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We prove theoretically that when a soft solid is
subjected to an extreme deformation, wrinkles can
form on its surface at an angle that is oblique to a
principal direction of stretch. These oblique wrinkles
occur for a strain that is smaller than the one
required to obtain wrinkles normal to the direction
of greatest compression. We go on to explain why
they will probably never be observed in real-world
experiments.

This article is part of the themed issue ‘Patterning
through instabilities in complex media: theory and
applications’.

1. Introduction
When a soft solid is subjected to an extreme deformation,
its surface (or a part of it) eventually buckles, provided
it has not ruptured before. Guided by physical intuition
and by experimental evidence (figure 1), we expect
the formation of wrinkles or creases to be arranged
orthogonally to the direction of greatest contraction, and
thus aligned with a principal direction of deformation.
However, as we show in this paper, the mathematical
equations modelling the development of such surface
instabilities do not necessarily predict that they should
be such principal wrinkles (figure 2a). In fact, we find
that for the simplest boundary value problem there is,
i.e. that of a deformed semi-infinite solid, the theory
predicts that oblique wrinkles (figure 2b) should appear
on the free surface prior to the principal wrinkles.
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(a) (c)(b)

Figure 1. Creases appearing in the large deformation of softmatter, as indicated by arrows. (a) Large bending of a silicone block
with two ends glued to plastic plates, on which bending moments are applied; (b) everted tube of pipe insulation material;
(c) twisted cylinder, on which axial and circumferential lines were drawn prior to the twist. Note how all creases are aligned
with a principal direction of stretch.
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Figure 2. Graphical representation of principal (a) and oblique (b) wrinkles on the free surface of a compressed semi-infinite
soft solid subject to a uniaxial compression with unique Cauchy stress componentσ1. (Online version in colour.)

We present these results in §2, where we study the theoretical predictions of wrinkle orientation
for the most general model of an isotropic, incompressible third-order elasticity soft solid
or, equivalently, the Mooney–Rivlin model. These two equivalent models provide a good
mathematical description of isotropic homogeneous soft solids such as rubber, silicone or gel,
subjected to finite deformations. We establish that, for a certain range of material parameters, the
preferred direction of wrinkle formation is not a principal direction of deformation, and that the
obliquity angle can be as much as 33◦, depending on the mode of pre-deformation.

In §3, we report experimental attempts to uncover oblique wrinkles on the surface of a
homogeneous block of gelatin subjected to a shear-box deformation [1]. The search for such
an occurrence was completely unsuccessful. First of all, we did not manage to generate actual
sinusoidal wrinkles on the block, but we always obtained creases, which are indeed expected to
occur prior to the wrinkles [2,3]. Moreover, the creases were not oblique, but aligned with the long
diagonal of the shear-box, itself a direction of principal stretch.



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160158

.........................................................

We moved on to tests with a slightly different set-up, allowing us to finally observe the
formation of sinusoidal wrinkles instead of creases. For that set-up, we let the free surface of
the gelatin dry overnight to a certain extent and form a stiff film on top of a softer substrate. It
is then well known [2] that, for such a layered structure, sinusoidal wrinkles occur first, and not
creases (provided the stiffness contrast is large enough); however, we observed that the wrinkles
always appeared in a principal direction of deformation.

In §4, we elucidate why oblique wrinkles do not appear experimentally, even in the case of
a coated half-space. Using the Stroh formalism [4] to predict their onset, we find that oblique
wrinkles should indeed appear, but only as long as the overlaying film is at most two times stiffer
than the substrate. If it is stiffer than that, then the first wrinkles to appear are the principal ones
according to our calculations. However, Hutchinson & Cao [2] used post-buckling finite-element
simulations of neo-Hookean solids to show that creases dominate wrinkles as long as the film is
less than about 10 times stiffer than the substrate. Hence, oblique wrinkles, although predicted by
the theory, will probably never be captured in an experiment.

2. Oblique wrinkles on a half-space
To model isotropic, homogeneous, incompressible soft solids, we use a strain energy density W of
the Mooney–Rivlin type. It is linear in I1 = tr(C) and I2 = tr(C−1), where C is the right Cauchy–
Green deformation tensor,

W = 1
4 µ[(1 − β)(I1 − 3) + (1 + β)(I2 − 3)], (2.1)

where µ > 0 is the shear modulus, and β is a material parameter such that −1 ≤ β ≤ 1. Note that
these inequalities ensure the strong ellipticity of the incremental equations of equilibrium [5]. At
β = −1, W recovers the so-called neo-Hookean material (linear in I1), and at β = 1, the so-called
extreme-Mooney [6] material (linear in I2).

As shown by Rivlin & Saunders [7], when we expand the Mooney–Rivlin strain energy density
in powers of the Green–Lagrange strain E = (C − I)/2, and neglect terms of order higher than
cubic, we find that (2.1) is equivalent to the most general model of isotropic, incompressible,
third-order elasticity

W = µ0 tr(E2) + 1
3 A tr(E3), (2.2)

where µ0 > 0 is the second-order Lamé coefficient and A is the third-order Landau constant. The
connection between those constants is [8] µ0 = µ, A = −µ(β + 3), which puts bounds on A in order
to ensure strong ellipticity of the incremental equations: −4µ0 ≤ A ≤ −2µ0.

To model finite strains, we consider homogeneous deformations of a semi-infinite solid. We
place ourselves in the Cartesian coordinate system (x1, x2, x3) of axes aligned with the Eulerian
principal directions (along the eigenvectors of b, the left Cauchy–Green deformation tensor).
We denote the eigenvalues of b by λ2

1, λ2
2 and λ2

3, and call λ1 = λ< 1 the principal stretch of
contraction, λ2 the principal stretch along the normal to the free surface, and λ3 the third principal
stretch. Because of the incompressibility constraint det b = 1, we know that λ3 = (λ1λ2)−1. The
homogeneous deformation is maintained by the application of a constant Cauchy stress σ , and
we take the stress component along the direction x2 to be zero, i.e. σ22 = 0, as the boundary of
the half-space is assumed to be free of traction. We will consider the following archetypes of
deformation:

(i) uniaxial compression, λ1 = λ, λ2 = λ−1/2, λ3 = λ−1/2;
(ii) plane strain, λ1 = λ, λ2 = λ−1, λ3 = 1;

(iii) simple shear, λ1 = λ, λ2 = 1, λ3 = λ−1;
(iv) shear-box, λ1 = λ, λ2 = 1/(λ

√
2 − λ2), λ3 =

√
2 − λ2.

We will use λ as our parameter of bifurcation, calling it λcr when the threshold for wrinkles is
reached. Note that other quantities can be used, such as the material compressive strain [2]
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Figure 3. Two shearing deformations and their tilting angle φ of a soft solid initially occupying a cube of side L. (a) Simple
shear, where the top and the bottom faces move on parallel planes. (b) Shear-box, where the initial front and back square faces
become rhombic. In the latter case, two of the Eulerian principal directions are aligned with the diagonals of the rhombi.

Table 1. Critical stretches and strains for principal wrinkles in archetype modes of deformation, together with the associated
angle of tilting for shear deformations, and the corresponding original reference (first five columns). For oblique wrinkles, the
critical stretches, strains, tilting angles and obliquity angles are reported for the extreme-Mooney solids (last four columns).

λcr εcr φcr references λ
oblique
cr ε

oblique
cr φ

oblique
cr θ oblique

uniaxial 0.444 56% [11] 0.537 46% 34◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plane strain 0.544 46% [11] 0.562 44% 29◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

simple shear 0.296 70% 72◦ [14] 0.522 48% 54◦ 33◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear-box 0.471 53% 51◦ [10] 0.539 46% 45◦ 33◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εcr = 1 − λcr, or the angle of tilting φ for shearing deformations (figure 3). For simple shear, φ
is given by tanφ = λ−1 − λ [9], and for the shear-box deformation, by cosφ = λ

√
2 − λ2 [10].

We denote by θ the obliquity angle, i.e. the angle between the wavefront of the wrinkles and
the direction of the largest stretch. At θ = 0◦, the wrinkles are normal to the direction of greatest
compression, while at θ ̸= 0◦, they are oblique (figure 2).

For principal wrinkles, the wavefront is aligned with x3 and varies sinusoidally in the x1
direction, while the amplitude decays exponentially with x2. For the Mooney–Rivlin model, the
bifurcation criterion for principal wrinkles is independent of the material constants µ and β (or
µ0 and A). It reads as

(
λ1

λ2

)

cr
= σ0 ≃ 0.2956, (2.3)

where σ0 is the real root of the cubic

σ 3 + σ 2 + 3σ − 1 = 0. (2.4)

This result can be traced back to Biot [11], Flavin [12] and Green & Zerna [13]. In table 1, we list
the critical stretches and strains corresponding to the modes of deformation (i)–(iv) for principal
wrinkles and for oblique wrinkles on an extreme-Mooney material.

Destrade et al. [15] found an explicit secular equation for surface waves in deformed Mooney–
Rivlin materials, from which the bifurcation criterion here can be found by taking the wave speed
to be zero. We used this explicit secular equation to predict the formation of wrinkles (it is too
long to reproduce here). In parallel, we also used the bifurcation criterion based on z, the surface
impedance matrix [16–19], which is a simple version of a method we will use for layered media
in §4. It reads

det z = 0, (2.5)
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Figure 4. (a) Dependence of the critical compressive stretch λcr on the obliquity angle θ , for different values of β in the
shear-box compression test. As β varies from β = −1 (neo-Hookean material) to β = 1 (extreme-Mooney material) (β =
−1.0,−0.6,−0.3, 0, 0.3, 0.6, 0.8, 1.0, see arrow), the maximum of the plot shifts from θ = 0◦ (principal wrinkles appearing
at 53% strain) to θ ≃ 33◦ (oblique wrinkles, appearing at an earlier strain of 46%). (b) Flowchart for the corresponding
numerical procedure. (Online version in colour.)

where z is the Hermitian, positive semi-definite solution of the algebraic Riccati equation,

zN2z − izN1 + iN†
1z + N3 = 0. (2.6)

Here, N1, N2, N3 are the 3 × 3 blocks of the 6 × 6 Stroh matrix (see the appendix), and the
superscript † denotes the Hermitian conjugate. To solve this equation numerically, we rely on
Riccati solvers found in Mathematica and MATLAB, which give the positive definite solution. The
results from this method were the same (within machine precision) as those given by the explicit
secular equation found in [15]. There are three short analytical expressions of the bifurcation
criterion in some special cases.

For the neo-Hookean material (i.e. β = −1 in (2.1), or A = −2µ0 in (2.2)), Flavin [12] found the
following bifurcation criterion:

λ2
1λ

2
3(λ2

1 cos2 θ + λ2
3 sin2 θ ) = σ 2

0 . (2.7)

For the extreme-Mooney material (i.e. β = 1 in (2.1), or equivalently A = −4µ0 in (2.2)), we find
the following explicit bifurcation criterion:

σ 4
0 + σ 3

0 + λ2
1λ

2
3(λ4

1λ
4
3 − λ2

3 − λ2
1)σ0(σ0 + 1) + 4λ6

1λ
6
3 = 0, (2.8)

with σ0 now given by equation (2.7). Using Mathematica, the reals roots of (2.8) can be obtained,
and then substituted into equation (2.7) to get an explicit bifurcation criterion.

Finally, for a wrinkle-front aligned with the long diagonal of the shear-box (θ = 0◦), we have
again principal wrinkles, and equation (2.3) applies.

For cases (i)–(iv), we find that there is a range of values for β starting at β = −1 (neo-Hookean
solid), where principal wrinkles appear first, and another range up to β = 1 (extreme-Mooney
solid), where we expect oblique wrinkles to appear. Figure 4 illustrates this occurrence for
the shear-box deformation (case (iv)), in which we see that principal wrinkles are expected
when −1 ≤ β ! −0.3, and oblique wrinkles when −0.3 ! β ≤ 1. For the extreme-Mooney material,
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the obliquity angle is θ ≃ 33◦, and the critical stretch is λcr = 0.539, compared with λcr = 0.471
for principal wrinkles. We focused on this deformation because of its ease of experimental
implementation (see the next section), but the other deformations yielded a similar behaviour,
with more or less marked differences between the values of λcr for principal wrinkles and for
oblique wrinkles, as summarized in table 1.

In general, the numerical procedure to find the critical values of the compressive stretch and of
the corresponding obliquity angle is straightforward and robust. After non-dimensionalization,
the critical values turn out to be independent of µ (or µ0), and so we can plot λcr against θ for a
given solid characterized by the single material parameter β (or the ratio A/µ0).

3. Experimental buckling with the shear-box deformation
To build a shear-box, we assembled four acrylic plates (10 × 10 × 1.0 cm) into a cube with four
hinged edges. We then prepared 12 different gels, using commercial gelatin in several forms:
solid leafs, powders or concentrated cubes to be dissolved in water. We varied the concentrations,
from that prescribed by the manufacturers to three times the normal concentration. We poured
about 300 ml of gelatin into the shear-box and let it set into a homogeneous solid phase,
either at room temperature or at refrigerated temperature, from 4 to 12 h depending on the
specimen.

The gelatin block was then subjected to a shear-box deformation (case (iv)), simply by
applying manual pressure on two opposite hinged edges of the box (see figure 3b for a schematic
representation of the deformed state). To ensure that the solid deformed homogeneously, we
injected olive oil between the sides of the block and the walls to enhance the gliding. This
precaution led to a central area where it was reasonable to consider that the deformation was
homogeneous, i.e. where initially parallel lines remained parallel in the current configuration
(figure 5a). We carried out the deformation manually until the free surface buckled as noticed by
the naked eye; see examples in figure 5. The corresponding critical tilting angle φ was recorded.

Experimentally, we noted that we did not observe the formation of small-amplitude sinusoidal
wrinkles but of creases instead (figure 5a). Moreover, the creases were always aligned with the
long diagonal of the shear-box, and thus not oblique. We measured that the creases appeared at
θ = 38◦ ± 2◦, irrespective of the concentration and type of gelatin used for the gel sample.

Hence, we conclude that the theoretical predictions of §2 were not verified experimentally. The
main problem is that of crease formation trumping wrinkles; this was to be expected, as creases
have been predicted to appear much earlier than wrinkles on homogeneous blocks. For instance,
Hong et al. [20] showed through finite-element simulations that creases appear on a neo-Hookean
half-space deformed in plane strain at a 35% compressive strain, so that the 46% required for
sinusoidal wrinkles is never attained.

To bypass this problem, we focused instead on wrinkles appearing when a soft semi-infinite
solid is coated with a thin stiff layer. Those are then remarkably stable and their onset is
well predicted by incremental analysis; they develop into nonlinear patterns only with further
compression; see Cao & Hutchinson [2] or Jin et al. [21] for details. Figure 6 displays experimental
evidence of the formation of regular sinusoidal wrinkles for bending and torsion deformations.

Experimentally, we let the gelatin blocks dry out overnight at refrigerated temperatures, so
that a skin formed on their surface due to surface dehydration during the longer cooling process.
When deformed in the shear-box, the buckling surface now exhibited regular, sinusoidal wrinkles,
at least in the centre of the block, where the homogeneous deformation was taking place (figure 5).
We noted that the wavelength of the wrinkles was much smaller than the dimensions of the
block, and thus that the half-space idealization was justified for the modelling (for an analysis
of the influence of the finite depth of the block, see the recent work by Jin et al. [21]). However,
oblique wrinkles were not observed, but principal wrinkles instead, again at a tilting angle of
38◦ ± 2◦ (corresponding to a strain of εcr = 38%). In the next section, we explain why this absence
of experimental oblique wrinkles is indeed in agreement with theoretical predictions.
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(a) (b)

Figure 5. (a) Freshly solidifiedgelatin tends to exhibit surface creases insteadof sinusoidalwrinkleswhen subject to an extreme
deformation, see arrows. (b) Here, the gelatin was left overnight to solidify and a stiffer layer/skin formed on the surface on top
of the soft substrate; when deformed, the coated block produced sinusoidal wrinkles.

(a) (b)

Figure 6. Formation of regular sinusoidal wrinkles on wrist supports made of gels enclosed by a stiff film casing, by bending
(a) or torsion (b).

4. Wrinkles on a coated half-space
(a) Layered structure
We consider that the top surface of the gelatin block (in contact with air) has dried out and
stiffened faster than the rest of the enclosed block during the solidification process. We model
the resulting heterogeneous structure as a composite material: a thin film of thickness 2h, say, in
the region −h ≤ x2 ≤ h, in bonded contact with a substrate in the region h ≤ x2 ≤ ∞. The strain
energy of each solid is expanded up to third order of Green strain as

Wf = µ0f tr(E2) + 1
3 Af tr(E3), Ws = µ0s tr(E2) + 1

3 As tr(E3), (4.1)

respectively. Now consider the mechanical response of these two solids to common modes of
deformation such as uniaxial tension under Cauchy tensile stress T or simple shear under Cauchy
shear stress S. Then, up to second order in the strain, we have for the film and for the substrate

Tf = 3µ0fε + 3
(

µ0f + Af
4

)
ε2, Sf = µ0f ε

and Ts = 3µ0sε + 3
(

µ0s + As

4

)
ε2, Ss = µ0sε

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4.2)

respectively, and similarly for other modes of deformation. (Here, the measure of strain ε is in turn
the elongation 1 − λ (from case (i)) and the amount of shear λ−1 − λ (from case (iii)).) A consistent
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way to ensure that the response of the film is always ‘stiffer’ than that of the substrate is to take

µ0f = Γµ0s, Af = ΓAs, (4.3)

where Γ > 1 is defined as the stiffness ratio. For the constants of the Mooney–Rivlin material (2.1),
this translates as

µf = Γµs, βf = βs. (4.4)

Then the film is always stiffer than the substrate, in the sense that the magnitude of its response
to any mechanical stress is Γ times that of the substrate.

(b) Principal wrinkles
For our layered structure, the formulae we use below can readily be deduced by specializing the
results of [22,23] to the present context. We write the bifurcation criterion for principal wrinkles
as

det(Γ zf − zs) = 0, (4.5)

where zf and zs are non-dimensionalized surface impedance matrices for the film and the
substrate, respectively. The substrate impedance is given explicitly by zs = −iBA−1, where

A =
[

1 λ2
1λ

−2
2

i iλ1λ
−1
2

]

, B =
[

2i iλ1λ
−1
2 (1 + λ2

1λ
−2
2 )

−1 − λ2
1λ

−2
2 −2λ2

1λ
−2
2

]

, (4.6)

and, as before, λ1 is the principal stretch of contraction and λ2 is the principal stretch along the
normal to the surface. The film impedance is given by zf = −iM3M−1

1 , where M1, M3 are the
respective top-left and bottom-left 2 × 2 submatrices of the matricant M = N EN −1. Here,

N =
[

A Ā
B B̄

]

, E = Diag
(

e−2kh, e−2(λ1λ
−1
2 )kh, e2kh, e2(λ1λ

−1
2 )kh

)
, (4.7)

the overbar denotes the complex conjugate and k is the wavenumber of the wrinkle. It is easy to
check that det zs = 0 is equivalent to the bifurcation criterion (2.3), as expected. Also, note that here
the bifurcation criterion is independent of the material parameters βs and βf; only the stiffness
ratio Γ = µf/µs matters.

We may then follow the same strategy as Cao & Hutchinson [2] to find the critical amount of
deformation signalling the onset of sinusoidal wrinkles. When Γ = 1, the system is homogeneous
and non-dispersive: the wrinkles appear when λ1λ

−1
2 = 0.2956; see equation (2.3). When Γ > 1,

the film/substrate structure is dispersive and to each value of kh corresponds a value of λ1λ
−1
2

for which equation (4.5) is satisfied. By varying kh, we can find the maximal value for λ1λ
−1
2 ,

which will be the critical value at which the structure wrinkles. Then by varying Γ , we can plot
figure 7a, for all the considered cases of deformation. The routine described in the flowchart of
figure 7b allows us to obtain a general curve of the maximum critical stretch ratio λ1λ

−1
2 against

Γ . Then, the critical value of λ1λ
−1
2 is related to the critical value of stretch or strain according to

each different mode of deformation, cases (i)–(iv).
Figure 7a recovers fig. 2 of Cao & Hutchinson [2] when the film and the substrate are both neo-

Hookean and the deformation is plane strain. In the figure, we also report the analytical solution
of Allen [24] for the buckling of a thin strut on a half-space in linear elasticity. As pointed out in
[2], it becomes reliable when Γ is large, i.e. when the deformation allowed before wrinkling is
small and close to the linear regime.
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Figure 7. (a) Critical strain εcr for principal wrinkles on a coated substrate against the stiffness ratioΓ for various compression
tests. The result of Allen [24] in linear elasticity is reported as a dashed line. (b) Flowchart for the critical stretch finding routine
(here x := kh andF (x) denotes the algorithm in the red, dashed box). (Online version in colour.)

(c) Oblique wrinkles
For oblique wrinkles, we must first integrate numerically the following differential Riccati
equation for the film’s surface impedance matrix zf = zf(x2),

dzf
dx2

= zfN2zf − izfN1 + iN†
1zf + N3, (4.8)

from its initial value [22] zf(−h) = 0 to its value zf(h). Then, we compute the substrate’s (constant)
surface impedance matrix zs as the positive semi-definite solution to the algebraic Riccati equation
(2.6). Finally, we adjust the compressive stretch λ until the following bifurcation criterion is met:

det (zf − zs) = 0. (4.9)

Note that here zf and zs are dimensional quantities, in contrast with the impedance matrices from
§2 because N1, N2, N3 in (4.8) (in (2.6), respectively), depend on µf, βf (µs, βs, respectively).

Here, the analysis is further complicated by the increase in the number of parameters. For a
given stiffness ratio Γ and a given deformation, we must vary not only kh to find the critical
stretch, but also the obliquity angle θ and the material parameter βf = βs. Figure 8b displays the
flowchart for the overall procedure used. (In particular, we used the MATLAB code fminsearch to
maximize the function F (kh, θ ).) For our purposes it suffices to record, for a given deformation,
the smallest critical strain εcr obtained for an oblique wrinkle for a given βs and to plot that curve.
Then by varying βs from −1 to 1, we obtain a family of curves. Here, we present the results for
the shear-box deformation, to compare them to our earlier experiments (we found similar figures
for the other deformations).

Figure 8a shows that oblique wrinkles (coloured curves underneath the thick black curve
for principal wrinkles) precede principal wrinkles only when Γ ! 2.3 for the materials close
to the extreme-Mooney model (βs ≃ 1.0) and Γ ! 2.0 for most materials (βs away from 1.0).
(Specifically, we found that the extreme-Mooney material predicts principal wrinkles when
Γ ≥ 2.20, 1.50, 3.62, 2.28 for cases (i)–(iv), respectively.)

In conclusion, when the stiffness ratio Γ is small, creases precede wrinkles; when it is
large enough to support wrinkles, principal wrinkles precede oblique wrinkles. So, even
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lj + 1 = lj – dl

compute
zf

compute
zs

det (zf − zs) = 0?

return lj + 1

Gj + 1 = Gj + dG
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lcr = max     (x, q)

record
ecr = 1 – lcr

(x, q)

(b)

(a)

Figure 8. (a) Critical strain εcr for oblique wrinkles on a coated substrate against the stiffness ratio Γ for the shear-box
compression test. The lower colour curves are for oblique wrinkles; they all merge into the upper black curve for principal
wrinkles, early when βs is away from 1.0 and at aboutΓ ≃ 2.3 when it is close to 1 (extreme-Mooney model). The coloured
curves correspond to βs = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 as indicated by the arrow. For negative or null values of βs,
only principal wrinkles are predicted as the favoured mode of buckling. (b) Flowchart for the critical stretch finding routine
(here x := kh andF (x, θ ) denotes the algorithm in the red, dashed box). (Online version in colour.)

though oblique wrinkles exist as first bifurcation mode in theory, they will never be observed
experimentally.

5. Discussion
To complete the paper, we must qualify our concluding statements above.

First of all our stiffness ratio Γ is one measure among others of the stiffness contrast between
film and substrate. In practice, it is unlikely that the proportion between µ0f and µ0l, and Af and
As, should be exactly the same as in (4.3). So a whole host of possibilities has been missed in this
investigation.

Another caveat is that the finite-element simulations of creases evoked in the paper all used
the neo-Hookean strain energy density, which does not predict oblique wrinkles. Similarly,
semi-analytical investigations into localized solutions, such as the one by Fu & Ciarletta [25],
also rely on neo-Hookean models. It thus remains an open question whether oblique wrinkles
can precede creases in simulations of compressed Mooney–Rivlin solids. However, our study
indicates that they could theoretically only appear in a narrow range of low stiffness contrast,
where experiments (our table-top ones, and the comprehensive set of controlled ones presented
by Jin et al. [21]) have so far failed to exhibit any evidence of their existence.

Also, guided by our experiments, we adopted the half-space approximation for the substrate,
because the observed wavelength was small compared with the dimensions of the block. If the
thickness h of the stiff layer were comparable to that of the soft substrate, it might be possible that
the finite depth of the substrate plays a role in the search for oblique wrinkles. The competition
between creases and wrinkles is also affected in that regime, and the onset of one compared with
the other is more complicated than here; see the analysis of Jin et al. [21] for neo-Hookean solids.
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Appendix A
The submatrices N1, N2 and N3 of the Stroh matrix can be found from the general expression in
[15] as

N1 =

⎡

⎢⎣
0 − cos θ 0

− cos θ 0 − sin θ
0 − sin θ 0

⎤

⎥⎦ , N2 =

⎡

⎢⎢⎢⎢⎢⎣

1
γ21

0 0

0 0 0

0 0
1
γ23

⎤

⎥⎥⎥⎥⎥⎦
, N3 =

⎡

⎢⎣
−η 0 κ

0 −ν 0
κ 0 −ψ

⎤

⎥⎦ ,

where, for a Mooney–Rivlin material (2.1) or equivalently a third-order elasticity solid (2.2),

γij = µ0

4
[β − 1 + (β + 1)λ2

k]λ2
i , 2βij = γij + γji, k ̸= i, j,

ψ = γ13 cos2 θ + (β23 + γ23) sin2 θ , ν = (γ12 − γ21) cos2 θ + (γ32 − γ23) sin2 θ ,

κ = (β13 − β12 − β23 − γ21 − γ23) cos θ sin θ , η= 2(β12 + γ21) cos2 θ + γ31 sin2 θ .
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