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We investigate the finite bending and the associated bending instability of an incompressible dielectric
slab subject to a combination of applied voltage and axial compression, using nonlinear electro-elasticity
theory and its incremental version. We first study the static finite bending deformation of the slab. We
then derive the three-dimensional equations for the onset of small-amplitude wrinkles superimposed
upon the finite bending. We use the surface impedance matrix method to build a robust numerical pro-
cedure for solving the resulting dispersion equations and determining the wrinkled shape of the slab at
the onset of buckling. Our analysis is valid for dielectrics modeled by a general free energy function. We
then present illustrative numerical calculations for ideal neo-Hookean dielectrics. In that case, we pro-
vide an explicit treatment of the boundary value problem of the finite bending and derive closed-form
expressions for the stresses and electric field in the body. For the incremental deformations, we validate
our analysis by recovering existing results in more specialized contexts. We show that the applied voltage
has a destabilizing effect on the bending instability of the slab, while the effect of the axial load is more
complex: when the voltage is applied, changing the axial loading will influence the true electric field in
the body, and induce competitive effects between the circumferential instability due to the voltage and
the axial instability due to the axial compression. We even find circumstances where both instabilities
cohabit to create two-dimensional patterns on the inner face of the bent sector.
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1. Introduction

An elastic rectangular slab can be bent into a cylindrical sec-
tor under the application of moments on the lateral faces, and the
bending angle depends on the applied moments, the dimensions
and the material properties of the slab. The finite bending defor-
mation of incompressible soft materials is well captured by the
theory of nonlinear elasticity (Rivlin, 1949; Green and Zerna, 1954;
Truesdell and Toupin, 1960; Ogden, 1997). Generally speaking, the
inner surface of a bent slab is contracted circumferentially, and the
outer surface is stretched. Experimental observations indicate that
wrinkles and creases will appear on the compressed surface of a
bent rubber slab if the circumferential stretch of the inner surface
reaches a critical value, i.e., the so-called bending instability oc-
curs (Gent and Cho, 1999). This phenomenon can be predicted by
the theory of incremental nonlinear elasticity (Triantafyllidis, 1980;
Destrade et al., 2009a,b, 2014; Roccabianca et al., 2010).
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Dielectric elastomers are novel smart materials with the abil-
ity to convert mechanical energy into electrical energy, and vice
versa. Dielectric elastomers have attracted considerable attention
from academia and industry alike because, compared with other
smart materials like electroactive ceramics and shape memory al-
loys, they have the advantages of fast response, high-sensitivity,
low noise and large actuation strain, making them ideal candidates
to develop high-performance devices such as actuators, soft robots,
artificial muscles, phononic devices and energy harvesters (Bar-
Cohen, 2004; Kim and Tadokoro, 2007; Rasmussen, 2012; Brochu
and Pei, 2010; Galich and Rudykh, 2017; Getz and Shmuel, 2017;
Wu et al,, 2018). Generally, a dielectric actuator is composed of a
soft elastomeric material sandwiched between two compliant elec-
trodes (typically, by brushing on carbon grease). Application of a
voltage across the thickness of the actuator generates electrostatic
forces, which lead to a reduction in the thickness and an expan-
sion in the area of the actuator. Based on this mechanism, various
dielectric devices have been designed to achieve giant actuation
strains (Pelrine et al., 2000; O’Halloran et al., 2008; Zhang et al.,
2017).
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Fig. 1. Bending deformations in dielectric devices: (a) A strain sensor consisting of a stretchable dielectric sandwiched between two flexible ionic conductors attached to a
straight finger: the bending of the finger stretches the sensor (Sun et al., 2014); (b) A 4-finger dielectric gripper: this actuator induces voltage-driven bending to lift a rock
(Bar-Cohen, 2002); (c) Bending variations of the soft body and fins of a soft electronic “fish” made of dielectric elastomer and ionically conductive hydrogel: the fish can swim
at a fast speed driven by periodical bending deformations (Li et al., 2017); (d) A dielectric actuator with a significant voltage-driven bending response (Bar-Cohen, 2002).

To understand the electromechanical coupling effect and pre-
dict the nonlinear response of dielectric elastomers subject to elec-
tromechanical loadings, a nonlinear field theory is required. Ar-
guably, Toupin (1956) was the first to develop a general nonlin-
ear theory of electro-elasticity. Much effort has been devoted to
the development of this theory in the last two decades (Ericksen,
2007; Suo et al.,, 2008; Liu, 2013; Dorfmann and Ogden, 2016),
driven by recent applications in the real-world. So far, several finite
deformations of dielectric structures have been investigated theo-
retically, including simple shear of a dielectric slab (Dorfmann and
Ogden, 2005), in-plane homogeneous deformation of a dielectric
plate (Dorfmann and Ogden, 2014a), extension and inflation of a
dielectric tube (Dorfmann and Ogden, 2006; Zhu et al., 2010) and
a multilayer dielectric tube (Bortot, 2018), inflation of a dielectric
sphere (Li et al., 2013; Dorfmann and Ogden, 2014b) and of a mul-
tilayer dielectric sphere (Bortot, 2017).

Finite bending deformation is common in devices based on di-
electric elastomers, see examples in Fig. 1, but little attention has
been devoted to the theoretical analysis of this deformation for di-
electric structures. Wissman et al. (2014) studied the pure bending
of a dielectric elastomer actuator which contains inextensible but
flexible frames. They simplified the kinematics by assuming plane
strain deformation and modeled the bending deformation using
elastic shell theory based on the principle of minimum potential
energy. Good agreement between theoretical and experimental re-
sults was achieved for a neo-Hookean constitutive law, but the pre-
diction is valid only for small strain deformation. Li et al. (2014) in-
vestigated the bending deformation of a dielectric spring-roll. The
allowable bending of the actuator was determined by considering
several failure models, including electromechanical instability, elec-
trical breakdown, and tensile rupture. There also, the small strain
assumption was adopted to simplify the problem. Only recently
was a theoretical study on the finite bending of a dielectric ac-

tuator based on the three-dimensional nonlinear electro-elasticity
made available (He et al., 2017). There, the authors considered an
actuator consisting of a hyperelastic layer and two pre-stretched
dielectric elastomer layers, which bends once a voltage is applied
through the thickness of the dielectric layer. That analysis was con-
cerned with static finite bending under the plane strain assump-
tion but not with the associated bending instability.

In this paper, we propose a theoretical analysis of finite bending
deformation and the associated bending instability of an incom-
pressible dielectric slab subject to the combined action of electrical
voltage and mechanical loads. We focus on how finite bending and
bending instability of a dielectric slab are influenced by tuning the
applied voltage, the structural parameters and the axial compres-
sion.

The paper is structured as follows. In Section 2, we briefly recall
the general equations of the nonlinear theory of electro-elasticity
and the associated linear incremental field theory (Dorfmann and
Ogden, 2016). We then specialize the general theory to the prob-
lems of the finite bending and the linearized incremental motion
superposed upon the bending of a dielectric slab modeled by any
form of energy function (Section 3). We arrange the governing in-
cremental equations in the Stroh form and then use the surface
impedance matrix method to obtain a robust numerical procedure
for deriving the bending and compression thresholds for the onset
of the instability. We find the corresponding wrinkled shape of the
slab when buckling occurs. In Section 4, we present numerical cal-
culations for an ideal neo-Hookean dielectric slab to elucidate the
influence of the applied voltage, of the structural parameters and
of the axial compression on the finite bending and the associated
buckling behavior. We show analytically that only moments are re-
quired to drive the large bending of the slab. We find that both
the applied voltage and the axial constraint pose a destabilizing ef-
fect on the slab, while these two effects compete with each other
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because compressing the slab will decrease the true electric field
in the solid. We also find under which circumstances can a two-
dimensional buckling pattern happen, where circumferential and
axial wrinkles co-exist. Finally in Section 5, we draw some conclu-
sions.

2. Basic formulation

In this section we propose a brief overview of the govern-
ing equations for finite electro-elasticity and its associated incre-
mental theory. Interested readers are referred to the textbook by
Dorfmann and Ogden (2016) for more detailed background on this
topic.

2.1. Finite electro-elasticity

Consider a deformable continuous electrostatic body which, at
time tg, occupies an undeformed, stress-free configuration By, with
boundary 0B; and outward unit normal vector N. Assume that the
body is subject to a (true) electric field E, with an associated (true)
electric displacement D. A material particle in B; labeled by its po-
sition vector X takes up the position x at time ¢, after a finite de-
formation described by the mapping x = x(X,t), where y is twice
continuously differentiable. As a result, the body deforms quasi-
statically into the current configuration, which is denoted by By,
with the boundary 0B; and the outward unit normal vector n. The
deformation gradient tensor is F = dx/0X, with Cartesian com-
ponents F, = 0x;/0Xy. The initial volume element dé and the de-
formed volume element dA of the solid are related by d§ = JdA,
where | = detF is the local volume ratio.

Throughout this paper we consider incompressible dielectric
elastomers, for which the internal constraint J=1 holds at all
times. According to the theory of nonlinear electro-elasticity, by in-
troducing an augmented free energy function 2 = Q(F, D;), which
is defined in the reference configuration, the governing equations
of the body can be obtained as

0 90
- OF D,

where T = F~!7 is the total nominal stress, with T being the total
Cauchy stress tensor, p is a Lagrange multiplier associated with the
incompressibility constraint, which can be determined from the
boundary conditions, and the nominal electric field E; = F'E and
the nominal electric displacement D, =F~'D are the Lagrangian
counterparts of E and D, respectively. The superscripts ‘~1’ and ‘T’
throughout this paper denote the inverse and transpose of a ten-
sor, respectively.

Specifically, for an isotropic, incompressible, electro-elastic ma-
terial, 2 can be expressed in terms of the following five invari-
ants

L =trc, L= tl'(C_]), Iy = D[ -Dl,
Is=D,-cD,, Is=D,; c’D,, (2)

where ¢=F'F is the right Cauchy-Green deformation tensor.
Combined with Eq. (1), the Cauchy stress T = FT and the electric
field E = F'E, are found as

T = 2Q1b+2Q;(hb - b*) — pI +2QsD ® D
+2Q6(D ® bD + bD & D), (3)

T F', E = (1)

E = 2(Q4b "D + QsD + QchD), (4)

where I is identity tensor, b= FFT is the left Cauchy-Green de-
formation tensor and the shorthand notation Qp, = 02/ (m =
1,2,4,5,6) is adopted here and henceforth.

In the absence of body forces, free charges and currents, and
applying the ‘quasi-electrostatic approximation’, the equations of
equilibrium read

divt =0, curlE=0, divD=0, (5)

where ‘div’ and ‘curl’ are the divergence and curl operators defined
in the deformed configuration, respectively.

In this paper, we consider an initially stress-free dielectric slab,
with flexible electrodes glued to its upper and bottom surfaces,
which is bent into a circular sector by the combined action of elec-
tric voltage and mechanical loadings. In this case, the electric field
in the body is distributed radially in the deformed configuration
and there is no exterior electric field in the surrounding vacuum.
Then the fields must satisfy the following boundary conditions on
the bent surfaces,

tn=t, Exn=0 D-n=q,, (6)

where t; is the prescribed mechanical traction per unit area of 9B,
and g, is the surface charge density on 0B:.

2.2. Incremental motions

We now superimpose an infinitesimal incremental deformation
X% along with an infinitesimal increment in the electric displace-
ment D, . Hereinafter, dotted variables represent incremental quan-
tities. The incremental form of the aforementioned equations can
be obtained by Taylor expansions. Hence, the linearized incremen-
tal forms of the constitutive relations in Eq. (1) read

TO = AOH + roi)]o + pH — pI, E.IO = FgH +I(0b10, (7)

where To=FT,Eq=F"E, and Dy =FD, are the ‘push for-
ward’ versions of T,E; and D;, respectively, H = gradu is the
displacement gradient, with u(x,t) = (X, t) being the incremen-
tal mechanical displacement, and Ag, Iy and K are, respectively,
fourth-, third- and second-order tensors, with Cartesian compo-
nents defined by

92Q P
Aopigj = Aogjpi = Fpanﬂm’ Lopiq = Toipg = Fp“Fﬁql m
—1g- 829
Koij = Koji =Fai1Fﬂf1m- )

The above defined tensors are the so-called ‘electro-elastic
moduli tensors’, which are fully determined once the energy func-
tion Q2 and biasing fields F and D, are prescribed.

It is worth noting here that we have the connection

Avjite — Avijic = (Tjt + P8;1) 8 — (Ti + PSit) 8. 9)

which can be established by using the incremental form of the
symmetry condition of the Cauchy stress FT = (TF)T.

The incremental forms of the equilibrium equations in (5) are
divig =0, curl Ep=0, divDy =0. (10)

In addition, the incremental incompressibility constraint rela-
tion reads

divu=trH =0. (11)

Accordingly, the incremental forms of the boundary conditions
(6) are

TE"Zony Eoxn=0, Dyp-n=qe, (12)

where £, and §. are the incremental mechanical traction and
surface charge density per unit area of dB;, respectively.
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flexible electrodes

(a). Reference configuration

(b). Current configuration

Fig. 2. Sketch of a dielectric slab with a voltage applied across its thickness subject to finite bending.

3. Finite bending and associated stability analysis
3.1. Finite bending deformation

We consider an initially undeformed dielectric slab of length
L, thickness H and width A, with two flexible electrodes (carbon
grease for example) glued onto its top and bottom faces. We as-
sume the electrodes to be so thin and soft that their mechanical
role can be ignored during the deformation.

The width and length aspect ratios of the slab are A/H and L/H,
respectively. The slab originally occupies the region

A A

O=<Xi=H -5=X=35 0=X=L (13)
as depicted in Fig. 2(a). With the application of a voltage through
the thickness and of mechanical loads (later calculations show that
only moments are needed for the bending), the slab bends into the
current region

Tq =T =Tp, —

NS

595%, 0<z<l, (14)

as depicted in Fig. 2(b), through the following bending deformation
(Green and Zerna, 1954; Ogden, 1997)

r= d+ﬁ, 0:(1)X2’
V w Az

where (X, X5, X3) and (r, 6, z) are the rectangular Cartesian and
cylindrical coordinates in the reference and deformed configura-
tions, with orthogonal bases (Jy, J2, J5) and (jr, jy, jz), respectively.
In Eq. (15), d and w are constants to be determined, A, is the axial
principal stretch, which is taken to be prescribed, I, r4, 1, and ¢
are the length, inner and outer radii and the bending angle of the
deformed sector, respectively, given by

I=hl. ra=vd = Jd+28 o=@ (16)
w Az

Then the deformation gradient has the following components in
the J;®j,(i=1.2,3 and @ =r1,6,2) basis,

Z:)\.ZX3, (15)

ATIAZT 0 0
F=| o x» o], (17)
0 0 A

with A = wr/A; being the circumferential principal stretch. Com-
bining Egs. (16) and (17), we establish the following relationships,

R0 mi-n)

A
2H ’ 2 H’ (18)

where Aq = wrq/Az, Ay = wrp/A, are the circumferential stretches

of the inner and outer surfaces of the deformed sector, respectively.
Now assume that the nominal electric field and electric dis-

placement in the reference configuration are transverse,

E=[E 0 0. p=[D, 0 o, (19)

where Ey and Dy are the only non-zero components of the nom-
inal electric field and electric displacement, respectively. Then the
true electric field and electric displacement in the deformed con-
figuration are

E-F'E=[E 0 0]\ D=FD,=[D, 0 0], (20)

where E; = AAEq =Egwr and Dy = A~1A;'Dy = Dy/(wr). The

Maxwell equation (5); reads

aD, 1 109(rD;)
+ = r= -
ar r roar
showing that Dy is a constant. Notice, however, that Eq is not a
constant.
According to Eq. (2), the invariants are

L=A+A7202 422 L=A24+2%02+2072
Iy=D3, Is=A"2);2D3, Is=A"*A;*D3. (22)

From Eqs. (3) and (4), we further obtain the non-zero components
of the Cauchy stress T and of the electric field E as

T = 207207 Q1 + 2(A72 + A7) Q2 + 21722, °D§ <25
+4A"*A;*D2S2% — D,

Tgo = 2A7Q1 +2(A;% + A%A2) Q2 — p,

T = 20721 +2(A2 + A%A2) Q2 — . (23)

-0, 21)

Er =2(A2A29Q% + Q5+ A 724, %Q%)D;
= 2()\.)\.2944—)\.71)\.;195 +)\.73)\.;3QG)D0. (24)

At this stage we note that the energy function has only three
independent variables: A, A, and Dy. Introducing a reduced energy
function W defined by

W (A, Az, Do) = Qly, I, Iy, Is, I). (25)
Egs. (23) and (24) can be rewritten compactly as
aw
Trr - ‘C@g - _)\‘W’ (26)
Eo=A"1AJ'E, = ow (27)

Do



Y. Su et al./International Journal of Solids and Structures 158 (2019) 191-209 195

For the considered deformation, the equilibrium Eq. (5); re-
duces to the radial component equation

AT
ot 'ng) =0. (28)

Combining Eqs. (26) and (28) and using the relation dA/A =
dr/r enables us to rewrite the principal stress components 7, and
Tgp aS

Tr =W +K, (29)

1
+ ?(T" —

aw
oA dA
where K is a constant to be determined from the boundary con-

ditions. Here the inner and outer surfaces at r, and r, are free of
mechanical tractions, so that

T@@Z)\ +Tr=A=— +W+K, (30)

Tr(1a) = Trr(ry) = 0. (31)
Then the constant K can be obtained as
K =-W(Aq, Az, Do) = =W (Ap, Az, Do), (32)

and the connection between A4, Ay, Az and Dy can be established
as

W (Aa, Az, Do) — W (Ap, Az, Dy) = 0. (33)

According to Eq. (5),, the electric field can be expressed as
E = —grad¢, where ¢ is the electric potential, with the only non-
zero radial electric field component given by E, = —d¢/dr . We de-
note the electric voltage difference between the inner and outer
surfaces as V = ¢q — ¢, which, with the help of Egs. (18); and
(27), can be obtained as

ow A2 oW 2H QW
V= [ Mhagp, =" | AaDod,\szM *5pg O

(34)

Eq. (34) provides the equilibrium relation between the constants
V, Do, Aa, Ap and Az, once the energy function of the material is
specified.

Then by solving the Eqgs. (18),, (33) and (34), Aq, A, and Dg
can be determined once V, ¢, A, and A/H are given. Eventually the
inner and outer radii of the deformed sector r, and rj, the constant
w and the circumferential principal stretch of arbitrary point in the
sector A can be derived as
Taz)ha)\’zzﬁA, sz)hb)hzzhA, w:AZ(p, wr’

w Q@ w ) A Az
(35)

As a result, the configuration and the distributions of stretches
of the deformed sector are fully determined. Finally, the required
applied axial force Fy and the moment M, about the origin on the
lateral faces 0 = +wA/(2A;) can be determined as

2HL
)»2 AZ

2 Ap —
LZ )»ng dr = MHZLMn,
Ao(A2 = A2)" P

Ty M _
= }"ZL/ Too dr = f Too dr = MHLFN,
Tq

Ty
M, = AZL/ ITge dr =
Tq

(36)

where p is the initial mechanical shear modulus, Fy and My
are dimensionless measures of the axial force and moment, re-
spectively. Note that from Eq. (28) we have the relation 7y =
d(rtyr)/(dr), thus Eq. (36); reads

2HL

fv = 2222

T 2HL
/ 99 dT = W[rbfrr(rb) - raTrr(ra)]’ (37)
b~ “a

which identically equals to zero due to the boundary condition
(31). Hence, only moments are required to bend the slab.

3.2. Small-amplitude wrinkle

We now superimpose a small harmonic inhomogeneous defor-
mation on the underlying deformed configuration of the sector, to
model the onset of wrinkling on the inner curved face.

We start with the components of the incremental displacement
and the incremental electric displacement in the form

U =ui(r.0,2), Dy =Dyoi(r. 6. 2). (38)

Then the incremental displacement gradient reads

au, au, au,

G 1(55 -ue) G

— | dus 1 (3uy Juy
H=| % r(ae +“r) 5z | (39)

duy 1 9u, dug

ar r 90 0z

in the j, ® jg(a, B =1,0,2) basis, and the incompressibility con-

dition Eq. (11) for the incremental motion reads
. ou, 8u9 Buz

From Eq. (10),, we introduce an incremental electric potential qb
and the components of the incremental electric field are
A 19¢ A
- Eog=-=75. a5
ar r a6 0z

Now the electro-elastic moduli tensors Ay, Iy and K, can
be evaluated according to Eq. (8), with non-zero components
listed in Appendix A. Then the components of the incremen-

tal stress and electric fields are expanded as (Wu et al,
2017)

ElOr =- ElOz =- (41)

1 ou
Torr = (Aot + p) 8 -+ Aotz — ( 39 ) +Aon33afzZ
+ToinDigr — P
. ou 1 ( duy ou,
Tope = Aonzzafrr + (Ao2222 + P)? <89 + Ur) +A02233 7= 9z

+T0221Dior — P
ouy 1 Ju
Tozz = Aoti3s 5 — o + Ag2233 = ( 59 TU ) + (Ao3333 + P) 5= 97 -
+To331Djor — P.

8ur

duy .
T0r0 Ao21i2—— ar b4 (Aoi221 + p) = < 30 > + Lo122Dy00+

. ou ou .
Tor; = Aoi313 T; + (Ao1331 + P)TZr + Co133D)q;,

1/ du;, au, .
Toor = Ao2i21 ( 59 ) + (Ao1221 + p)Tf + To122Dy00+

. 10u ou,
Tooz = A2323? TQZ + (Ap2332 + P)T;,

. Jdu Jau :
Tozr = Aozian ETT + (Ao1331 + p)Tz + Lo133Dy0z,

1du,

dug
Toz = Aos232 5= % % + (Aoss +p) ~ 590 (42)
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and

Eor = —?Ti) =Tom % + Dot % (aalg + Ur) + Lo331 % + KonDyor.

Ejpp = —%% = To122 [1 (%Lg - ue) + fiaure} + Koz2Dyos.

Epo; = —% =Toixs (aair + 88%) + KossDioz., (43)

according to Eq. (7).
Finally, the incremental forms of equilibrium Eq. (10); and the incremental Maxwell Eq. (10); reduce to

aTOrr + 1 aTOOr + TOrr - TOGG + aTOzr -0

or r a0 r 9z ~ 7

0Torg | 10Toge . Toor +Torg . 0Tors

or Trae T 1 "oz O

0 TOrz 1 87:092 aTOzz TOrz _

or "7 99 "oz Tr 0 (44)
and

D, 10Dy | Dy,

ar 7o tPor )t =0 45)
respectively.

We assume that the sector is under end thrust at the lateral faces 6 = +wA/(2A;) and z=0,l, while the two surfaces r=rq, 1,
remain traction-free and the applied voltage is taken to be a constant. The boundary conditions for the incremental fields are

g = Togr = Top; =0 at 6 =£wA/(21,).
Uy = Togr = T = 0 at z=0, AL,
TOrr = TOrG = TOrz = ¢ =0 at r= Ta, T'p. (46)

3.3. Stroh formulation

We seek solutions of equations in Section 3.2 in the form (Su et al., 2016b)

u; = Ur(r)cos(nf)cos(kz), uy = Uy (r)sin(nd)cos(kz),

u; = Uy(r)cos(nd)sin(kz), ¢ = D (r)cos(nb)cos(kz),

Torr = S (1r)cos(nf)cos(kz), Torg = Ty (r)sin(nd)cos (kz),

Torz = Zi2(r)cos(nf)sin(kz), Djor = Ar(r)cos(nf)cos(kz), (47)

where n and k are the circumferential and axial wave numbers, respectively. Then from the incremental constitutive equations (42),
(43) and the incremental boundary conditions (46); ,, we have

_ 2Aqm 4qm H mm

WA T a(2-22) A =L

(qm=0,1,2,...), (48)

where the positive integers g and m give the numbers of circumferential and axial wrinkles of the sector, respectively (Destrade et al.,
2009b; Balbi et al., 2015). It should be noticed that they cannot be zero simultaneously.

Then Egs. (40)-(45) that govern the incremental motion of the dielectric sector can be rearranged to yield the following first-order
differential system (Destrade et al., 2009a,b, 2014; Balbi et al., 2015)

d 1

10 = 6nN(r). (49)
where

O =[U: Uy U 1A 1% 15y 15, ] =[U S|, (50)

is the Stroh vector (with U = [Ur U U rAr]T and S = [rErr DI ) CID]T ), G is the so-called Stroh matrix, which has the
following block structure

|16 G
fe ] o

where the four 4 x 4 sub-blocks Gy, G,, G3 and G4 have the following components
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-1 -n —kr 0 0 0 0 0
n(Y1—Tr) Yi2—Trr 0 0 0 1 0 _n Taxn
Gi=| boimw 0 o ol =0 0 L ko |
V13 r . I krylg v13 Koss
Nty n Loz kr Loz
L El e K(:)lzzz2 0 0 0 Y12 Koz 713 Koss 52
[ K11 K12 K13 —(Co11 — To221)
G = K12 K22 K23 —n(To111 — To221)
K13 K23 K33 —kr(Coir1 — Tozat)
| Tomt =Toz21 n(Totn —Foz21)  kr(Tom — Tossn) —Kon
B n(Y12—Trr) kr(yis—tr)
1 - 11312 - ;/313 &
n _ Y-Tr 0 _ntr Lo
Gy = Y12 v12_ Koz . (52)
kr 0 0 0
. 0 0 0 0
Here
2 I?
Yi2 = Aoz — =222, yo =Aoaiar — =222, ya3 = Anosos,
Koz Koz
2 2
Y3 = Aoz — =222, v =Aosiz — 222, y5 = Ao
K033 KO33
r n2  Toss k2r?
g = (Lo " Toss -
Koz Y12 Kosz i3
2 2
£y = — ”72+F0122”72+E+F0133@
Koo K%, viz Koz K&y vis )’
1 2I2
Bz = 5 <A01111 + Ao2222 — 2401122 — 2A01221 + K(;lezzz )
1 2I2
Bz = 5 (AOHH + Ao3333 — 2A01133 — 2A01331 + KOBS)
033
2 2
-1 -1
k1 =2(Y2 — Tr + B12) +n? Y21 — M + k*r? V31 — M s
Y12 Y13
2
kip =n| yi2 + Y21 + 2Bz — 7:; k13 = kr(Aoim + Ao2233 — Aorizz — Aonisz + D),
2
-1
K22 =202 (Y12 — Trr + B12) + Y21 — (V]nyrr) + k21 ys;,
K23 = nkr(Aoi111 + Ao2233 + Aog2332 — Aotz — Aonizs + 2P),
K33 = 2k* 12 (Y13 — Trr + B13) + 1% ya3. (53)
It should be noticed that to derive Egs. (49)-(53), we made use of the connections
Ao1221 + P =Ao1212 — Trrs Ao1331 + P = Ao1313 — Trrs (54)

which result from Eqs. (8); and (9). The derivation of the Stroh formulation is given in Appendix B.
Now the incremental boundary conditions (46); read

S(ra) =S(r,) = 0. (55)
Note that we chose to write the components of 5 in the order presented in Eq. (50), because it will turn out to be the most practical
for those boundary value problems where the electric field is due to a constant voltage applied to the bent faces of the sector. For the
case where the sector is charge-controlled (Keplinger et al., 2010; Dorfmann and Ogden, 2014a; Su et al., 2016a; 2016b) instead of voltage-
controlled, the places of rA and ® must be swapped in 5 for greater efficiency in the scheme. In other words,  and G in Eq. (49) should
be replaced with § and G, respectively, where
- U _
Uy
U;
¢ —
[
T'Zgg

rY,,
rA

with 0 = [Ur U U, dD]T and § = [rErr S TS rAr]T . Then the traction-free boundary conditions at the two surfaces rg,

1y, Eq. (55) should be modified as
$(re) =8(rp) = 0. (57)
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As a result, the method presented in this paper can be easily extended to the case of a charge-controlled sector. Our calculations (not
presented here) show that we then recover the same results as in the literature when the slab is reduced to a half-space (Dorfmann and
Ogden, 2010Db).

3.4. The surface impedance matrix method

The inhomogeneous differential system (49) is stiff numerically, especially for thick slabs. Over the years, several algorithms such as
the compound matrix method (Shmuel and deBotton, 2013) and the state space method (Wu et al., 2017) have been adopted to overcome
the stiffness of this equation. Here the so-called surface impedance matrix method (Destrade et al., 2009a,b, 2014; Balbi et al., 2015) is
employed to build a robust and efficient numerical procedure for obtaining the dispersion equation.

My (r,rq) My(r,1q)

We introduce the 8 x 8 matricant M(r, 1) = [ Ms(rra)  My(rro)
3 Ta 4\l Ta

], which is defined as the matrix such that

n(r) = M(r. ra)n(ra), (58)

with the obvious condition that

M(rq, Ta) = Isxs. (59)
Use of the incremental boundary condition S(rq) =0 gives

S(r) =z(r, ro)U(r), (60)

where z%(r, ry) is the conditional impedance matrix, which is defined as

21, 1q) = M3 (1, 1)) My ' (1, 10). (61)
Substituting Eq. (60) into Eq. (49) gives

%U = %GlU + %Gzzau, %(Z“U) = %G3U + %G4ZGU. (62)
Elimination of U from Eq. (62) yields the following Riccati differential equation

% = %(—z"cl —29Gyz" + G3 + G42%), (63)

with the initial condition

z%(rq,1q) = 0, (64)

which follows from Egs. (59) and (61).
Then we integrate Eq. (63) numerically with the initial condition (64) from r, to r, and tune the bending angle until the following
target condition is satisfied

det z%(ry, 1) =0, (65)
which results from the boundary
S(ry) = 2°(r, 1))U(1) = 0. (66)

The conclusion is that, for a given voltage V, the critical bending angle ¢, can be determined, and so can the critical value of the inner
circumferential stretch A4, which we denote by A..
It follows from Eq. (66) that the ratios of the incremental motion on the outer face of the sector can be determined as

_ Ug(rp)
A
~ Q11Q24Q33 + Q13Q21Q34 + Q14Q230Q51 — Qu1Q230Q34 — Q13Q240Q51 — Q14Q21Q33
T Q12Q23Q34 + Q13Q24Q32 + Q14Q22Q33 — 12Q24Q33 — Q13Q22Q35 — Q14Q23Q32°
Uz(rb)
T Ur(rb)
_ Q11Q22Q34 + Q12Q24Q31 + Q14Q21Q32 — Q11Q24Q32 — Q12Q21 Q34 — Q14022034
T Q12Q23Q34 + Q13Q24Q32 + Q14Q22Q33 — Q12Q24Q33 — Q13Q220Q34 — Q14Q23Q32°
D (rp)
*T U
Q11023032 + Q12Q21033 + Q13Q22Q31 — Q11Q220Q33 — Q12Q23Q31 — Q13021032
T Q12Q23Q34 + Q13Q24Q32 + Q14Q22Q33 — Q12Q23Q31 — Q12Q23Q31 — Q13Q21Q32°

where the shorthand notation Q;; = z?j(rb, re)(i,j=1,2,3,4) is used.

On the other hand, we can also start at the outer surface r = r, and introduce the 8 x 8 matricant M(r,r,) = |: M (r.ry)  Ma(r.7p) ]

M3 (r,rp)  My(r,1p)
such that

n(r) = M(r, ry)n(ry), (68)
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with the obvious condition that
M(ry, 1p) = Igys. (69)

Following the same procedure, we can also obtain a Riccati differential equation for the other conditional impedance matrix 2b(r, 1),

as

dzb 1

=7 (-2"G1 - 2°Go2" + G5 + G,2°). (70)
The corresponding form of Eq. (62); is

d 1 1.,

FU=-GU+ 62U, (71)

With the critical stretch A, obtained by integrating the Riccati differential equation for the z%(r, r;) conditional impedance matrix, we
can now integrate simultaneously Eqs. (70) and (71) from r,, to rq with the following initial conditions

Uy =U@)[1 & & to] . 2(.1) =0, (72)

to determine the full distribution of the incremental field U in the deformed sector and corresponding buckling pattern.
4. Numerical results and discussion
For illustration, we now consider the so-called ideal neo-Hookean dielectric model:
W= %(kz +APAZ A7 -3) + Zlgx—wug, (73)
where ¢ is the permittivity of the solid, which is independent of the deformation.
4.1. Static deformation

In this case Egs. (18),, (33) and (34) reduce to
A (A2 —=22) A 2D, Ap

AN BV Y VT Y P 5 SO R vt U 74
(p 2 H a’*p’rz 0 )\%(A%*A%) )La ( )

where we are using the following non-dimensional measures of voltage and electric vector,

% & _ D()
“HJn T (75)

For given V, @, A, and A/H, Aq, Ay and Dy can be determined from Eq. (74). Then the dimensionless stresses and electric field in the
solid follow from Egs. (27), (29), (30) and (32) as
Trr ()‘2 - )‘3) ()‘2 - )‘127)

Tr(h) = 7 = z =0 _
frr()\.)— /vL - 2)\‘2 ’ T@O()\')_ /'L -

E —E /% = A~12;1Dy. (77)

4.1.1. Effect of the voltage

In Fig. 3 we plot the circumferential stretches of the bent inner and outer surfaces A, and A, versus the bending angle ¢ for different
applied voltages V =0,0.5,0.7, based on Eq. (74). In Fig. 4, we plot the distributions of circumferential stretch A and stress Ty in the
sector and the bending shapes for several given ¢ and V . We can see from Eq. (74) that the length aspect ratio L/H does not affect
the bending deformation of the slab. Here in the calculation the axial constraint and the initial configuration of the slab are fixed as
Az =1,A/H =3, and the non-dimensional measure of the radial coordinate 7 = (r —rq)/(r, — q) is introduced.

It can be seen from Fig. 3 that when there is no applied voltage (V =0 ), the slab bends with A, decreasing and A, increasing from
1. Hence, the inner face of the sector contracts circumferentially while the outer face stretches (Fig. 4a), a result which is independent of
the value of ¢. With the application of voltage, both A, and Aj of a slightly bent sector are larger than 1 and hence, every circumferential
element in the sector is stretched (Fig. 4b). If the bending moments are increased, the bending angle increases, and the inner surface
eventually contracts circumferentially, and the outer surface is stretched at all times (Fig. 4c). Note that for a bent sector, Tyy depends on
7 almost linearly, the transverse stress of the inner part of the sector is always compressive while that of the outer part is always tensile,
separated by a neutral axis corresponding to Tgy =0 .

We learn from Eq. (37) that only mechanical moments are required to drive the bending of the dielectric slab. The effect of the applied
voltage V on the moment M, needed to trigger a specific bending (¢ = 1,2,3 ) of the dielectric slab with A, =1,A/H =3 is presented
in Fig. 5a. We can see clearly that M, decreases as V increases, which suggests that the application of the voltage makes the slab easier
to be bent. Theoretically, as the applied voltage increases, the dielectric slab thins down, making the slab easier to be bent. As a result,
the moment needed for the bending decreases. For a dielectric slab undergoing plane strain deformation, the maximal electric field V
applied cannot exceed the value 1 (Fig. 5b). As the electric field tends to 1, the slab becomes be ultra-thin, and the moment drops to zero
(Fig. 5a).

<l

304 = A2A2 - A2(A2+A2)

222 ’ (76)
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Fig. 4. Bending of dielectric slabs which are three times wider than thick, with no axial compression (A, = 1,A/H = 3 ) and subject to various bending angles and voltage
loadings: (a) ¢ =05,V =0 ; (b) ¢ =0.5,V=0.7 ; (c) ¢ =4,V = 0.7 . The top, middle and bottom rows correspond to the circumferential stretch, circumferential stress
distributions, and bending shapes, respectively.

4.1.2. Effect of the axial compression

Figs. 6-9 illustrate the effect of the axial constraint as measured by the stretch A, on the finite bending of a dielectric slab with
V =0,A/H =3 . We see that compressive (A, <1) and tensile (A, >1) axial loads produce different effects on the bending deformation
(Fig. 6). A compressive loading has a similar effect as a voltage V on the bending: when the slab is bent slightly, every circumferential
element in the sector is stretched (Fig. 7b); as the bending angle ¢ increases to a sufficiently large value, the inner part of the sector
contracts circumferentially, and the outer part is stretched (Fig. 7c). Conversely, for a pre-stretched, slightly bent slab, every circumferential
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Fig. 5. (a) Plots of M, —V for several specific bending angles ¢ = 1,2,3 of a dielectric slab which is three times wider than thick, and no axial compression (A, = 1,A/H =
3); (b) Nonlinear response of a dielectric slab subject to a voltage.
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Fig. 6. Plots of Aq, A, — ¢ for fixed axial compressions A, = 0.8,1,1.4 of dielectric slabs with V. =0,A/H=3 .

element of the solid is contracted (Fig. 8b); then as ¢ increases, A} increases, and eventually, the outer part of the solid will be stretched
again for a sufficiently large ¢ (Fig. 8c). Notice that in both cases, the distribution of circumference stress Tyy depends almost linearly on
7. We can see from Fig. 9 that stretching the slab makes the solid easier to be bent.

4.2. Stability analysis

The corresponding material parameters are obtained by substituting Eq. (73) into Egs. (A.1)-(A.3) as

Aot = Aoiziz = Aoizis = WA T2A;% + D2, Ao2i21 = Aoaazz = Aoazos = A2,
Aos131 = Aosa32 = Aosszs = UASS, Lo = 2T 0122 = 2l 133 = 2Dy,
Kot = Kozz = Koz3 = €. (78)

4.2.1. Pure elastic problem

First, we consider the purely elastic slab (V =0 ) under bending only (A, =1 ), a case which has been previously investigated ex-
perimentally (Gent and Cho, 1999; Roccabianca et al., 2010) and theoretically (Triantafyllidis, 1980; Destrade et al., 2009a,b; Roccabianca
et al., 2010). Fig. 10 exhibits numerical results for the bending instability for different axial mode numbers m =0 -5 of elastic slabs
with A/H =1,3 and 4, and L/H = 10, respectively. The solid buckles when the stretch of the inner surface A, reaches the highest point
of the Ac —q curve. We find that the bending instability occurs with decreasing critical stretch A. as m increases and the buckling
mode with m =0 always occurs first, indicating that only circumferential wrinkles occur at the onset of instability. For instance, a slab
with A/H =1,3,4 buckles in modes g =2,7,10 and m =0 when the circumferential stretch of the inner surface of the sector reaches
Ac = 0.56091, 0.5614, 0.56135 and the bending angle reaches ¢, = 1.43,4.23,5.72, respectively. Notice that the perturbation decays dra-
matically along the radius, and that the displacement on the inner face is several orders of magnitude larger than that on the outer
face.

Fig. 11 reports the critical number of circumferential wrinkles g, the critical stretch A, and the critical bending angle ¢. as functions of
the aspect ratio A/H. For a given A/H, each mode number g corresponds a different value of the critical stretch A and a series of branches
can be obtained by taking g =1, 2,3,... However only the highest value is meaningful, thus the other curves below the highest curve are
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Fig. 7. Purely elastic bending of a dielectric slab which is three times wider than thick (V =0,A/H =3 ) for various bending angles and axial compression ratios: (a)
¢=05i,=1;(b)9=05x,=0.7; (c) ¢ =3,A, =0.7 . The top, middle and bottom rows show the variations through the thickness of the circumferential stretch and of
the stress distributions, and the resulting bending shapes, respectively.

not presented in the A. — A/H plot. We observe that as A/H increases, the mode number g increases, indicating that more wrinkles appear
as instability occurs for a more slender slab. The critical bending angle ¢, increases linearly as A/H increases. For a slab with sufficiently
large width aspect ratio A/H( > 4.46), the structure can be bent into a tube without encountering any instability (Fig. 11b). In the half-space
limit (A/H— 0), the critical stretch is A. = 0.5437, which corresponds to the threshold value of surface instability of a compressed elastic
slab (Biot, 1965; Destrade et al., 2009b). When A/H is small, the critical stretch A. varies significantly as A/H varies. While for a slab with
sufficiently large A/H, A, reaches a horizontal asymptote A.~ 0.5618.

4.2.2. Effect of the voltage

We now consider the effect of the applied voltage V on the bending instability of a dielectric slab. Fig. 12 presents plots of A versus q
for a range of modes m =0 —5 and the corresponding wrinkling shapes when instability occurs for dielectric slabs with A/H =3,L/H =
1.5 and subject to V =0,0.2,0.4,0.6,0.7,0.76 . Here we fix the axial deformation of the bending deformation as a 15% contraction
(Az =0.85 ). For each of the cases (a)-(f) shown in Fig. 12, the buckling mode is (m,q) = (0,7), (0,8), (1,1),(1,1), (1,0) and (1,0),
respectively. The critical stretch A increases as V increases. For the cases where the applied voltage is small, only circumferential wrinkles
occur (m=0,q # 0) when bending buckling happens, and the mode number g increases as the voltage increases (Fig. 12a and b). As the
voltage increases further, both circumferential and axial wrinkles occur simultaneously (m+#0, q#0) at the onset of bending instability
(Fig. 12c and d) and combine to give a 2D pattern. Finally, for dielectric slabs subject to sufficiently large voltage, a slight bending will drive
the instability of the structure and in this case, only axial wrinkling occurs ((m # 0,q =0), see Fig. 12e and f). It should be mentioned
that the maximal number of axial wrinkles is one (m=0,1 ).

We extract the critical bending angle ¢, when the instability occurs and the critical moment M, needed to drive the instability for
the cases presented in Fig. 12, and plot them in Fig. 13 as the applied voltage V changes. It can be seen that both @, and My, decrease
as V increases, indicating that the application of the voltage makes the dielectric slab more susceptible to fail. One may expect that @,
and My will be zero for a critical A, corresponding the critical value of instability of a compressed elastic slab (Dorfmann and Ogden,
2014a; Biot, 1963).

4.2.3. Effect of the axial constraint

Here, we investigate the effect of the axial compression, as measured by the axial stretch ratio A;, on the bending instability of dielectric
slabs. Fig. 14 displays numerical results for the bending instability of dielectric slabs with A/H =3,L/H = 1.5 and subject to V = 0.3 and
Az=1,0.9,0.8,0.75,0.7,0.63, respectively. Fig. 15 presents the corresponding ¢, and M. when buckling occurs. For each of the cases
(a)-(f) shown in Fig. 14, the buckling mode is (m, q) = (0,9), (0,8), (1,1), (1,1), (1,0) and (1,0), respectively. We can see that decreasing
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the axial stretch ratio has a similar effect as increasing the applied voltage V on the bending buckling behavior of dielectric slabs, i.e.,
the critical stretch A. increases as A, decreases, and circumferential wrinkles occur first and eventually only axial wrinkles exist as A,
decreases to a sufficiently small value. Note that when the axial compression is small, the mode number q decreases as A, increases
(Fig. 14a and b), which is different from the case of increasing V (Fig. 12a and b). Due to the competition mechanisms of the effects of V
and A; on the bending instability of the structure, the ¢, My — A, curves are non-monotone. On the one hand, decreasing A, increases
the thickness of the slab and thus decreases the true electric field, which consequently increases the stability of the structure. On the
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ratio A/H of an elastic slab (V = 0 ) under bending only (1, = 1) at the onset of buckling.
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Fig. 13. Effect of the applied voltage V on the critical values of bending angle ¢, and moment M
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other hand, decreasing A, makes the structure easier to fail in the axial direction and has a destabilizing influence on the slab. As a result,
©c and My, increase first and then decrease to zero, as A, decreases (Fig. 15), indicating that the voltage V plays a major role when the
structure is only slightly compressed, while the axial compression A, presents the dominant influence when the structure is dramatically
compressed.

5. Conclusions

We presented a theoretical analysis of the finite bending deformation and the associated bending instability of an incompressible di-
electric slab subject to a combined action of voltage and mechanical moments. We derived the three-dimensional equations governing the
static finite bending deformation and the associated incremental deformation of the slab for a general form of energy function. In partic-
ular, we studied explicit expressions of the radially inhomogeneous biasing fields in the slab for ideal neo-Hookean dielectric materials.
We took the electric loading to be voltage-controlled and so we chose a state vector accordingly to rewrite the incremental governing
equation in the Stroh differential form. We used the surface impedance matrix method to obtain numerically the bending threshold for
the onset of the instability and the wrinkled shape of the shell when bending instability occurs.

We first studied the effects of the applied voltage and axial compression on the finite bending deformation. We showed that the length
aspect ratios of the slab L/H does not affect the bending deformation of the slab. The applied voltage increases the circumferential stretch
in the body so that every circumferential element in a slightly bent slab is stretched. The moments needed to drive the specific bending of
the slab decrease as the voltage increases, indicating that the application of the voltage makes the slab easier to bend. We found that the
compressive axial constraint has a similar effect as the applied voltage, while on the contrary, every circumferential element in a slightly
bent slab, subject to axial pre-stretch, is contracted. As the axial stretch increases, the moments needed to drive a specific bending of the
slab decrease, indicating that the axial pre-stretch makes the slab easier to bend. In any case, the circumferential stretch deforms linearly
along the radial direction and the transverse stress of the inner part of the sector is always compressive while that of the outer part is
always tensile.

We then investigated the combined influences of the applied voltage and axial constraint on the instability of a dielectric slab. We
obtained the critical circumferential stretch on the inner surface of the deformed shell, as well as the wrinkled shape when the bending
instability occurs. We recovered the results of the purely elastic problem to validate our analysis. Theoretically, the application of the
voltage and the axial constraint both play a destabilizing effect, i.e., make the slab more susceptible to wrinkling instability. The two
effects compete with each other, and an increase in the axial compressive loads leads to a decrease in the true electric field in the body.
The applied voltage plays the main role when the constraint is small, while the constraint becomes dominant when the compression is
sufficiently large.

In this article we focused on the formation of small-amplitude wrinkles in a bent and axially compressed dielectric slab. We did not
look at post-buckling behavior or if creases might have preceded wrinkles. This is certainly the case in the in-plane compression of an elastic
half-space, where creases form much earlier (A = 0.65 ) than the wrinkles predicted by the linearised buckling analysis of Biot (A, = 0.54),
i.e. with more than 10% strain difference (Hong et al., 2009). However, recent Finite Element simulations show that in bending, creases
occur only a few percent of strain earlier than wrinkles, and that their number and wavelength can be predicted by the linearized analysis
(Sigaeva et al., 2018). Hence we argue that our analysis is justified as a good approximation for predicting the onset and wavelength of
buckling, although of course a fully multi-physics Finite Element Analysis is required to settle this question.

Moreover, wrinkles have indeed been observed in loaded dielectric elastomers with free sides (e.g. Plante and Dubowsky, 2006; Liu
et al,, 2016).

To create creases in a dielectric membrane, one could glue one side of a slab to a rigid, conducting substrate, as done by Wang and
Zhao (2013), but the corresponding boundary value problem is then different from the one studied here, where both sides were free of
traction.
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Appendix A. Non-zero electro-elastic moduli

Here we use the incremental theory of electro-elasticity to compute the non-zero components of the instantaneous electro-elastic
moduli with respect to the specific deformation gradient (17), as follows (Wu et al., 2017; Dorfmann and Ogden, 2010a)

Aot =272 A2 + A2 (R + 4225D7) + AIDZ (25 + 2925507 |
+2[Qu + AJQa + 242 (Ru2 + 2226D7) + 4D (16 + Q6607 ) |
+AAZ (2 + 425DF) + 447 (12 + 29226D7)
+A702[Q1 + 49, + 8Qs6D] + D} (42215 + 6926) ]}
Aotizz =42 720 4 Quz + A2 Q0 + MAZ[Qu2 + A2Q02 + AZDF (Qis + A2 Qas) | + 222607
+12 [922 + )»5922 + )»3911 + )»392 + )\EDf (28216 + £225) + D\? (912 + QzeDf)]},
Aonizs =41 702 {Quz + A Qo + A2A[Qu2 + A Qa2 + A2D} (15 + A2 Qas) | + 2922607
+22[Qa2 + A°Q22 + A2Qu1 + A2, + A2DF (2Q46 + Qa5) + 214 (2 + Qa6D7) ]}
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Aoiarz =22720;2 {1 + 2Q6D7 + A2[ Q2 + A2DZ(2s5 + A2Q6) | }.
Aoisis =21 72A;2{ Q21 + 2Q26DF + A2[ 2, + AZDF (25 + A29%) |}
Aotan = — 232 + 2X2QD2,  Agizz = —27"2Q, + 2X2QD2,
Aozt =2)7(Q1 + A2Q + Q6D7),  Aoziz = 247 (1 + A2Q2 + Q6D7),
Aozazs =20 [A2Q + 205 + A (A7 Q21 + 447 Q2 + AL + 447 Q20))
20002 (Qu + 222 Q12 + A1 22) |,
Aozz3s =41 720;%[Qaz + AA2 (A1 Q12 + A2Qn + A2Q; + Q22)
A (2 + A2Q) + A% (2429212 + A1 Q) .
Aoxsaz =202 +2A;%Qs, Aoz = —2A%A2Q,  Apsazr = 2A2Q1 + A%,
Aozzzs =217 [ A2 + 2Q2 + AZ(A1Q1 + 40 Q0 + A5Q + 401 Q;)
F20007 (2 + 222 Q12 + A1 Q). (A1)

Tomn =4A~*2;*Dr{ Qi + A2 Q06 + APA2(Qa4 + A2QusD})
AL A7 Q04 + Qo5 + A2 (R4 + 25 + 226D} + 255D7) |
+2Q66D7 + A2 [ 27205 + Qa6 + A2 (15 + 3Qs6D7 +2) ]}
Torzz =21 242Dy [A2A2Qs + (1+ A*A2) ).
Toiss =24 222D [A2A29s + (1 + A2A7) %]
Cogz1 =42 7227 Dr[ A4S (R4 + A2Q04) + A*AZ (Q15 + Q24 + A7)
+Q06 + A2AZ(Q6 + Q25 + A2Q6) |-
Lo3 =4}\_4)~§2Dr[)¥6)~§ (R4 + A2Q04) + A*A7 (15 + Qg + A2Q15)
+Q06 + APAZ (Q16 + Q25 + A*Q6) | (A.2)

Konn =A~*A;*[ 20242 (A2 A28 + Q6 + A*A7 Q)
+4D7 (ABAEQua + 21502 Qs + 2047 Que + 147 Q55 + 20202 Qs + Qe6) |
Kozz =2(S25 + A?Q6 + A7), Koz = 2(Qs5 + A2 + 1,°Q4). (A3)

Appendix B. Derivation of the Stroh formulation

First, rewriting Eq. (40) by using solutions (47) gives
1
Ul = —?(Ur + nUy + krUy). (B.1)

Next, eliminating Dypy from Eqs. (42)4 and using (43), and utilizing Eq. (47), yields

1| n(yn — 1) Vi2 — Tr 1 n Lo
U) =~ Ur+ Up+ — (X)) — — D | B.2
o r|: Y12 ' e ° ]/12( r0) v12 Koaz (B.2)
Similarly, eliminating Dy, from Eqs. (42)s and using (43); and utilizing Eq. (47), yields
1| kr(y1s — @) 1 kr o133
U =-| —"2—U+ —(0Xy) — — D |. B.3
‘ T|: Y13 ' V13( =) Y13 Koss (B3)
Next, we substitute Eqs. (43), 3 and (47) into Eq. (45) and using Eqgs. (B.2) and (B.3) to get the expression for (rA;), as follows
1 ntr Loz n o kr Toi33
rA) = = | §U — —Z — ) + — rZn) + 69 |. B.4
rd =7 |:§1 "y Koz 0 v Ko (") Y13 Koss (rEe) +52 (B4)

These are the first four lines of the Stroh formulation.
Substituting Eqs. (42)q, 2, 6, 8 (43)2, 3 and (47) into Eq. (44); and using Egs. (B.1)-(B.3) results in

1
TZy) = F[KmUr + k12U + k13U; — (Dotin — Doz )T Ay + 120

(Y2 —Tr) S, — kr(y13 — Trr) I+ & q)i|_ (B.5)
Y12 Y13
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Similarly, substituting Eqgs. (42)1 3 4 6,9, (43); and (47) into
Eq. (44), and using Eqgs. (B.1) and (B.2) gives

1
(r¥,) = F[KuUr + k22U + k23U, — (o — Toza1)T A,

Nty Lotz CIJ]

(S, - Y2 (B.6)
Y12

Y12 Koz

Then substituting Eqs. (42), 3,7 and (47) into Eq. (44)3; and us-
ing Eq. (B.1), we obtain

1
(rzy) = F[KBUr + k23Ug + k33U — kr(Toim — Tosz)rAr
+kr(rZ)]. (B.7)
Finally, from Egs. (43); and (47) and using Eq. (B.1), we have

1
' = F[(Fom = Lo221)Ur +n(Tot11 — Foza1)Uyp

+kr(To1n1 — Coaz)Uz — Konr A (B.8)

Now we can write Egs. (B.1)-(B.8) in the Stroh matrix form, as
presented in Eq. (49).
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