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We propose a protocol to model accurately the electromechanical behavior of dielectric elastomer
membranes using experimental data of stress-stretch and voltage-stretch tests. We show how the
relationship between electric displacement and the electric field can be established in a rational
manner from these data. Our approach demonstrates that the ideal dielectric model, prescribing lin-
earity in the purely electric constitutive equation, is quite accurate at low-to-moderate values of the
electric field and that, in this range, the dielectric permittivity constant of the material can be
deduced from stress-stretch and voltage-stretch data. Beyond the linearity range, more refined cou-
plings are required, possibly including a non-additive decomposition of the electro-elastic energy.
We also highlight that the presence of vertical asymptotes in voltage-stretch data, often observed in
the experiments just prior to failure, should not be associated with strain stiffening effects but
instead with the rapid development of electrical breakdown. Published by AIP Publishing.
https://doi.org/10.1063/1.5053643

A major challenge in the modelling of soft dielectric
membranes with compliant electrodes comes from attempt-
ing to deduce by experimental tuning the total energy density
function XðF;EÞ, which depends on the deformation gradi-
ent F and on the Lagrangian electric field E. An accurate
knowledge of X is essential to formulate correctly the equa-
tions of electromechanical equilibrium, giving the Piola-
Kirchhoff stress as S ¼ @FX and the Lagrangian electric dis-
placement vector as D ¼ $@EX. Then, the total Cauchy
stress is as follows: r ¼ J$1SF> with J ¼ detF, and the
Eulerian electric field and displacement vector are as fol-
lows: e ¼ F$> E and d ¼ FD, respectively.

For isotropic and incompressible dielectrics, the electro-
elastic energy depends on ðF;EÞ through five scalar invari-
ants,1 for instance: I1 ¼ trC; I2 ¼ trC$1; I4 ¼ E % E; I5

¼ C$1E % E; I6 ¼ C$1E % C$1E, where C ¼ F> F is the right
Cauchy-Green tensor. Noting that I5 ¼ jjejj2, a fairly general
and common assumption made in the literature is that the
electro-elastic energy is split additively into

X ¼ WðI1; I2Þ $ w
ffiffiffiffi
I5

p" #
; (1)

where W is a purely elastic term and w is an electro-elastic
term. This expression encompasses, for example, the so-
called ideal dielectric model2 with wðxÞ ¼ ex2=2, where e is
the dielectric constant, and the polarization saturation
model3 with wðxÞ ¼ ðd2

s =eÞ ln ðcoshðex=dsÞÞ, where ds is the
saturation value of the Eulerian electric displacement.

In this paper, we leave w unspecified and show that this
function can be completely determined from independent
sets of stress-stretch and voltage-stretch experimental data.

Assume that the dielectric membrane is a plate of uni-
form reference thickness H, with compliant electrodes on its

upper and lower faces. For equi-biaxially deformed states,
the deformation gradient is F ¼ diagðk; k; k$2Þ, where k is
the in-plane stretch, the Lagrangian electric field is
E ¼ ð0; 0;EÞ, and the displacement vector is D ¼ ð0; 0;DÞ,
where the non-vanishing components are along the direction
perpendicular to the membrane mid-surface. Note that
E¼V/H, where V is the controlled voltage and that e
¼ k2E ¼

ffiffiffiffi
I5

p
and d¼ k$2D.

Specialising the energy (1) to equi-biaxial states,
we introduce xðk;EÞ ¼ wðkÞ $ wðk2EÞ, where wðkÞ
¼ Wð2k2 þ k$4; 2k$2 þ k4Þ for the purely elastic part.
Electro-mechanical equilibrium in the presence of a pre-
stretch kp reads @kxðk;EÞ ¼ @kxðkp; 0Þ or

sðkÞ $ kEw0ðk2EÞ ¼ sðkpÞ; (2)

where sðkÞ ¼ w0ðkÞ=2 is the purely mechanical in-plane
stress [and s(kp) is the mechanical stress required to pre-
stretch the plate]. Furthermore, the electric displacement
reads D ¼ $@Ex ¼ k2w0ðEk2Þ, which can be conveniently
recast in the Eulerian form as

d ¼ w0ðeÞ: (3)

Remarkably, Eqs. (2) and (3) show that if the purely mechan-
ical response of the polymer is known through the function
s(k), then the relationship between d and e can be determined
by an independent set of voltage-stretch data. More pre-
cisely, once various sets of experimental data {kp, k, E} are
recorded, then the resulting curve d(e) can be determined by
interpolating the points

d ¼ sðkÞ $ sðkpÞ
kE

; e ¼ k2E: (4)

We emphasise that because d depends only on e according to
(3), the purely electrical constitutive equation in the Eulerian
form must be independent of the specific values of k, kp, and
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E. If the data do not show this independence, then the
assumption of additivity (1) must be abandoned.

The first step towards the derivation of the purely elec-
tric constitutive equation through (4) is to determine the
mechanical response of the polymer. Here, we focus on the
popular dielectric acrylic elastomer VHB4905 (3M Center,
St. Paul, MN). This is a viscoelastic material, but here, we
focus on rate-independent effects.

To provide a robust tuning of the material response, we
report two sets of data, see Fig. 1. The first set comes from
direct equi-biaxial tensile tests carried out in our Soft
Machine Laboratory (Xi’an Jiaotong University): we used
disks with initial radius R¼ 17.5 mm and thickness
H¼ 0.5 mm, with a loading rate of 2 mm/min. The second
set of data is extracted from the paper by Huang et al.4

(same R and H with a loading rate of 11.0 g/90 s, which was
the slowest rate reported).

We notice that the material breaks before it can exhibit
the strain-stiffening effect due to limiting chain extensibility.
It is thus not appropriate to use a Gent or an Arruda-Boyce
model5 here, because their stiffening parameter cannot be
determined properly. Instead, we find that a good fit is
obtained with the following strain energy density (based on
the I1—model of Lopez-Pamies6):

WðI1; I2Þ ¼
c1

2
ðIa

1 $ 3aÞ þ c2

2
ðIb

2 $ 3bÞ; (5)

with c1¼ 75 400 Pa, c2¼ 0.23 Pa, a¼ 0.87, and b¼ 2.2, see
the corresponding graph of s(k) in Fig. 1. The initial shear
modulus for this model is computed as l¼ 56 869 Pa from
the formula l :¼ 2ð@W=@I1 þ @W=@I2Þ at I1¼ I2¼ 3.

We now move on to modelling the electromechanical
behavior. We consider that the (E, k) data from equi-biaxial
voltage-stretch experiments conducted on VHB4905 disks

with 14 different levels of pre-stretch, taken from the
articles.4,7,8 Figure 2 shows the distributions of the pairs (d,
e) deduced from (4) [now that s(k) is known].

The insets (a), (b), and (c) refer to Refs. 4, 7, and 8,
respectively. The (d, e) pairs show a late “electric softening”
behavior, in the sense that the d–e plots have a decreasing
slope just prior to the electrical breakdown. In some cases,
(b) in particular, breakdown occurs after the recording of a
peak; in (a) and (c), it occurs before a peak can be recorded
(this could be explained by how fast the final expansion
occurs, and how difficult it is to control it and to measure its
progression with increasing dead-loads).

The compound picture in Fig. 2 further suggests that the
softening branches of the 14 sets of (d, e) pairs may be seen
as outliers with respect to a collective “safe” behavior of the
polymer. In particular, in the 0 ' e ' 108 V m$1 window, this
safe branch is fitted by the linear interpolation

dlin ¼ ee; e ¼ 3:2 ( 10$11 Fm$1: (6)

We thus conclude that, in this range, VHB4905 behaves as
an ideal dielectric. Note that the value of the deduced dielec-
tric constant is on the same order of magnitude but lower
than the usual value ) 3.8 ( 10$11 Fm$1 proposed in the lit-
erature for this material, see, e.g., Refs. 4, 7, and 8.

FIG. 1. Mechanical tuning of 3M VHB4905 in equibiaxial tension. Black
squares taken from Ref. 4, and red diamonds refer to our own experiment.
For information, we also give the stress-stretch pairs deduced from the
voltage-stretch experiments of Ref. 7 (green circles) and Ref. 4 (magenta tri-
angles) when the voltage is zero. The dashed curve indicates the best-fit
function s(k).

FIG. 2. Pairs (d, e) in (C/m2, V/m) deduced from Eq. (4) once the mechani-
cal response s(k) has been determined. The pairs characterise the purely
electrical response of the polymer for three sets of experiments. Circle points
in (a) are obtained from Ref. 7, where the colors black, red, blue, and green
correspond to the pre-stretches kp¼ 1.2, 1.3, 1.6, and 2, respectively. Square
points in (b) are obtained from Ref. 4, where the colors black, red, blue, and
green correspond to the pre-stretches kp¼ 1.6, 2, 2.5, and 2.8, respectively.
Diamond points in (c) are obtained from Ref. 8, where the colors black, red,
blue, green, magenta, and orange correspond to the pre-stretches kp¼ 1.2,
1.6, 1.8, 2, 2.5, and 2.9, respectively. The points are all aggregated in the
main picture (d), where the blue and black dashed curves represent linear
and cubic interpolations of the data, respectively.
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The ideal dielectric paradigm is widely used in the liter-
ature on dielectric elastomers, but its direct proof from actua-
tion experiments is quite rare. Here, we used a rational
approach to deduce its validity indirectly.

Beyond that range, the cubic approximation

dcub ¼ ee þ ae3; (7)

with e as above and a¼ 3.5 ( 10$28 Fm2 V$3 fits the safe
branch better; it gives w ¼ eI5=2 þ aI2

5=4 for the electro-
elastic part of the free energy. Of course, it is debatable
whether the cubic is able to capture the scatter observed in
Fig. 2 at the higher values of the Eulerian electric field e. As
we do not have enough data to conduct a statistical analysis,
we leave this question open.

An alternative point of view is to conclude that the scat-
ter is too large and that a more sophisticated form of free
energy than in Eq. (1) must be adopted. We tried to replace
w with linear combinations of I4, I5, and I6 but they also lead
to d being a function of e only, which excludes scatter in the

d–e plots. Possibly, the additive split of a function of I1 and
I2 only and a function of I4, I5, and I6 only has to be aban-
doned to model the electro-mechanical behavior of
VHB4905 over the entire range of stretches and voltages up
to breakdown.

Electric softening occurs at high values of the electric
field but without any matching behavior (such as strain-soft-
ening/stiffening) in the purely mechanical response of the
polymer. On the other hand, we discard the possibility that—
at least for this material—electric softening can be explained
in terms of “polarization saturation” in the electrical
response of the polymer,3 because none of the d–e curves
exhibit saturation. Instead, we propose that electric softening
is simply a global manifestation of a local failure process.
For this reason, this effect should not be regarded (nor mod-
elled) as a constitutive feature of the material.

We finally show that the voltage-stretch response of the
polymer can be described and modelled by using the purely
mechanical response function s(k) and the purely electrical
response (7). The resulting theoretical curves show an excel-
lent prediction of the experimental data in a wide range of
pre-stretches. Figure 3 shows the overall data of the 14 levels
of prestretch from the three different articles,4,7,8 together
with our theoretical predictions.
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FIG. 3. Experimental data (dots) vs theory (solid curves) for all the pre-
stretch levels taken into consideration in this manuscript. The three insets
(a), (b), and (c) refer to the three sets of experiments,4,7,8 respectively. The
compound picture is reported in (d). Voltage is measured in kV. Solid curves
are obtained by using the mechanical response (5) together with the cubic
electrical response (7). The red dashed curve, corresponding to
e¼ 108 V m$1, represents the limit of applicability of the ideal dielectric
model for VHB4905.
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