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Influence of Initial Residual Stress 
on Growth and Pattern Creation for 
a Layered Aorta
Yangkun Du1,5, Chaofeng Lü2,3, Michel Destrade1,5 & Weiqiu Chen  1,3,4

Residual stress is ubiquitous and indispensable in most biological and artificial materials, where it 
sustains and optimizes many biological and functional mechanisms. The theory of volume growth, 
starting from a stress-free initial state, is widely used to explain the creation and evolution of growth-
induced residual stress and the resulting changes in shape, and to model how growing bio-tissues 
such as arteries and solid tumors develop a strategy of pattern creation according to geometrical and 
material parameters. This modelling provides promising avenues for designing and directing some 
appropriate morphology of a given tissue or organ and achieve some targeted biomedical function. 
In this paper, we rely on a modified, augmented theory to reveal how we can obtain growth-induced 
residual stress and pattern evolution of a layered artery by starting from an existing, non-zero initial 
residual stress state. We use experimentally determined residual stress distributions of aged bi-layered 
human aortas and quantify their influence by a magnitude factor. Our results show that initial residual 
stress has a more significant impact on residual stress accumulation and the subsequent evolution of 
patterns than geometry and material parameters. Additionally, we provide an essential explanation for 
growth-induced patterns driven by differential growth coupled to an initial residual stress. Finally, we 
show that initial residual stress is a readily available way to control growth-induced pattern creation for 
tissues and thus may provide a promising inspiration for biomedical engineering.

Many bio-tissues, such as arteries, heart, brain, intestine and some tumors, are under significant levels of residual 
stresses in vivo and also once unloaded1–7. Residual stresses are used for maintaining a self-balanced state, by 
transferring physical signals and regulating some specific bio-functions8–11. It is fair to say that healthy biological 
performances rely heavily on appropriate levels of residual stress. Hence, a greater understanding of the role 
played by residual stress can lead to better design of mechanical, electrical, chemical, biological and internal 
environments for living organisms.

In biology, residual stress is widely accepted as the result of growth and remodelling processes or of other, 
more involved bio-interactions. Physically, by referring to the multiplicative decomposition (MD) method of 
plasticity theory, and by decomposing the overall growth process into two separate parts, Rodriguez et al.12 were 
able to simulate the growth process and to explain growth-induced residual stress. The former step refers to 
the mass accumulation and incompatibility creation processes within two stress-free states called unconstrained 
growth; the later step refers to residual stress creation and compatibility restoration processes called elastic defor-
mation. This MD model illuminates many related mathematical and mechanical studies on the growth of artery, 
brain, intestine, etc.5,13–17. Moreover, the influence of growth factors, including differential growth extent, volume 
change rate, and/or growth velocity, on residual stress distribution, pattern creation and evolution has also been 
analysed with the MD model5,18–20.

Nonetheless, there still remain some limitations for this model due to its assumption that both the initial con-
figuration and the natural configuration (or virtual configuration21) remain stress-free states during the uncon-
strained growth process. As discussed by Johnson et al.21, for residually stressed materials the stress-free state is 
an entirely discrete state made of a collection of nearly infinitesimal volumes, which is unattainable in practice 
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for bio-tissues. As shown by Fig. 1(A,B), the residual stress in biological tissues can be released only partially by 
cutting them in different directions. A complete release of residual stress would require an infinite number of cuts.

Similarly, some investigations on stress-dependent or strain-dependent growth law cannot be set up properly 
without using the actual residual stress. By dividing the total growth deformation into many small steps that are 
further decomposed by the MD model, Goriely and Ben Amar22 proposed an incremental, cumulative, and con-
tinuous growth law, allowing some growth steps to develop from a residually stressed state. With the exception of 
the very first step, every step grows from a residually stressed state, which provides a way to analyze the influence 
of residual stress on the growth process. However, the residual stress in any accumulative growth step stems from 
the previous growth step; most importantly, it is still necessary to assume an initial residual stress-free state in the 
first step, something which, again, is very difficult to prescribe and measure in real biological tissues.

It follows that the MD growth model must be modified to account for the existing initial residual stresses 
found in living, growing continuum tissues, which result from complicated growth and remodelling processes or 
other bio-interactions6,23.

Hence, taking the initial state to be an arbitrary residual stress state and building on the residual stress theory 
of Hoger et al.21,24–26, we recently proposed27 a modified multiplicative decomposition growth (MMDG) model. 
In this paper we set out to show the influence of initial residual stress on growth-induced residual stress and the 
following pattern creation by focusing on a scenario modeling a three-dimensional, layered, initially stressed, 
growing aorta.

We adopt some existing experimental and theoretical results of aortic residual stress distributions for our 
initial residual stress, and discuss its influence by way of a magnitude factor. We compute the distributions of 
growth-induced residual stress and the geometrical changes of the aorta starting from different initial residual 
stress states. Based on a subsequent stability analysis for the growing aorta with initial residual stress, we obtain 
the critical wrinkling solution using linear incremental theory and surface impedance methods. We investigate 
the influence of the initial residual stress level and of the differential growth extent on pattern development for the 
layered aorta and provide sound explanations for their effect on pattern creation.

Finally, we emphasise that our results may provide an effective strategy to obtain targeted patterns by con-
trolling the initial residual stress instead of the differential growth or swelling extent19,20. Hence by going beyond 
bio-tissue growth, this work can also provide inspiration for industrial manufacturing, nano-fabrication, or 
self-assembly of soft solids which display behaviors similar to growth or swelling28–32.

MMDG Framework and Basic Equations
Based on the concept of multiplicative decomposition of the total growth process, the overall growth process 
for an initially stressed material is also decomposed into separate parts. As shown in Fig. 2, our innovation is to 
introduce an initial elastic deformation F0 for releasing the initial residual stress to a virtual stress-free configu-
ration. Thereafter, the pure growth deformation Fg can happen between two virtual stress-free and incompatible 
configurations. Finally, a pure elastic deformation Fe is induced when the tissue restores the compatibility of the 
bio-tissue after growth, which is the direct source of the associated residual stress.

According to this new description of the growth process, the total growth deformation is decomposed as

= .F F F F (1)e g 0

Here we assume that the material in the virtual stress-free state is a natural material following the constitu-
tive equation of an incompressible neo-Hookean solid, also adhering to the initial stress symmetry condition26 

Figure 1. (A) Cutting radially through a slice of Irish Ash tree releases what were clearly high levels of residual 
stresses in the circumferential and radial directions; (B) Cutting an axial slab of fresh carrot along the dashed 
lines reveals that the outer layers (1 and 4) were almost stress-free whilst the core layers (2 and 3) were subjected 
to large inhomogeneous axial and radial residual stresses; (C) Layer-specific structure of a cut human aorta ring 
(from Holzapfel et al.1), revealed once it is unloaded from blood pressure and from axial and radial residual 
stresses: the circumferential residual stress causes a consequent contraction in the unloaded state, leading to 
buckling and even delimitation on the inner surface.
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although other models could equally have been chosen, e.g.25,33–35. Hence, from Eq. (1) follows the constitutive 
equation for the Cauchy stress σ of growing bio-tissues with initial residual stress τ as

σ τ= + −− F F FF IJ p p( ) , (2)g
T T2/3

0

where p, p0 are the Lagrange multipliers in the current and reference configurations, respectively. Here we assume 
isotropic growth, so that = =F IJ g g gdiag{ , , }g g

k k k1/3 , where = FJ detg g  is the volume change ratio. The initial 
residual stress τ and the Cauchy stress σ satisfy the equilibrium equations and boundary conditions

τ τ σ σ= = = =N n0 0 0Div 0, , div , , (3)

where N and n are the normal vectors to the surfaces in the reference and current configurations, respectively.

A Growing Aorta with An Experimentally-Determined Initial Residual Stress Field
Layered tubular tissues are the focus of this paper, as they are common in the body, e.g. artery, airway, intes-
tine, etc. They are all known to possess a high degree of residual stress, as shown experimentally by cuts. It is 
also known that their bio-functions depend significantly on their residual stress levels and their morphology. 
Figure 1(C) shows a ring of an aged human aorta, which can be modelled as a bi-layered tube according to 
Holzapfel and collaborators1,2.

Here we follow their model and take the aorta as a bi-layer, by combining the intima and the media into one 
inner layer and having the adventitia as the outer layer in a three-dimensional Euclidean space. The reference 
configuration with initial residual stress is associated with the cylindrical coordinates ΘR Z( , , ), and the current 
configuration with a new residual stress state is associated with the coordinates (r, θ, z).

Holzapfel and collaborators1,2 determined the distribution of residual stress in aged human aortas from meas-
urements of the circumferential opening angles and axial bending angles for each layer, see Fig. 3(A) for the 
protocol. We reproduced their results (details not shown here) to get τ in non-dimensional form, see Fig. 3(B) 
(and compare with the dimensional version2). From here on, we multiply this distribution by a factor α to intro-
duce a magnitude factor of the initial residual stress and clearly illustrate its effects: α = 0 corresponds to the 
stress-free state, α = 1 corresponds to the initial stress of Holzapfel and collaborators1,2. We take their shear 
moduli μ = .34 4 kPain  for the inner layer and μ = .17 3 kPaad  for the adventitia layer, respectively. In addition, 
for convenience and better display of the results, we scale down the dimensions of the bi-layered aorta by a factor 
10, resulting in the following geometry: = .R 0 5911 mmi , = .R 0 6724 mms , = .R 0 7504 mmo , for the inner, 
interface, and outer radii, respectively.

The radial stress is continuous across the aortic thickness and remains compressive throughout, while the 
circumferential and axial stresses are discontinuous at the interface between the layers. The circumferential stress 
changes from compressive on the inner surface of the intima to tensile at the interface, and remains tensile in the 
adventitial layer. The axial stress is compressive in the inner layer and tensile in the adventitial layer. The axial 
stress has the largest magnitude, and the circumferential stress is also consequent; the radial stress is almost neg-
ligible in comparison, see Fig. 3(B).

According to the above bi-layered modeling, we now impose the constrained growth deformation (overall 
growth deformation) gradient tensors in the residually stressed inner and adventitia layers by prescribing 

Figure 2. Modeling of the whole process of growing a bi-layered artery with initial residual stress. Here the 
orange (inner) part is made of the combination of the intima and media layers, and the red (outer) part is the 
adventitia layer.
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=F dr R r Rdiag( /d , / , 1)k k k k k , where k = in, ad denotes the corresponding quantities in the inner layer and adven-
titia, respectively. Then, based on Eq. (2), we compute the following non-zero Cauchy stress components in the 
current state,
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where pk
0 , pk are yet undetermined variables: pk depends on the boundary conditions in the current configuration, 

and pk
0  is determined from the incompressibility condition for the natural materials,
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Now that we have the distribution of the initial residual stress, pk
0  is found in terms of τ k and shear moduli μk 
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k , and τI1, k, τI2, k, τI3, k are the principal invariants of the initial residual stress tensor. Then, from the 

incompressibility condition we find that
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0 . Now the Cauchy stress profile 
is determined by combining Eqs (6 and 7) and the continuity condition σ σ=(1) (0)rr

in
rr
ad  at the interface.

Figure 4(A) shows the transmural stress distributions in the aorta. Here the growth-induced residual stress 
follows from growth factors = .J 1, 1 5, 2g

in  in the inner layer, =J 1g
ad  in adventitia layer, and different initial 

residual stress magnitudes α = 1 (same as Holzapfel and collaborators1,2) and α = 2 (twice their level). We see 
that the magnitude of the residual stress components increases with increasing growth volume in the inner layer. 
Moreover, the changes of residual stresses due to growth are very similar between the two different initial residual 
stress levels α = 1 and α = 2, which demonstrates that the level of self-balanced initial residual stress does not 
affect the accumulation law of growth-induced residual stress. However, owing to the superposition effect of ini-
tial residual stress and growth-induced residual stress, there will be a significant difference in the total residual 
stress.

Figure 3. (A) Experimental protocol for measuring the three-dimensional layer-specific residual stress 
distribution of a human aorta (from Holzapfel et al.1); (B) The resulting non-dimensional transmural 
distributions of initial residual stresses in a bi-layered aged human aorta. In this paper, they are magnified by a 
factor α > 0.
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Figure 4(B) shows the changes in radii and thicknesses of this bi-layered aorta with increasing growth of the 
inner layer ( . ≤ ≤ .J1 0 5 0g

in ) and different initial residual stress levels (α = 1, 2). All the radii and the ratio of the 
inner layer’s thickness to the adventitia’s thickness −

−
r r
r r

s i

o s
 are increasing with the isotropic growth of the inner layer, 

which is expected due to the increasing volume of the inner layer. Moreover, the magnitude of the initial residual 
stress displays no effects on the thickness ratio of inner layer to adventitia −

−
r r
r r

s i

o s
 but has some slight impact on the 

growth process by the little difference of the absolute radii. This difference could also play a role in creating wrin-
kles and patterns, see the next section.

We expect that increasing compressible circumferential stress and axial stress on the inner surface eventually 
induces a buckling of the surface and creates wrinkles or folds, a phenomenon that is commonly found in most 
tubular tissues. However, we see from Fig. 4 that the circumferential tensile stress in the inner layer (intima and 
media) and the tensile axial stress in the outer layer (adventitia) are increased, which could have either opposite 
effects on instability or help the tissues keep stable.

Based on the MD growth model, Ciarletta et al.20 have shown that geometrical dimensions and stiffness con-
trast between the layers play a significant role in growth-induced pattern selection for tubular tissues. The results 
above have demonstrated the influence of the initial residual stress on growth-induced residual stress accumula-
tion and on geometry changes. It follows that the initial residual stress must have a certain impact on the subse-
quent pattern creation, and we now turn to wrinkling analysis to determine its exact influence.

Directional Pattern Creation by initial Residual Stress and Differential Growth
Morphogenesis and pattern formation are closely related to several specific bio-functions. It is thus imperative to 
study the relationships between growth, initial stress, change in shape and eventually, pattern selection.

Some pioneering works studied pattern selection for tubular tissues, where the tubular organ grows from a 
stress-free initial state. Hence Ciarletta et al.20 showed that increasing the thickness or stiffness ratio between the 
outer and inner tubular layers creates fewer wrinkles and folds in the circumferential direction but more wrinkles 
in the axial direction, thus providing an insight into bio-medical engineering applications to achieve directional 
control or selection of growth-induced pattern creation. Here by setting α = 0, we expect to recover their results. 
Our innovation is a proposal to directionally control or select patterns by initial residual stress distribution 
(α ≠ 0), instead of altering the geometry or elasticity of the tissues.

We describe the wrinkles by a three-dimensional incremental field θ θ θ= + +θ
x e e eu r z v r z w r z( , , ) ( , , ) ( , , )r z, 

(and p, the increment of pk), and seek solutions in the neighbourhood of the large deformation which have sinusoidal 
variations with θ and z, and can thus possibly form 2D-patterns. Hence we take

θ κ θ κ= =u p U r Q r m z v w V r W r m z[ , ] [ ( ), ( )]cos( )cos( ), [ , ] [ ( ), ( )] sin( )cos( ), (8)

where m and κ π= n2 / are the circumferential and longitudinal wave numbers, respectively ( is the current 
length of the tube). In other words, m and n are the numbers of circumferential and axial wrinkles, respectively. 
Then the amplitude functions U, V, W, Q are determined by solving numerically the incremental equilibrium 
equations and boundary conditions. This task is best achieved by using the Stroh formulation, which we recall in 
the appendix. Then, by iterating over the wave numbers m and k, we eventually get the critical value of each case 
which relates to the growth-induced pattern creation.

First we need to evaluate the critical level of initial residual stress signalling when the aorta is unstable in its 
reference configuration before any differential growth takes place (for other examples of this situation, see23,36,37). 
Here the initial residual stress is based on experimental data and we quantify its influence by the magnitude factor 

Figure 4. (A) Transmural distribution of growth-induced residual stress components in a bi-layered aorta 
when the inner layer grows with different growth factors = .J 1, 1 5, 2g

in , in the presence of an initial residual 
stress found in an aged human aorta1,2, with magnitudes α = 1 and α = 2; (B) Changes in radii and thicknesses 
of the bi-layered aorta with increasing inner layer growth and different initial residual stress magnitudes α = 1 
and α = 2.
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α. Since there are no wrinkling patterns of note in an aged human aorta, we must check that the initial residual 
state of Holzapfel et al.1,2 at α = .1 0 is in the stability range for α. Figure 5(A) displays how the critical magnitude 
value αcr relates to the possible wrinkling modes, with number of circumferential wrinkles = …m 0, 1, , 4 and 
number of axial wrinkles = …n 1, 2, , 6. The figure shows that the smallest αcr for any given number of axial 
wrinkles n occurs when there are no circumferential wrinkles ( =m 0): hence based only on an increase of initial 
residual stress (and no growth), the bi-layered aorta would buckle in the axial direction. Moreover, we also find 
the minimal critical value α = .min( ) 2 343cr , happening with =m 0, =n 5. It means that the surfaces of the ini-
tially residually stressed aorta (at α = .1 0) are smooth and free of wrinkles according to this specific modeling, in 
line with experimental observation.

From now on we limit the span of magnitude α for the initial residual stress to be less than min(αcr), to avoid 
wrinkles in the initial configuration. Figure 5(B) then shows the influence of α on growth-induced pattern crea-
tion. As α increases toward min(αcr), the amount of differential growth (volume accumulation in the inner layer) 
decreases, tending to 1 (no growth) eventually, as expected. In that limit we recover =m 0cr , =n 5cr  of Fig. 5(A).

The theoretical and numerical analysis in the appendix reveals that critical pattern modes strongly depend on both 
the magnitude α of the initial residual stress and the subsequent differential growth, rather than only on the latter as in 
previous studies. Figure 5 shows that growth-induced wrinkle creation is significantly altered by changing slightly the 
magnitude of initial residual stress and then letting the aorta grow at a constant rate. With no growth ( =J 0g

in ), the 
initially stressed aorta can only wrinkle axially. With no initial residual stress (α = 0), differential growth can only lead 
to a = =m n 1 pattern. By combining both effects, we can see circumferential and axial wrinkles arise and add con-
structively to form a further 2D pattern with =m 2, =n 1, see Fig. 6(A) for examples. Figure 6(B) shows a comparison 
of the cross-section areas of the inner volume between an atherosclerotic and a healthy aorta38, which is qualitatively 
consistent with the conclusion drawn from Fig. 6(A) when the initial residual stress gets bigger. So our results may 
provide another possible explanation of physical pathology for atherosclerosis.

Concluding Remarks
We demonstrate the influence of initial residual stress on the growth and pattern creation of layered aortas. A 
modified multiplicative decomposition growth (MMDG) framework is employed to incorporate and consider 
initial residual stress when we simulate the growth process theoretically. We highlight the differences in residual 
stress accumulation and in geometrical changes due to the presence of initial residual stress. We also implement a 
linearized stability analysis to unveil pattern creation at critical levels of growth and initial stress.

As a conclusion, we point out that understanding the effect of the initial residual stress provides an alternative 
way to select objective patterns or to control some bio-functions via morphological change. This may also present 
an inspiring insight for directional bionic self-assembly or robot manufacturing by initial residual stress.

Method
We did not conduct ourselves the experiments on human aortas reported here. They were conducted by the 
authors of reference1 in 2007, and we are simply reporting some of their findings and using them as a base to 
derive some of our results. The use of autopsy material from human subjects in reference1 was approved in 2007 
by the Ethics Committee, Medical University Graz, Austria, see details in reference1.

Appendix: Wrinkling Analysis
Here, we use an infinitesimal elastic deformation χ′ as a perturbation of the large deformation solution in the 
current configuration. The corresponding incremental displacement gradients F  (with respect to the reference 
configuration) and FI (with respect to the current configuration) are related as: = F F FI . By assuming that the 
incremental deformation is infinitesimal and transient, and that the corresponding growth process is independent 
of the stress and strain fields, we have the relationship: = F F Fe I e for the pure growth gradient.

Instability before
Growth

Instability 
before
Growth

Figure 5. (A) Computation of the critical magnitude αcr of the initial residual stress in the aorta for patterns 
with m circumferential wrinkles and n axial wrinkles; (B) Influence of the magnitude of the initial residual 
stress (tracked by α) on inner layer growth-induced (tracked by Jg

in) pattern creation (circles: number of 
circumferential wrinkles, dashes: number of axial wrinkles).
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With the incremental displacement field θ θ θ= + +θ
x e e eu r z v r z w r z( , , ) ( , , ) ( , , )r z, we find the incre-

mental displacement gradient tensor as
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Using the forms (8) for the incremental fields and the corresponding form of the incremental nominal stress 
in push-forward form

θ θ κ θ θ κ

θ θ κ

= Σ = Σ

= Σ .
θ θ

 



S r z r m z S r z r m z
S r z r m z

( , , ) ( )cos( )cos( ), ( , , ) ( ) sin( )cos( ),
( , , ) ( )cos( )sin( ) (13)

Irr rr Ir r

Irz rz

we are able to re-organize the governing equations in the Stroh form as
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Figure 6. (A) Typical wrinkle creations induced by growth of the inner layer ( >J 0g
in ) starting from certain 

initial residual stresses (as tracked by α). When the numbers of circumferential (m) and axial (n) wrinkles are 
both non-zero, a 2D-pattern emerges, as in the first two examples here. (B) Cross-sectional area of the inner 
volume of an atherosclerotic human coronary artery (left) and healthy (right) artery model derived from 
laboratory μCT measurements (from Holme et al.38).
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To solve these equations numerically, subject to the appropriate incremental boundary conditions, we use the 
surface impedance method, see details elsewhere39–41.
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