, Instabilities in multilayered soft
dielectrics, J. Mech. Phys. Solids 59, 18 (2011).

[11] D. De Tommasi, G. Puglisi, and G. Zurlo, Inhomogeneous
deformations and pull-in instability in electroactive poly-
meric films, Int. J. Nonlinear Mech. 57, 123 (2013).

[12] L. Dorfmann and R.W. Ogden, Nonlinear Theory of
Electroelastic and Magnetoelastic Interactions (Springer,
New York, 2014).

[13] G. Zurlo, Non-local elastic effects in electroactive polymers,
Int. J. Nonlinear Mech. 56, 115 (2013).

[14] D. De Tommasi, G. Puglisi, and G. Zurlo, Electromechani-
cal instability and oscillating deformations in electro-
active polymer films, Appl. Phys. Lett. 102, 011903
(2013).

[15] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.078001, which in-
cludes Refs. [16–29], for details on the derivation and
calibration of the model.

[16] B. Audoly and J. W. Hutchinson, Analysis of necking based
on a one-dimensional model, J. Mech. Phys. Solids 97, 68
(2016).

[17] E. M. Arruda and M. C. Boyce, Three-dimensional con-
stitutive model of the large stretch behavior of rubber elastic
materials, J. Mech. Phys. Solids 41, 389 (1993).

[18] B. D. Coleman and D. C. Newman, On the rheology of cold
drawing. I. Elastic materials, J. Polym. Sci., Part B: Polym.
Phys. 26, 1801 (1988).

[19] B. Dacorogna, Introduction to the Calculus of Variations
(Imperial College Press, London, 2004).

[20] D. DeTommasi, G. Puglisi, and G. Zurlo, Electromechanical
instability and oscillating deformations in electroactive
polymer films, Appl. Phys. Lett. 102, 011903 (2013).

[21] D. DeTommasi, G. Puglisi, and G. Zurlo, Inhomogeneous
deformations and pull-in instability in electroactive poly-
meric films, Int. J. Nonlinear Mech. 57, 123 (2013).

[22] D. DeTommasi, G. Puglisi, and G. Zurlo, Failure modes in
electroactive polymer thin films with elastic electrodes,
J. Phys. D 47, 065502 (2014).

[23] R. Fosdick and H. Tang, Electrodynamics and thermome-
chanics of material bodies, J. Elast. 88, 255 (2007).

[24] A. N. Gent, A new constitutive relation for rubber, Rubber
Chem. Technol. 69, 59 (1996).

[25] W. Hong, Modeling viscoelastic dielectrics, J. Mech. Phys.
Solids 59, 637 (2011).

[26] C. Miehe, D. Vallicotti, and S. Teichtmeister, Homogeni-
zation and multiscale stability analysis in finite magneto-
electro-elasticity, GAMM-Mitt. 38, 313 (2015).

[27] R. W. Ogden, G. Saccomandi, and I. Sgura, On worm-like
chain models within the three-dimensional continuum
mechanics framework, Proc. R. Soc. A 462, 749 (2006).

[28] T. J. Pence and K. Gou, On compressible versions of the
incompressible neo-Hookean material, Math. Mech. Solids
20, 157 (2015).

[29] G. Zurlo, Mathematisches Forschungsinstitut Oberwolfach
Report No. 49, 2015.

[30] L. Zhang, Q. Wang, and X. Zhao, Mechanical constraints
enhance electrical energy densities of soft dielectrics, Appl.
Phys. Lett. 99, 171906 (2011).

[31] L. Jiang, A. Betts, D. Kennedy, and S. Jerrams, Elimi-
nating electromechanical instability in dielectric elastomers
by employing pre-stretch, J. Phys. D 49, 265401
(2016).

[32] B. Li, H. Chen, J. Qiang, S. Hu, Z. Zhu, and Y. Wang,
Effect of mechanical pre-stretch on the stabilization of

PRL 118, 078001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

078001-5

http://dx.doi.org/10.1126/science.287.5454.836
http://dx.doi.org/10.1063/1.4754549
http://dx.doi.org/10.1063/1.1657045
http://dx.doi.org/10.1063/1.2768641
http://dx.doi.org/10.1063/1.2768641
http://dx.doi.org/10.1016/S0924-4247(97)01657-9
http://dx.doi.org/10.1103/PhysRevLett.106.118301
http://dx.doi.org/10.1063/1.3680591
http://dx.doi.org/10.1063/1.3680591
http://dx.doi.org/10.1002/adma.201200272
http://dx.doi.org/10.1002/adma.201200272
http://dx.doi.org/10.1039/c1sm05645j
http://dx.doi.org/10.1016/j.jmps.2010.10.001
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.06.008
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.05.003
http://dx.doi.org/10.1063/1.4772956
http://dx.doi.org/10.1063/1.4772956
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.078001
http://dx.doi.org/10.1016/j.jmps.2015.12.018
http://dx.doi.org/10.1016/j.jmps.2015.12.018
http://dx.doi.org/10.1016/0022-5096(93)90013-6
http://dx.doi.org/10.1002/polb.1988.090260901
http://dx.doi.org/10.1002/polb.1988.090260901
http://dx.doi.org/10.1063/1.4772956
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.06.008
http://dx.doi.org/10.1088/0022-3727/47/6/065502
http://dx.doi.org/10.1007/s10659-007-9124-2
http://dx.doi.org/10.5254/1.3538357
http://dx.doi.org/10.5254/1.3538357
http://dx.doi.org/10.1016/j.jmps.2010.12.003
http://dx.doi.org/10.1016/j.jmps.2010.12.003
http://dx.doi.org/10.1002/gamm.201510017
http://dx.doi.org/10.1098/rspa.2005.1592
http://dx.doi.org/10.1177/1081286514544258
http://dx.doi.org/10.1177/1081286514544258
http://dx.doi.org/10.1063/1.3655910
http://dx.doi.org/10.1063/1.3655910
http://dx.doi.org/10.1088/0022-3727/49/26/265401
http://dx.doi.org/10.1088/0022-3727/49/26/265401


dielectric elastomer actuation, J. Phys. D 44, 155301
(2011).

[33] C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, and
A. Röntgen, Electrode-free elastomer actuators without
electromechanical pull-in instability, Proc. Natl. Acad.
Sci. U.S.A. 107, 4505 (2010).

[34] A. N. Norris and Comment on, Method to analyze electro-
mechanical stability of dielectric elastomers, Appl. Phys.
Lett. 92, 026101 (2008).

[35] G. Puglisi and G. Zurlo, Electric field localizations in thin
dielectric films with thickness non-uniformities, J. Electrost.
70, 312 (2012).

[36] K. H. Stark and C. G. Garton, Electric strength of irradiated
polythene, Nature (London) 176, 1225 (1955).

[37] S. Yang, K. Khare, and P.-C. Lin, Harnessing surface
wrinkle patterns in soft matter, Adv. Funct. Mater. 20,
2550 (2010).

[38] Y. Cao and J. W. Hutchinson, Wrinkling phenomena in neo-
Hookean film/substrate bilayers, J. Appl. Mech. 79, 031019
(2012).

[39] Q. Wang, G. R. Gossweiler, S. L. Craig, and X. Zhao,
Cephalopod-inspired design of electro-mechano-chemically
responsive elastomers for on-demand fluorescent pattern-
ing, Nat. Commun. 5, 4899 (2014).

PRL 118, 078001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

078001-6

http://dx.doi.org/10.1088/0022-3727/44/15/155301
http://dx.doi.org/10.1088/0022-3727/44/15/155301
http://dx.doi.org/10.1073/pnas.0913461107
http://dx.doi.org/10.1073/pnas.0913461107
http://dx.doi.org/10.1063/1.2833688
http://dx.doi.org/10.1063/1.2833688
http://dx.doi.org/10.1016/j.elstat.2012.03.012
http://dx.doi.org/10.1016/j.elstat.2012.03.012
http://dx.doi.org/10.1038/1761225a0
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1002/adfm.201000034
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1115/1.4005960
http://dx.doi.org/10.1038/ncomms5899


Supplementary material

Model derivation

Thermodynamical considerations for electro-elastic
materials undergoing relatively slow motions lead to a
formulation of electro-elastic equilibrium as a minimisa-
tion problem for a suitable total free energy functional
[8, 10, 13]. The undeformed configuration of the electro-
elastic film is a flat prismatic plate R with uniform cross
section and thickness h, which we assume small relative
to the diameter L of the membrane. For simplicity we
set L = 1 so that h ≡ h/L ≪ 1 takes the role of a small-
ness parameter. The lower electrode is assumed to be at
zero voltage and the upper electrode at voltage V . Our
analysis is valid for ‘ideal dielectric elastomers’ [19], for
which the polarisation is fluid-like and independent of the
deformation. Under these assumptions, when voltage is
fixed the total free energy takes the form

Ψ̂(f , d̃) = U(f) − V Q(f , d̃)
2

−W (f), (1)

where U is the free elastic energy, f the film deforma-
tion, d̃ the (Lagrangian) electric displacement, Q the to-
tal charge on the upper electrode and W the work of
mechanical forces on the film edges.

When the film thickness is small, we find approximated
solutions d̃f to the electro-static problem for arbitrary
deformations, and the total free energy can be recast as

Ψ(f) = Ψ̂(f , d̃f ) = U(f) − Q(f , d̃f )V
2

−W (f). (2)

Now the problem can be formulated in the familiar frame-
work of classical elasticity, where deformation is the only
unknown. To capture inhomogeneous thinning we min-
imise the energy (2) over an approximated class of defor-
mations [3] bringing a point x ∈ R to the current position

f(x) = g(x1, x2) + λ3(x1, x2)x3i3, (3)

where g describes the planar component of deformation,
perpendicular to the thickness direction i3, and where λ3
is the thickness stretch. We have −h/2 ≤ x3 ≤ h/2 for un-
constrained films and 0 ≤ x3 ≤ h for one-side constrained
films. In both cases we denote by S the surface x3 = 0.

The gradient of the deformation (3) is

F = ∇f =G + λ3i3 ⊗ i3 + x3i3 ⊗∇λ3, (4)

where G = ∇g is the in-plane deformation tensor, which
may be recast as G = λ1i1 ⊗ i1 + λ2i2 ⊗ i2 with i1 ⊥ i2
both perpendicular to i3 and where λ1, λ2 are the pla-
nar principal stretches. Volume variations are measured
by J = detF = λ1λ2λ3, so that incompressibility requires
λ1λ2λ3 = 1. Observe that if the film were exactly incom-
pressible and, as in the case of one-side constrained film,

the principal stretches λ1 and λ2 are fixed before gluing
the membrane to the rigid electrode, it would follow that
λ3 = (λ1λ2)−1 must be constant, and no further deforma-
tions may take place in the class (3). To describe creasing
deformations we relax this constraint by taking a strain
energy density for slightly compressible materials, sepa-
rating the volumetric from the deviatoric part as follows
[15],

W =W (I/J−2/3) + κΦ(J), (5)

where I = tr(FTF), Φ(J) is such that Φ(1) = Φ′(1) = 0,
and κ is the infinitesimal bulk modulus. Then exact in-
compressibility is the limit J → 1 and κ/µ → ∞ where
µ = W ′(3) is the infinitesimal shear modulus. The
free energy stored in the plate can be calculated as
U = ∫S ∫

c
b W (F(x))dx3 dA, where dA = dx1dx2.

Regarding the electric part of the problem, the charge
on the upper electrode is Q = ∫ σ+ da+ where σ+ is the
charge density per unit area. Assuming that the ex-
ternal electric field is null, we have σ+ = εe+ where ε
is the dielectric permittivity and e+ the normal compo-
nent of the Eulerian electric field on the upper electrode.
Thanks to the film slenderness [16], we can neglect cur-
vature effects on the electric field and we consider that
e+ ≃ e ≃ V /(hλ3). This approximation is consistent with
nonlocal effects for the mechanical behaviour of the elec-
trodes not having been taken into consideration [7, 20].
The surface stretch of the upper electrode is found from
Nanson’s formula as da+/dA = ∣∣JF−Ti3∣∣x3=c.

The work term only needs to be expressed when deal-
ing with unconstrained films (for one-side constrained
films we will consider the planar stretches, if any, to be
fixed.) Denoting by s1, s2 the Lagrangian edge line stress
components (force per undeformed length) of the mem-
brane, we find

W = h∫
S
(s1λ1 + s2λ2)dA. (6)

Since the film is slender we can perform a Taylor expan-
sion of the total free energy (2) in powers of h, truncat-
ing o(h3) terms. After through-thickness integration, we
thus obtain that Ψ(f) = ∫S ψ(F(x))dA where ψ is the
surface free energy. Finally, we introduce the dimension-
less electric field,

E = (V /h)
√
ε/µ, (7)

where µ is the infinitesimal shear modulus.
For one-side constrained films, we consider λ1, λ2 to be

homogeneous and prescribed by the pre-stretching of the
film prior to attaching it to the rigid substrate. The film
is not exactly incompressible, so λ3 is the independent
variable. We thus obtain [21]

ψ(λ3,∇λ3) = hϕ(λ3)+h3 [α1(λ3)λ23,1 + α2(λ3)λ23,2] , (8)
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where λ3,i = ∂λ3/∂xi and

ϕ =W (I/J2/3) + κφ(J) − µE2j/(2λ3),
α1 = 4J1/3W ′(I/J2/3) − 3µE2λ22,

α2 = 4J1/3W ′(I/J2/3) − 3µE2λ21.

(9)

Here, I = λ21 + λ22 + λ23 and j = λ1λ2 (which is fixed).

For unconstrained films, we impose exact incompress-
ibility (λ3 = 1/j), and then

ψ(λi,∇λ3) = hϕ(λi)+h3 [α1(λi)λ23,1 + α2(λi)λ23,2] , (10)

where i = 1,2 and

ϕ =W (I) − µE2j2/2 − s1λ1 − s2λ2,
α1 = [4W ′(I) − 3µE2λ22] /48,

α2 = [4W ′(I) − 3µE2λ12] /48.

(11)

Here, I = λ21 +λ22 + (λ1λ2)−2. Note that for equi-biaxially

stretched films, λ1 = λ2 = λ−1/23 = λ, say.

Energy minimisation

Here we exploit known necessary conditions for the
existence of minimisers from direct methods of calculus
of variations [4]. Assessing these necessary conditions
does not rely on finding explicit nontrivial solutions but
rather on direct inspection of the energy.

Consider a scalar function u(x) ∶ S ⊂ R2 → R with
u = u0 prescribed on the edge ∂S and consider the energy
functional

Ψ(u) = ∫
S
ψ(x , u(x),∇u(x))dA. (12)

According to direct methods of calculus of variations [4],
minimisers of Ψ exist provided that:

(h1) ξ → ψ(●, ●,ξ) is convex,

(h2) there exist p > q ≥ 1 and a1 > 0, a2, a3 ∈ R such that
ψ(x , u,ξ) ≥ a1∣∣ξ∣∣p + a2∣∣u∣∣q + a3 for all (x , u,ξ).

Uniqueness of minimizers of I(u) holds provided that

(h3) (u,ξ)→ ψ(●, u,ξ) is strictly convex

Condition (h3) implies (h1)-(h2). Candidate minimisers
of I(u) must be sought among the stationary solutions
of the functional Ψ(u), found from the Euler-Lagrange
equations

∂ψ

∂u
= Div( ∂ψ

∂∇u) u = uo on ∂S. (13)

Our main achievement here is to show that electrome-
chanical instability corresponds to violation of the con-
dition (h1).

Observe that Hessian approach consist in checking the
convexity of ψ in u, which is not a necessary condition
for the existence of minimisers but is rather related to
condition (h3), hence to uniqueness.

Analysis of creasing for one-side constrained films

Here the prescribed pre-streches λ1, λ2 are homoge-
neous and the only unknown is the function λ3. Ho-
mogeneous configurations λ03 are found by solving the
algebraic equation ∂ϕ/∂λ3 = 0. Note that or large κ the
material is almost incompressible and λ03 ≃ (λ1λ2)−1.

A necessary condition for λ03 to be a minimiser of Ψ(λ3)
is that (h1) holds. It is immediate to check that this
condition is satisfied as long as the functions α1, α2 of
(8)2−3 are positive, that is as long as

E < Ec =
2√
3

¿
ÁÁÀW ′(I/J2/3)

µ

λ3
J5/6

min(λ1, λ2), (14)

where I, J are evaluated at λ1, λ2, λ
0
3. In the exact in-

compressibility limit the critical electric field above tends
to

Ec =
2√
3

√
W ′(I)
µ

min( 1

λ1
,

1

λ2
) , (15)

which is our main finding. We show below that this
threshold is the same for unconstrained incompressible
films. If the function ψ(λ3,∇λ3) is strictly convex in
both arguments, then the homogeneous solution λ03 is
also unique under homogeneous boundary conditions, ac-
cording to (h3).

As soon as (h1) is violated the energy functional Ψ(λ3)
no longer admits minimisers in the class of deformations
(3); in particular, homogeneous configurations cannot be
energy minimisers. Observe that this conclusion holds
even if (h1) is violated while ψ(λ3, ●) is still convex in λ3,
which means that our condition is more restrictive than
the positivity of the Hessian condition. Clearly, violation
of (h1) does not exclude that other inhomogeneous so-
lutions may exist outside the class (3); nonetheless, we
can show that immediately above Ec inhomogeneous fail-
ure precursors become possible within the class (3), that
can lower the energy below Ψ(λ03), although the energy
density has no minima beyond this threshold. For this
reason we call these failure precursors catastrophic.

To find out what these inhomogeneous precursors look
like at their onset and to shed light on the physics of the
problem, we consider a specific form for the strain energy
density, the compressible neo-Hookean material [15] with

W (I) = µ(I/J2/3 − 3)/2 and φ(J) = (J2 + J−2 − 2)/8, and
we look for inhomogeneous solutions λ3(x) = λ03 + w(x)
with w small and λo3 ≃ 1/(λ1λ2). The equation for w is
then

λ22 (E2 − 2

3

1

λ22
)w,11 + λ21 (E2 − 2

3

1

λ21
)w,22 +

Γ

h2
w = 0,

(16)
where Γ = [16 + λ21λ22 (6κ/µ − 4λ21 − 4λ22 + 5λ21λ

2
2E

2)] /3.
To find out whether non-trivial solutions are possible,
first observe that for nearly incompressible materials
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(κ/µ ≫ 1), Γ is positive for all values of pre-stretch.
Furthermore, the coefficients of w,11 and w,22 remain
negative as long as E < Ec, meaning that no bounded,
non-trivial, real solutions exist below this threshold; this
clearly agrees with our general findings. However, as soon
as one (or both) of the coefficients becomes positive, non-
trivial solutions exist; this happens precisely when (h1)
is violated.

In the absence of pre-stretch (λ1 = λ2 = 1), we find
radial solutions of the form

w(%) = CJ0 (
ω%

h
) , % =

√
x21 + x22, (17)

where J0 is the Bessel function of the first kind, ω =√
Γ/(E2 − 2/3) and C is an undetermined amplitude co-

efficient. In the presence of pre-stretch, experiments
show that periodic creases appear perpendicularly to
the direction of highest pre-stretch. When λ1 > λ2,
say, as soon as the electric field falls within the range√

2/3/λ1 < E <
√

2/3/λ2, the coefficient of w,22 becomes
positive while the coefficient of w,11 remains negative,
meaning that periodic solutions of the form

w(x1, x2) = C1 cos(ω x2
h

) +C2 sin(ωx2
h

) (18)

become possible, where ω =
√

Γ/(E2 −E2
c )/λ1 and C1,

C2 are constants. Here the mechanical interpretation is
that periodic patterns will become possible in the direc-
tion of least stretch, whereas in equi-biaxially stretched
dielectrics there is no preferential direction and polar
symmetric solutions may be attained; this agrees with
experiments.

Observe that, for both types of precursors presented
above, the period of the failure precursors tends to zero at
the onset of instability and increases immediately above
the critical voltage. It the context of pull-in instabil-
ity analysis, it was shown that this effect may be regu-
larised by taking into consideration non-local effects [5–
7, 16, 20]. However, observe that discussing the nature
of the post-critical shape of creases is beyond the limits
of our simplified treatment for precursors. Furthermore,
due to the limited deformation mode which is permitted
by the ansatz, the prediction from the present analysis
may be considered an upper bound of the critical elec-
trical field. A more refined analysis certainly requires
a wider class of deformations [1], together with higher-
order effects for both the electrical and mechanical be-
haviour of the electrode.

Calibration of the Arruda-Boyce model for creasing

We calibrated the 5-term Arruda and Boyce [2] model
to reproduce the experimental results reported in [17] as
follows. First we use the Arruda-Boyce truncated strain

energy density

W (I) = µ0 [
I − 3

2
+ I

2 − 9

20n
+ 11(I3 − 27)

1050n2

+ 19(I4 − 81)
7000n3

+ 519(I5 − 243)
673750n4

] , (19)

where n is the number of links in the 8-chain model. Note
that in (19) µ0 ≠ 2W ′(3), i.e. µ0 is not the infinitesimal
shear modulus (in fact, µ = 2W ′(3) = µ0[1 + 3/(5n) +
99/(175n2) + 513/(875n3 + 42039/(67375n4)]). We then
specialise the general equation (15) to a uniaxial pre-
stretch as described in [17], so that λ1 = λ, λ2 = λ3 =
λ−1/2, and I = λ2 + 2λ−1. When λ = 1, Wang et al. [17]
gave Ec = 1 instead of their measured [18] value Ec = 0.85,
meaning that they normalised their critical electric field–
stretch curve with respect to that value. To model their
data we thus have to calibrate our formula (15) with

respect to its first value Ec =
√

2/3 = 0.816 at λ = 1. Then
we show the curves found when the parameter n varies
from 2 to 7, indeed a realistic range for silicone materials
used in electro-patterning applications, see Fig.4 in the
main paper.

Analysis of pull-in for unconstrained films

The analysis here follows the same path as for creas-
ing instability. Confining attention to equi-biaxially pre-
stretched configurations under the action of equal edge

dead-loads, so that λ1 = λ2 = λ−1/23 = λ and s1 = s2 = s, we
obtain the general solution for the homogeneous loading
branches by solving ∂ϕ/∂λ = 0 as

E0(λ) =
√

2(λ−2 − λ−8)W ′(I) − sλ−3
µ

, (20)

where I = 2λ2 + λ−4. It is straightforward to check that
also in this case the necessary condition for the existence
of minimisers coincides with (15). Its specialisation to
the equi-biaxial case is trivial:

Ec =
2√
3

√
W ′(I)
µ

1

λ
. (21)

For the analysis of failure precursors, the same treatment
as that for creasing holds, and we do not repeat it for
brevity. In this case the critical points are determined
by the intersections of the E0 curve with the Ec curve.
These expressions are used in the main paper (Fig.5) to
capture the data of Wang et al. [11] (see below for the
calibration of the model).

Our formula also works when the extension is not equi-
biaxial extension, a case where the Hessian approach also
reveals its limitations. Take a neo-Hookean dielectric film
where λ1 > 1 is fixed and a traction s2 is applied in direc-
tion i2. Here the homogeneous configuration is retrieved
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FIG. 1. Voltage versus λ2 with λ1 fixed. Intersection of the solid
and dashed curves gives the upper voltage thresholds in both cases.

from ∂ϕ/∂λ2 = 0, giving

E0(λ2) = (λ1λ2)−2
√
λ21λ

3
2(λ2 − s2/µ) − 1. (22)

We then find that along this homogenous loading curve,
ϕ′′(λ2) = 1+3λ−21 λ−42 −(E0)2λ21 ≥ 0, with equality holding

only for λ2 → ∞. Hence, according to the Hessian ap-
proach, failure occurs at infinite stretch, which is clearly
unrealistic. On the other hand, formula (15) gives val-
ues of Ec(λ2) for each value of λ1, represented by dashed
curves in Fig.1. The intersection of that curve with the
curve of E0 then gives the critical voltage for any pre-
stretch.

Model calibration for pull-in

Tuning of the constitutive model with the experimen-
tal data provided in [11] was done directly on the lower
frequency voltage-stretch curves, where viscoelastic ef-
fects are less relevant. The following Worm-Like Chain
modification of the Gent model [14]

W (I) = µ 1 + b
1 + 2b

Jm ln( b

1 + b
I − 3

Jm − (I − 3)

+ Jm
Jm − (I − 3)) , (23)

was used to obtain a best fit of the homogeneous load-
ing curves. Here the best simultaneous fit for the four
homogeneous loading curves was obtained with b = −5,
Jm = 65 and µ = 20.5 kPa.
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