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The propagation of surface (Rayleigh) waves over a rotating orthorhombic crystal is
studied. The crystal possesses three crystallographic axes, normal to the symmetry
planes: the half-space is cut along a plane normal to one of these axes, the wave travels
in the direction of another, and the rotation occurs at a uniform rate about any of
the three axes. The secular equation for the surface wave speed is found explicitly;
in contrast to the non-rotating case, it is dispersive (frequency dependent). Both
Coriolis and centrifugal accelerations appear in the equations of motion: none can
be neglected in favour of the other, even at small rotation rates.
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1. Introduction

The main applications of surface acoustic wave (SAW) devices are in the field of
wireless communication, where SAW components are used to generate and collect
high-frequency signals. In mobile phones, global positioning systems or colour televi-
sion sets, these components are of course motionless. There exist, however, situations
where SAWs propagate over a rotating surface. For instance, SAW sensors have been
used to monitor the pressure of a tyre in a moving automobile (Pohl et al . 1997);
an ultrasonic SAW-based apparatus was designed to detect flaws on the surface of
a rotating member such as a roller bearing (Kawasaki et al . 1991); and robust and
shock-resistant SAW resonator gyroscopes have been miniaturized to a 1 cm × 1 cm
surface (Jose et al . 2002). For the theoretical aspect, Schoenberg & Censor (1973)
seem to have been the first authors to describe Rayleigh waves in a rotating, homoge-
neous, isotropic, linear, elastic medium for any orientation of the rotation axis with
respect to the free surface, and with both the Coriolis and the centrifugal accelera-
tions taken into account. They pointed out that, in contrast to the non-rotating case,
bulk and surface waves are dispersive, and that the acoustical tensor is Hermitian
instead of real symmetric; they did not, however, derive the secular equation for sur-
face waves. Clarke & Burdess (1994) obtained this equation for an isotropic half-space
rotating about an axis orthogonal to the direction of propagation and to the normal
to the half-space. Others (see, for example, Lao 1980; Wauer 1999; Grigor’evskĭı et
al . 2000) considered similar problems but neglected the centrifugal acceleration. For
anisotropic crystals, Fang et al . (2000) and Zhou & Jiang (2001) considered crystals
of tetragonal symmetry but did not derive the secular equation explicitly. As pointed
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out in the latter article, the influence of the centrifugal acceleration upon the SAW
speed is of the same order as that of the Coriolis acceleration and should not be
overlooked, even at small rotation rates. In this paper, an analytical investigation of
the propagation of SAWs in a rotating orthorhombic crystal is presented.

In § 2, the crystal considered is at first of general (triclinic) anisotropy and rotates
at a uniform rate about any axis. The equations of motion and the boundary con-
ditions are derived. Then the analysis is specialized to crystals with rhombic and
higher symmetries. The material is cut along the plane of symmetry x2 = 0 and
the wave travels in the Ox1-direction, where the Oxi-axes are crystallographic axes.
The semi-infinite body rotates along Ox1, Ox2 or Ox3. In the latter case, anti-plane
motions and stresses decouple from their in-plane counterparts; in the other two
cases, they do not. The choice of orthorhombic symmetry is of great importance
because, as pointed out by Royer & Dieulesaint (1984), it covers 16 types of sym-
metries, including tetragonal, hexagonal, cubic and of course isotropic; the choice
of a rotation axis aligned with the normal to the free plane or to crystallographic
axes in this plane is justified from an experimental point of view. In § 3, the secular
(dispersion) equations are derived explicitly for each rotation, using the method of
the polarization vector. This method was used by Currie (1979) and Taziev (1989)
in order to derive explicit secular equations for SAWs in non-rotating crystals.

Recently, Ting (2004a, b) improved upon this method and placed it within the
framework of the Stroh (1958, 1962) formalism. Here, the fundamental equations of
the method are obtained in a manner which does not rely upon this formalism. The
secular equation is obtained as a quadratic relationship between three determinants
(of 2×2 matrices for rotation about Ox3, of 3×3 matrices for rotations about Ox1 or
Ox2), whose elements are given explicitly in terms of the elastic parameters, the wave
speed and δ—the ratio of the rotation rate by the wave frequency. Several secular
equations arise in the resolution of the problem but only one is kept; the others
are dismissed on the argument that they do not reduce to the known single cubic
secular equation when the rotation rate vanishes. Numerically, the Rayleigh wave
speed decreases monotonically as δ increases. This influence is shown graphically
for α-iodic acid (HIO3, rhombic). For this graph, δ is chosen to vary from 0 to 10.
Although it is not realistic to imagine a crystal rotating at a frequency which would
be greater, or even close to, the frequency of an ultrasonic surface wave, this wide
range is chosen to show numerically that the wave speed tends to zero with increasing
δ without, seemingly, ever reaching it. For silica (SiO2, isotropic), the calculations
are conducted for a smaller range (0.0 � δ � 0.1) with and without the contribution
of the centrifugal acceleration in order to show its importance.

Some theoretical issues, such as the questions of existence and uniqueness of a
surface wave in a rotating crystal or the question of the general behaviour of the
wave speed as a function of δ, are left open.

2. Equations of motion

(a) General anisotropy and arbitrary rotation axis

Consider a semi-infinite body made of a linearly elastic, anisotropic crystal. For
two-dimensional deformations, the stress–strain relations are (Ting 1996, p. 38)

σo = Coεo or εo = s′σo, Cos′ = I, (2.1)
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where

σo = [σ11, σ22, σ23, σ31, σ12]T, εo = [ε11, ε22, 2ε23, 2ε31, 2ε12]T, (2.2)

and

Co =




C11 C12 C14 C15 C16
C22 C24 C25 C26

C44 C45 C46
C55 C56

C66


 , s′ =




s′
11 s′

12 s′
14 s′

15 s′
16

s′
22 s′

24 s′
25 s′

26
s′
44 s′

45 s′
46

s′
55 s′

56
s′
66


 . (2.3)

Here the Cij are derived, using the Voigt (1910, p. 560) contracted notation, from
the fourth-order elastic stiffness tensor and the reduced elastic compliances s′

ij are
defined by (2.1)3.

In the Cartesian orthogonal coordinate system (Ox1x2x3) ≡ (Oijk), where x2 � 0
is the region occupied by the half-space, a surface (Rayleigh) wave travelling at
speed v and wavenumber k in the x1-direction with attenuation in the x2-direction
is described by the following mechanical displacement field,

u(x1, x2, x3, t) = U(kx2)eik(x1−vt), U(∞) = 0. (2.4)

From (2.1)1 it follows that the corresponding stress components are of similar
form. In particular, the tractions acting upon the planes x2 = const. can be written
as

σi2(x1, x2, x3, t) = ikti(kx2)eik(x1−vt). (2.5)
Now consider that the crystal is rotating at a uniform rate Ω about the direction

of a unit vector w. Then the incremental (time-dependent) equations of motion in
the rotating frame are (Schoenberg & Censor 1973)

div σ = ρü + 2ρΩw × u̇ + ρΩ2w × (w × u), (2.6)

where ρ is the mass density and the dot denotes differentiation with respect to time.
Note that on the right-hand side of the equations both the Coriolis (second term)
and the centripetal (third term) accelerations appear. Using (2.1), (2.4) and (2.5),
these equations can be formulated as a linear homogeneous system of first-order
differential equations for U = [U1, U2, U3]T and t = [t1, t2, t3]T:[

U ′

t′

]
= i

[
N1 N2

N3 + J̌ + X1 NT
1

] [
U
t

]
, (2.7)

where X = ρv2 and the prime denotes differentiation with respect to kx2. Here, N1,
N2 = NT

2 and N3 = NT
3 are the usual submatrices of the fundamental matrix N

(Ingebrigsten & Tonning 1969). Barnett & Chadwick (1990) and Ting (1988) give
explicit expressions of the components of the Ni in terms of the Cij and of the
s′

ij , respectively. The matrix J̌ contains all the information relative to the rotation.
Explicitly (Schoenberg & Censor 1973),

J̌ij = [(δij − wiwj)δ2 − 2iεijkwkδ]X, δ = Ω/ω, (2.8)

where ω = kv is the real frequency of the wave, δij is the Kronecker operator and
εijk is the alternator. Note that J̌ is Hermitian.

Finally, the following boundary conditions apply: vanishing of the tractions on the
free plane surface x2 = 0 and of the wave as x2 → ∞, that is,

t(0) = 0, U(∞) = 0, t(∞) = 0. (2.9)
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(b) Orthorhombic crystals

Henceforward, we are concerned with orthorhombic crystals whose crystallographic
axes are aligned with the Oxi. In that case, we have

N1 =




0 −1 0

−s′
12

s′
11

0 0

0 0 0


 , N2 =




s′
66 0 0

0 s′
22 − s′2

12

s′
11

0

0 0 s′
44


 . (2.10)

Also, the crystal is assumed to be rotating about a crystallographic axis. Introducing
the Hermitian tensor Ǩ(1) = N3 + J̌ + X1 (lower left submatrix in (2.7)), we have

Ǩ(1) =




X − 1
s′
11

0 0

0 (1 + δ2)X −2iδX

0 2iδX (1 + δ2)X − 1
s′
55


 ,




(1 + δ2)X − 1
s′
11

0 2iδX

0 X 0

−2iδX 0 (1 + δ2)X − 1
s′
55


 ,




(1 + δ2)X − 1
s′
11

2iδX 0

−2iδX (1 + δ2)X 0

0 0 X − 1
s′
55


 , (2.11)

for rotation about the Ox1-axis, Ox2-axis and Ox3-axis, respectively.

3. Explicit dispersion equations

The Stroh–Barnett–Lothe formalism has beautifully addressed and resolved most of
the problems arising in linear anisotropic elasticity (see the textbook by Ting (1996)
for a thorough review). Some researchers have, however, followed other routes for the
study of SAWs in anisotropic crystals (see Ting (2004b) for an exposition of several
methods). For instance, Fu & Mielke (2002) recently proposed a highly efficient
numerical scheme to determine the Rayleigh wave speed, which is based on a Ricatti
equation. Here the method of the polarization vector (Currie 1979; Taziev 1989;
Ting 2004a, b) is presented for rotating orthorhombic crystals. Only simple algebraic
manipulations and first integrals (Mozhaev 1995) are used, so the derivation should
appeal to the reader who is not familiar with the Stroh (1958, 1962) formalism and
with the orthogonality relations (Barnett & Lothe 1973).

(a) Method of the polarization vector

Let us examine the equations of motion (2.7) closer. They read

−iU ′ = N1U + N2t, −it′ = Ǩ(1)U + NT
1 t. (3.1)
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Take the scalar product of the first line by t̄′ and of the second line by U ′; then add,
together with the complex conjugate; finally, integrate between 0 and ∞ to obtain

[U · Ǩ(1)U + t̄ · N2t + t̄ · N1U + t · N1U ]∞0 = 0, (3.2)

which, using the boundary conditions (2.9), reduces to U(0) · Ǩ(1)U(0) = 0, a rela-
tion first established by Stroh (1958) in the static, non-rotating case.

This procedure is easily generalized as follows. First compute N (the 6× 6 matrix
on the right-hand side of the equations of motion (2.7)) to the power n, where n is
any positive or negative integer, as

Nn =

[
N

(n)
1 N

(n)
2

Ǩ(n) N
(n)T
1

]
, (3.3)

(say). Of course, the matrices N
(n)
1 , N

(n)
2 and Ǩ(n) do not coincide with Nn

1 , Nn
2 ,

and Ǩn, respectively. The matrix N
(n)
2 is, however, symmetric just like N2 is, as can

be proved by induction (Ting 2004a). Similarly, it can be proved, in essentially the
same manner, that Ǩ(n) is Hermitian just like Ǩ(1) is. Now multiply (2.7) in turn
by N−1 and by −iN to get

iU = N
(−1)
1 U ′ + N

(−1)
2 t′, −iN1U

′ − iN2t
′ = N

(2)
1 U + N

(2)
2 t,

it = Ǩ(−1)U ′ + N
(−1)T
1 t′, −iǨ(1)U ′ − iNT

1 t′ = Ǩ(2)U + N
(2)T
1 t.

}
(3.4)

Take the scalar product of the first line in the first (second) system by t̄ (t̄′) and of
the second line by U (U ′); then add, together with the complex conjugate; finally,
integrate between 0 and ∞ to obtain

[U · Ǩ(−1)U + t̄ · N
(−1)
2 t + t̄ · N

(−1)
1 U + t · N

(−1)
1 U ]∞0 = 0,

[U · Ǩ(2)U + t̄ · N
(2)
2 t + t̄ · N

(2)
1 U + t · N

(2)
1 U ]∞0 = 0,

}
(3.5)

respectively. Using the boundary conditions (2.9), we have U(0) · Ǩ(−1)U(0) = 0 and
U(0) · Ǩ(2)U(0) = 0. These steps may be repeated ad infinitum for any positive or
negative power n of N to give

U(0) · Ǩ(n)U(0) = 0. (3.6)

However, because of the Cayley–Hamilton theorem, only five Nn are linearly inde-
pendent and, consequently, (3.6) yields at most five equations. In a non-rotating
frame, Currie (1979) used the equations written at n = 1, 2, 3 for SAWs in the plane
of symmetry of a monoclinic crystal and Taziev (1989) used the equations written
at n = 1, 2, 3, 4, 5 for triclinic crystals. Recently, Ting (2004a) pointed out that the
choices n = −2,−1, 1, 2, 3 lead to simpler expressions.

(b) Rotation about Ox1 (propagation direction)

When the orthorhombic crystal rotates about the propagation direction Ox1, the
matrices Ǩ(−2) and Ǩ(2) have the following structure:

Ǩ(n) =




0 Ǩ
(n)
12 iK(n)

13

Ǩ
(n)
12 0 0

−iK(n)
13 0 0


 , n = −2, 2, (3.7)
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where Ǩ
(n)
12 and K

(n)
13 are real. Explicitly,

s′
11Ǩ

(2)
12 = 1 − [s′

11 + s′
12(1 + δ2)]X, s′

11K
(2)
13 = 2s′

12δX, (3.8)

and

D1Ǩ
(−2)
12 = −1 + [s′

11 − (s′
12 + s′

55)(1 + δ2)]X

+ [s′
11(1 + δ2) + s′

12(1 − δ2)2]s′
55X

2,

s′
44D1K

(−2)
13 = 2s′

55δX,

D1 = 1 − (s′
55 + s′

66)(1 + δ2)X + (1 − δ2)2s′
55s

′
66X

2.




(3.9)

Equations (3.6) written at n = −2, 2, for U(0) = [1, α1 + iα2, β1 + iβ2]T, give

Ǩ
(−2)
12 α1 − K

(−2)
13 β2 = 0, Ǩ

(2)
12 α1 − K

(2)
13 β2 = 0. (3.10)

Hence, either (a) Ǩ
(−2)
12 K

(2)
13 − Ǩ

(2)
12 K

(−2)
13 = 0 or (b) α1 = β2 = 0. The first possibil-

ity is not a valid secular equation, because it is not consistent with the non-rotating
case; in other words, (a) at δ = 0 does not reduce to the cubic Rayleigh function for
non-rotating orthorhombic crystals:

1−(2s′
11+s′

66)X +s′
11(s

′
11−s′

22+2s′
66)X

2+s′
11(s

′
11s

′
22−s′2

12−s′
11s

′
66)X

3 = 0. (3.11)

Thus (b) applies and
U(0) = [1, iα2, β1]T. (3.12)

The directions of the vectors i + β1k and α2j are conjugate directions with respect
to the polarization ellipse of the wave at the free surface (Boulanger & Hayes 1993).
In fact, because they are orthogonal, they are along the principal axes of the ellipse.
Now we compute α2 and β1.

The matrices Ǩ(−1), Ǩ(1) and Ǩ(3) have the following structure:

Ǩ(n) =




Ǩ
(n)
11 0 0

0 Ǩ
(n)
22 iK(n)

23

0 −iK(n)
23 Ǩ

(n)
33


 , n = −1, 1, 3, (3.13)

where Ǩ
(n)
11 , Ǩ

(n)
22 , Ǩ

(n)
33 and K

(n)
23 are real. Explicitly,

D1Ǩ
(−1)
11 = −[1 + δ2 − s′

55(1 − δ2)2X]X, s′
44Ǩ

(−1)
33 = 1,

[s′
22 − (s′

11s
′
22 − s′2

12)X]Ǩ(−1)
22 = 1 − s′

11X, K
(−1)
23 = 0,

}
(3.14)

where D1 is defined in (3.9)3; the components of Ǩ(1) are given in (2.11)1; and

s′
11Ǩ

(3)
11 =

s′
66

s′
11

− 2
s′
12

s′
11

+
[
2(s′

12 − s′
66) +

s′2
12

s′
11

(1 + δ2)
]
X + s′

11s
′
66X

2,

s′
11Ǩ

(3)
22 = −1 + [s′

11 + 2s′
12(1 + δ2)]X + [(s′

11s
′
22 − s′2

12)(1 + δ2)2 + 4s′
11s

′
44δ

2]X2,

s′
55Ǩ

(3)
33 =

s′
44

s′
55

− 2s′
44(1 + δ2)X + s′

55

[
s′
44(1 + δ2)2 + 4

(
s′
22 − s′2

12

s′
11

)
δ2

]
X2,

s′
11K

(3)
23 = −2δX

[
s′
12 − s′

11
s′
44

s′
55

+ (s′
11s

′
22 − s′2

12 + s′
11s

′
44)(1 + δ2)X

]
.




(3.15)
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Substitution of (3.12) into equations (3.6) written at n = −1, 1, 3 gives

Ǩ
(n)
11 + Ǩ

(n)
33 β2

1 + Ǩ
(n)
22 α2

2 + 2K
(n)
23 α2β1 = 0, n = −1, 1, 3. (3.16)

These three equations are rewritten as Fikgk = −hi with

F =




Ǩ
(−1)
33 Ǩ

(−1)
22 K

(−1)
23

Ǩ
(1)
33 Ǩ

(1)
22 K

(1)
23

Ǩ
(3)
33 Ǩ

(3)
22 K

(3)
23


 , g =


 β2

1

α2
2

2α2β1


 , h =




Ǩ
(−1)
11

Ǩ
(1)
11

Ǩ
(3)
11


 . (3.17)

Let ∆ = det F , and ∆k be the determinant of the matrix obtained from F by
replacing the kth column with h. Then the solution to Fg = h is gk = −∆k/∆. But
g2
3 = 4g1g2, that is,

∆2
3 − 4∆1∆2 = 0, (3.18)

the explicit dispersion equation for Rayleigh waves in rhombic crystals rotating about
Ox1. It is a polynomial of degree 12 in X = ρv2 and of degree 10 in δ2. At δ = 0,
K

(n)
23 = 0, so that ∆1 = ∆2 = 0, while ∆3 factorizes into the product of a quadratic

in X and the cubic (3.11).

(c) Rotation about Ox2 (normal to the free plane)

When the orthorhombic crystal rotates about Ox2, the normal to the free plane,
the matrices Ǩ(−2) and Ǩ(2) have the following structure:

Ǩ(n) =




0 Ǩ
(n)
12 0

Ǩ
(n)
12 0 iK(n)

23

0 −iK(n)
23 0


 , n = −2, 2, (3.19)

where Ǩ
(n)
12 and K

(n)
23 are real. Explicitly,

s′
11Ǩ

(2)
12 = 1 − [s′

12 + s′
11(1 + δ2)]X, K

(2)
23 = −2δX, (3.20)

and

s′
11(1 − s′

66X)D2Ǩ
(−2)
12 = −1 + [s′

12 + (s′
11 + s′

55)(1 + δ2)]X

− [s′
12(1 + δ2) + s′

11(1 − δ2)2]s′
55X

2,

s′
44

s′
55

s′
11D2K

(−2)
23 = −2s′

12δX,

s′
11D2 = s′

22 − [s′
22(s

′
11 + s′

55) − s′2
12](1 + δ2)X

+ [s′
12(1 + δ2) + s′

11(1 − δ2)2]s′
55X

2.




(3.21)

Equations (3.6) written at n = −2, 2, for U(0) = [1, α1 + iα2, β1 + iβ2]T, give

Ǩ
(−2)
12 α1 + K

(−2)
23 (α2β1 − α1β2) = 0, Ǩ

(2)
12 α1 + K

(2)
23 (α2β1 − α1β2) = 0. (3.22)

Hence, either (a) Ǩ
(−2)
12 K

(2)
23 − Ǩ

(2)
12 K

(−2)
23 = 0 or (b) α1 = α2 = 0 or (c) α1 = β1 = 0.

The first possibility is not a valid secular equation, because it is not consistent with
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the non-rotating case (that is, (a) does not reduce to the cubic (3.11) at δ = 0). It
can be checked that in case (b) the equations (3.6) written at n = −1, 1, 3 lead to
a secular equation which vanishes identically at δ = 0, so that (b) is also dismissed.
Thus (c) remains, and

U(0) = [1, iα2, iβ2]T. (3.23)

The directions of the vectors α2j + β2k and i are along the principal axes of the
polarization ellipse at the free surface.

The matrices Ǩ(−1), Ǩ(1) and Ǩ(3) have the following structure:

Ǩ(n) =




Ǩ
(n)
11 0 iK(n)

13

0 Ǩ
(n)
22

−iK(n)
13 0 Ǩ

(n)
33


 , n = −1, 1, 3, (3.24)

where Ǩ
(n)
11 , Ǩ

(n)
22 , Ǩ

(n)
33 and K

(n)
13 are real. Explicitly,

(1 − s′
66)XǨ

(−1)
11 = −X, s′

44Ǩ
(−1)
33 = 1, K

(−1)
13 = 0,

s′
11D2Ǩ

(−1)
22 = 1 − (s′

11 + s′
55)(1 + δ2) + s′

11s
′
55(1 − δ2)2X2,

}
(3.25)

where D2 is defined in (3.21)3; the components of Ǩ(1) are given in (2.11)2; and

s′
11Ǩ

(3)
11 =

s′
66

s′
11

− 2
s′
12

s′
11

+
[
s′2
12

s′
11

+ 2(s′
12 − s′

66)(1 + δ2)
]
X

+ s′
11[s

′
66(1 + δ2)2 + 4s′

44δ
2]X2,

s′
11Ǩ

(3)
22 = −1 + [2s′

12 + s′
11(1 + δ2)]X + (s′

11s
′
22 − s′2

12)X
2,

s′
55Ǩ

(3)
33 =

s′
44

s′
55

− 2s′
44(1 + δ2)X + s′

55[s
′
44(1 + δ2)2 + 4s′

66δ
2]X2,

s′
11K

(3)
23 = 2δX

[
s′
12 − s′

66 − s′
11

s′
44

s′
55

+ s′
11(s

′
44 + s′

66)(1 + δ2)X
]
.




(3.26)

Substitution of (3.23) into equations (3.6) written at n = −1, 1, 3 gives

Ǩ
(n)
11 + Ǩ

(n)
33 β2

2 + Ǩ
(n)
22 α2

2 − 2K
(n)
13 β2 = 0, n = −1, 1, 3. (3.27)

These three equations are rewritten as Fikgk = −hi with

F =




Ǩ
(−1)
33 Ǩ

(−1)
22 K

(−1)
13

Ǩ
(1)
33 Ǩ

(1)
22 K

(1)
13

Ǩ
(3)
33 Ǩ

(3)
22 K

(3)
13


 , g =


 β2

2

α2
2

−2β2


 , h =




Ǩ
(−1)
11

Ǩ
(1)
11

Ǩ
(3)
11


 . (3.28)

Let ∆ = det F , and ∆k be the determinant of the matrix obtained from F by
replacing the kth column with h. Then the solution to Fg = h is gk = −∆k/∆. But
g2
3 = 4g1, that is,

∆2
3 + 4∆1∆ = 0, (3.29)

the explicit dispersion equation for Rayleigh waves in rhombic crystals rotating about
Ox2. It is a polynomial of degree 12 in X = ρv2 and of degree 10 in δ2. At δ = 0,
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Figure 1. Rayleigh wave speeds for α-iodic acid (rhombic) rotating
about Ox1 (bottom solid curve), Ox2 (top solid curve) or Ox3 (dashed curve).

K
(n)
13 = 0, so that ∆ = ∆1 = 0, while ∆3 factorizes into the product of a quadratic

in X and the cubic (3.11).
Figure 1 shows the influence of δ upon the surface wave speed for α-iodic acid

(HIO3, rhombic). The elastic stiffnesses (1010 N m−2) are (Royer & Dieulesaint 1996)
C11 = 3.01, C12 = 1.61, C22 = 5.80, C44 = 1.69, C55 = 2.06 and C66 = 1.58; the
mass density is 4640 kg m−3. We see that the Rayleigh wave speed is a monotone
decreasing function of δ. When the crystal rotates about the x2-axis (solid top curve),
the speed is greater at a given δ than when it rotates about the x1-axis (solid bottom
curve) or the x3-axis (dashed curve).

(d) Rotation about Ox3

The case where the orthorhombic crystal rotates about an axis orthogonal to the
direction of propagation and to the normal to the free surface has been treated
elsewhere (Destrade 2004) as a special case of a monoclinic crystal. It turns out that
the in-plane strain decouples from anti-plane strain, and that the displacement is of
the form

U(0) = [1, iα2, 0]T, (3.30)

where α2 is real. Explicitly, the wave propagates at a speed which is a root of the
following dispersion equation:

(h1F23 − h2F13)2 − (F12h2 − F22h1)(F12F23 − F22F13) = 0, (3.31)
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with
F12 = 2s′

12δX, F13 = 1 − (s′
11 + s′

66)(1 + δ2)X + s′
11s

′
66(1 − δ2)2X2,

F22 = −2s′
11δX, F23 = s′

11(1 + δ2)X,

h1 = [s′
22(1 + δ2) − (s′

11s
′
22 − s′2

12)(1 − δ2)2X]X, h2 = 1 − s′
11(1 + δ2)X,




(3.32)
and the mechanical displacement at the free surface is given by (3.30), with α2

2 =
(F12h2 − F22h1)/(F12F23 − F22F13).

The dispersion equation is a polynomial of degree 6 in X = ρv2 and in δ2. In
the isotropic case, it reduces to aiξ

i = 0 (i = 0, 1, . . . , 6), where ξ = ρv2/C66,
α = C66/C11, and

a6 = (1 − δ2)4[(1 + α)2(1 + δ2)2 − 4α(1 − δ2)2],

a5 = −16(1 − α)(1 + δ2)(1 − δ2)2[(1 − α)(1 + δ4) + 2(1 + 3α)δ2],

a4 = 16(1 − α)2(1 + δ2)2[(7 − 2α)(1 + δ4) + 2(1 + 2α)δ2],

a3 = −32(1 − α)2(1 + δ2)[(13 − 9α)(1 + δ4) + 2(7 − 11α)δ2],

a2 = 64(1 − α)2[(13 − 16α + 4α2)(1 + δ2)2 − 4δ2],

a1 = −256(3 − 2α)(1 − α)3(1 + δ2),

a0 = 256(1 − α)4.




(3.33)

This equation corresponds to the rationalized form of the dispersion equation
obtained by Clarke & Burdess (1994). In the non-rotating case, δ = 0 and the sextic
secular equation reduces to the (squared) cubic of Rayleigh (1885):

ξ3 − 8ξ2 + (24 − 16α)ξ − 16(1 − α) = 0.

Finally, in the incompressible isotropic case, α = 0 and the sextic equation factorizes
into the product of the two following cubics:

(1 + δ2)(1 ± δ)4ξ3 − 8(1 + δ2)(1 ± δ)2ξ2 + 8(3 ± 2δ + 3δ2)ξ − 16 = 0. (3.34)

Figure 2 shows the influence of δ upon the wave speed (thick curve) for silica (SiO2,
isotropic) rotating about the normal to the directions of propagation and of attenua-
tion. The elastic stiffnesses (1010 N m−2) are (Royer & Dieulesaint 1996) C11 = 7.85
and C12 = 1.61; the mass density is 2203 kg m−3. The thin curve corresponds to the
dispersion curve obtained when the centrifugal acceleration is omitted in the equa-
tions of motion (2.6). We see that even for small δ, this term plays an important
role: for instance, the speed is reduced from 3409 m s−1 in the non-rotating case
to 3350 m s−1 (horizontal dashed line) for δ = 0.088 52 with the full equations of
motion, and for δ = 0.048 78 without the centripetal acceleration, a relative differ-
ence of 45% for the expected value of δ! Similarly, Grigor’evskĭı et al . (2000) argued
that one of the bulk waves disappeared in a rotating isotropic media at δ = 1

2 ; in fact,
as shown by Schoenberg & Censor (1973), this phenomenon occurs at ‘resonance’:
δ = Ω/ω = 1.

(e) Remark: rotation about any direction in (x3 = 0)-plane

Note that the method of the polarization vector may also be carried out fully in
the case where the crystal rotates about any axis in the (x1, x2)-plane. Then the
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Figure 2. Rayleigh wave speeds for Silica (isotropic) rotating about Ox3 calculated with
(thick curve) and without (thin curve) the contribution of the centrifugal force.

secular equation is obtained as a nonlinear combination of determinants of 5 × 5
matrices, as follows.

When the unit vector w along the axis of rotation is such that w3 = 0 and
w1w2 �= 0, then the matrices Ǩ(n) have the following structure:

Ǩ(n) =




Ǩ
(n)
11 Ǩ

(n)
12 iK(n)

13

Ǩ
(n)
12 Ǩ

(n)
22 iK(n)

23

−iK(n)
13 −iK(n)

23 Ǩ
(n)
33


 , (3.35)

where Ǩ
(n)
11 , Ǩ

(n)
22 , Ǩ

(n)
33 , Ǩ

(n)
12 , K

(n)
13 and K

(n)
23 are real.

Substitution of U(0) = [1, α1 + iα2, β1 + iβ2]T into equations (3.6) written at five
different n gives

Ǩ
(n)
22 g1 + Ǩ

(n)
33 g2 + Ǩ

(n)
12 g3 + K

(n)
13 g4 + K

(n)
23 g5 = −Ǩ

(n)
11 ,

g1 = α2
1 + α2

2, g2 = β2
1 + β2

2 , g3 = 2α1, g4 = −2β2
2 , g5 = 2(α2β1 − α1β2).

}

(3.36)
The non-homogeneous linear system of five equations is solved for the five unknowns
gi. But these quantities are related through

g2
1g4 + g2

3g2 + g2
5 − g1g3g5 − 4g2g4 = 0, (3.37)

the dispersion equation for Rayleigh waves in rhombic crystals rotating about any
axis in the (x1, x2)-plane.
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Explicitly, the components of the Ǩ(n) matrices are, however, too long to repro-
duce here. Also, the corresponding set-ups are unlikely to be of experimental rele-
vance.

I thank M. A. Hayes for pointing out the article by Schoenberg & Censor, A. L. Shuvalov for his
encouragement and T. C. T. Ting for providing preprints of his latest articles before publication.
I also thank the referees for their suggestions.
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