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Organoids are prototypes of human organs derived from cultured human stem cells. They provide a reliable
and accurate experimental model to study the physical mechanisms underlying the early developmental stages of
human organs and, in particular, the early morphogenesis of the cortex. Here we propose a mathematical model
to elucidate the role played by two mechanisms which have been experimentally proven to be crucial in shaping
human brain organoids: the contraction of the inner core of the organoid and the microstructural remodeling of
its outer cortex. Our results show that both mechanisms are crucial for the final shape of the organoid and that
perturbing those mechanisms can lead to pathological morphologies which are reminiscent of those associated
with lissencephaly (smooth brain).
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I. INTRODUCTION20

The characteristic convoluted shape of the human brain21

was first reported in the Edwin Smith papyrus, an Egyptian22

manuscript dated 1700BC that compares brain convolutions23

to the corrugations or wrinkles found in molten metal [1]. The24

description, development, and function of these convolutions25

have also been major topics of research since the early 1800s26

[2].27

The visible upper part of the convolutions are called gyri28

and their deep groves are referred to as sulci. Geometrically,29

the convolutions increase the surface area of the brain for30

a given volume. From a functional point of view, it is be-31

lieved that they have the strategic functions of increasing32

the number of neuronal bodies located in the cortex and of33

facilitating the connections between neurons and hence re-34

ducing the traveling time of electric signals between different35

regions.36

Although different explanations have been proposed, the37

mechanisms behind gyrification are not fully understood. It38

is now accepted that intrinsic mechanical forces, rather than39

external constraints, are responsible for the emergence of40

folding in the human brain [3]. Recent observational studies41

[4,5] further support the role of the rapid tangential expansion42

of the cortex during development as the primary driver for43

folding [2,6–9].44

At the simplest physical level, the onset of folding can45

be understood as an initial build up of elastic energy in the46

compressed upper cortex and its partial release by a wrin-47

kling deformation of the film and substrate. Experimentally,48

this instability can be observed in the constrained polymeric49

swelling of a circular shell bounded to an elastic disk which50

triggers the same type of wrinkling pattern [10–14]. Simi-51

lar experiments performed on a two-layered brain prototype52

made of polymeric gels with differential swelling properties53

reproduce folds similar to the gyri and sulci of a real brain54

[15].55

Yet the human brain is too complex to be used as an exper- 56

imental platform to unravel the detailed cellular mechanisms 57

leading to folding. An alternative approach is to use human 58

brain organoids. 59

Brain organoids are self-organized and collective structures 60

produced in vitro from the culturing of human stem cells that 61

mimic the early development of the human brain. In particular, 62

when cultured in a mostly flat geometry, these organoids de- 63

velop wrinkling patterns as shown recently by Karzbrun et al. 64

[16] (Fig. 1). Moreover, these authors identified two possible 65

mechanisms for surface folding during cortical development: 66

the contraction of the organoid lumen and the nuclei motion of 67

neuronal progenitor cells within the cortical layer–interkinetic 68

nuclear migration (INM) [17,18]. 69

The cortex is populated by progenitor cells (that will later 70

become neurons) radially oriented across the layer. Their 71

nuclei move up and down across the cells following the cell 72

cycle: first apical-ward (toward the lumen) and then basalward 73

(toward the outer surface of the cortex). Karzbrun et al. [16] 74

found that the nuclei accumulate in the basal zone of the 75

cortex. This accumulation induces a swelling in proximity 76

of the outer surface and causes the onset of the wrinkling. 77

Computer simulations and physical arguments were proposed 78

but without fully integrating the remodeling and contraction 79

processes. Alternative models were proposed in Refs. [19,20]. 80

Different morphologies can be obtained by varying these 81

two effects. The key problem is then to develop a physical 82

model to understand the relative role of each effect in creating 83

folding patterns in brain organoids. Here we use morphoelas- 84

ticity [21], the theory of growing and remodeling continua, to 85

model brain organoids and explore various parameter regimes. 86

II. THE MODEL 87

The organoid is modeled as a two-dimensional (2D) con- 88

tinuum morphoelastic structure made of an inner disk, the 89

lumen, which serves as the core of the organoid, and a 90
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FIG. 1. Left: Morphology of a growing human brain organoid
(adapted from Ref. [16], scale bar is 100 μm). Right: A two-
dimensional morphoelastic model. The black circles represent the
nuclei that move up and down radially while the lumen can contract
in the hoop direction.

surrounding ring, the cortex. We introduce a cylindrical co-91

ordinate system so that a material point at position X ∈ R2
92

with components (R,�) in the initial configuration B0 is at93

position x ∈ R2 with components (r, θ ) in the final, deformed,94

configuration B. The deformation x = x(X) from B0 to B95

defines the associated deformation gradient F = ∂x/∂X.96

To model the contraction of the lumen (shrinking) and the97

remodeling of the cortex, we use the multiplicative decom-98

position of the deformation gradient. Hence F is split into99

the product of a tensor G, describing the natural growth or100

remodeling of the tissue and introducing a virtual intermediate101

incompatible state, and of an elastic deformation tensor A,102

restoring the compatibility of the structure, while possibly103

introducing residual stresses [21].104

Specifically, the lumen undergoes a uniform contraction105

that results in an isotropic shrinking in the plane, while106

microstructural changes occur at constant volume within the107

cortex due to the radial motion of cell bodies. The tensor G108

for the lumen and the cortex is109

GL = diag(γL, γL ) and GC = diag(γC, 1/γC ), (1)

respectively, where γL < 1 is a measure of the volumetric110

contraction of the lumen and γC is the remodeling stretch111

associated with microstructural changes in the cortex. Experi-112

mentally, γL can be assessed by a continuous measurement of113

the volume and γC by following the motion of the nuclei in114

the cortex.115

Figure 2(a) illustrates the deformation resulting from the116

contraction of the lumen and Fig. 2(b) shows how a slice of117

the organoid deforms when remodeling occurs in the cortex.118

This form of GC captures the observed back and forth motion119

of the nuclei of neuron progenitor cells, because it generates120

inward or outward forces within the cortex, as we show later.121

Note that the multiplicative decomposition of the deforma-122

tion gradient has been extensively employed within the the-123

ory of morphoelasticity to model successfully morphogenetic124

processes in biological soft tissues such as pattern formation125

in tubular organs and spherical growth [10,22–25]. In those126

models, the morphological transitions were associated with127

the onset of an elastic instability generated by differential128

growth between different tissue layers. The novelty here is129
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FIG. 2. Schematic illustration of (a) the contraction of the lumen
and (b) the remodeling of the cortex (small dots represent nuclei).

that we elucidate the role played by two distinct biological 130

processes in shaping the brain: on the one hand, the contractile 131

shrinking of the lumen and, on the other hand, the internal 132

remodeling of the cortex. 133

Both the lumen and the cortex are assumed incompressible 134

and a simple base solution for the deformation maintaining 135

the circular symmetry is 136

r = γLR, θ = � for R ∈ [0, Rm)

r =
√

R2 + a, θ = � for R ∈ [Rm, R0], (2)

where a=r2
m−R2

m is the unique unknown parameter (to 137

be specified from the mechanical equilibrium) and Rm, R0 138

(rm, r0) are the interface and outer radii in the undeformed 139

(deformed) configuration, respectively. The initial geometry 140

of the structure is defined by the nondimensional aspect ratio 141

H =R0/Rm. 142

We assume that both the lumen and the cortex follow 143

a hyperelastic, isotropic, and neo-Hookean behavior so that 144

each tissue has a strain energy density in the form WN = 145

μN [tr(AN AT
N ) − 3]/2 (N = L,C), where μL and μC are the 146

shear moduli of the lumen and cortex, respectively. The 147

Cauchy stress for each tissue is then σN = μN AN AT
N − pN I, 148

where pN are the Lagrange multipliers introduced by the 149

constraint of incompressibility and I is the identity tensor. 150

The elastic equilibrium problem is given by: 151

d

dr
σNrr (r) + 1

r
[σNrr (r) − σNθθ (r)] = 0, N = L,C, (3)

with boundary and continuity conditions 152

σCrr (r0) = 0, and σLrr (rm) = σCrr (rm). (4)
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The solution to (A1) with (4) is153

σCrr (r) =
∫ r0

r
μ

BCrr (r) − BCθθ (r)

r
dr,

σCθθ (r) = μ[BCθθ (r) − BCrr (r)] + σCrr (r),

σLrr (r) = σLrr (rm), σLθθ (r) = σLθθ (rm). (5)

This solution shows that the Cauchy stress is constant154

within the lumen because the deformation is homogeneous155

there (details given in Appendix A). The hoop stress σCθθ is156

negative within the cortex, indicating that the outer layer is157

under circumferential compression.158

We expect that for some critical values of the parameters,159

the organoid will buckle to release the build-up of com-160

pressive residual stress in the cortex. Further, when γC <1161

a positive radial stress is generated and the force gradient162

favors the outward nuclei motion. When γC >1 the radial163

stress component is negative and contributes to pushing the164

nuclei inwardly, according to the observed cyclic outward or165

inward nuclear motion within the cortex.166

Next we study the stability of the symmetric solution167

in (2) and (A3). We perturb the current position vector x168

with components in (2) by superposing an incremental [26]169

deformation δx. The perturbed position vector is x̃N =xN +170

εδxN (N = L,C), where ε is small, and the associated elas-171

tic deformation gradient is ÃN = AN + ε�N AN , where �N =172

∂δxN/∂xN is the incremental displacement gradient. Accord-173

ingly, we define the perturbed stress σ̃N =σN +εδσN where:174

175

δσN =AN :�T
N + pNδFN − δpN I (6)

is the push-forward of the incremental nominal stress. Here176

AN =AN (∂2WN/∂A2
N )AN is the fourth-order tensor of the177

instantaneous elastic moduli and δpN is the increment of the178

Lagrange multiplier. Note that AL is constant because the de-179

formation is homogenous within the lumen. The incremental180

problem then amounts to solving181

div δσN = 0 and tr �N =0, N = {L,C} (7)

the latter being the incremental incompressibility condition.182

We seek a wrinkling solution of the form:183

{δrN , δpN } = {UN (r), PN (r)} cos(m θ )

δθN = VN (r) sin(m θ ), (8)

where δrN , δθN are the components of the incremental dis-184

placement δxN and m is the wave number of the perturbation.185

To tackle the incremental problem (7), which is a second-186

order linear system of three partial differential equations187

with boundary conditions, we transform it into a first-order188

linear system of four ordinary differential equations (ODEs)189

with initial conditions. From (7) and (8) we find that the190

incremental stress components have the forms: (δσN )rr =191

	Nrr (r) cos(m θ ) and (δσN )rθ =	Nrθ (r) sin(m θ ) and we192

rewrite (7) as193

d

dr
ηN (r) = 1

r
MN (r)ηN (r), N = {L,C}, (9)

where ηN (r)={UN (r), r�N (r)}T and the 4 × 4 MN is the so-194

called Stroh matrix [27–30]. Note that (9) is a system of ODEs195

with variable coefficients.196
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FIG. 3. Critical instability threshold γ cr
C and wave number mcr

against the initial aspect ratio H =R0/Rm at varying stiffness ratios
μC/μL ={5, 10, 20, 30, 40} with fixed γL = 1 [(a) and (b)] and at
varying γL ={0.91, 0.93, 0.95, 0.98, 1} with fixed μ = 10 [(c) and
(d)].

In the lumen, because ML has constant components, we 197

have: 198

ηL(r) = c1rm−1η(1)(r) + c2rm+1η(2)(r), (10)

where m−1 and m+1 are the eigenvalues of ML and η(i)(r)= 199

{ηUi(r), η�i(r)}T with i={1, 2} are the associated eigenvec- 200

tors. 201

To solve numerically the Stroh problem in the cortex 202

(method given in Appendices B and C), we fix H and μ, and 203

by iterating over the wave number m and either γC or γL, we 204

solve for η from r0 to rm with null initial condition until the 205

outer boundary conditions are satisfied. 206

III. RESULTS 207

Figure 3 shows the critical instability thresholds of the 208

cortex remodeling stretch γ cr
C against the initial aspect ratio 209

R0/Rm at varying lumen volumetric changes γL and varying 210

stiffness ratios μC/μL with the associated critical wave num- 211

ber mcr. 212

From Figs. 3(a) and 3(b) we conclude that the stiffer 213

the cortex, the higher the critical remodeling thresholds γ cr
C . 214

Therefore, disks with a stiff ring will buckle earlier (in the 215

sense that the remodeling in the cortex introduces less circum- 216

ferential compression to trigger the instability) than those with 217

a soft ring. These results are in accordance with those found 218

for a substrate with a growing layer [31]. 219

Another interesting aspect arises from Fig. 3(a): When 220

the lumen does not contract (γL = 1.0), the cortex instability 221

thresholds γ cr
C are independent of the initial thickness of the 222

cortical ring, i.e., the aspect ratio H . However, the instability 223

patterns [mcr in Fig. 3(b)] do depend on the thickness of the 224

cortex (particularly for very thin rings). 225

Finally, as the lumen contracts [upper curves in Fig. 3(c), 226

γL < 1], the critical thresholds γ cr
C for the cortex decrease, 227

indicating that the more the lumen contracts, the earlier 228

the cortex will buckle. This behavior is expected from the 229

mechanics viewpoint, because lumen contraction leads to a 230

compressive circumferential stress in the cortex. 231
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FIG. 4. Effect of contraction inhibition on the final morphology of the organoid: [(a) and (d)] control and drug-treated organoids (digitized
from Ref. [16], scale bars are 100 μm); [(b) and (e)] instability patterns predicted by our model from an initial organoid with H = 1.05,
γC = 1 and by setting μC/μL = 0.85 in (b), and μC/μL = 40 in (e); [(c) and (f)] magnitude of the incremental displacements UN (r),VN (r),
(N = L,C) within the organoid (orange and purple, respectively), computed using the same parameters as in (b) and (e) and taking ε = 0.02.

In Fig. 4, we show the final morphologies obtained from232

two disks with the same initial aspect ratio H =1.05 but with233

different stiffness ratios μ. In Fig. 4(e) the lumen is softer234

than the cortex (μC/μL =40) and the opposite scenario is235

modeled in Fig. 4(b) (μC/μL =0.85). The critical threshold236

for the instability in Fig. 4(e): γ cr
L =0.95 is much higher than237

that in Fig. 4(b), γ cr
L =0.57, indicating that disks with softer238

cores buckle at lower contraction thresholds.239

IV. DISCUSSION240

These results are able to capture the effect of contraction241

inhibition of the cytoskeleton observed in human organoids.242

Indeed, in Ref. [16] organoids treated with Blebbistatin (a243

drug used to reduce the contractility of the lumen) were244

found to have a softer core [Case (e)] than control organoids245

[Case (b)]. Moreover, our model predicts that the critical wave246

number for a disk with a soft core, mcr = 8, is lower than247

that of a disk with a stiffer core, mcr = 16. Hence our model248

predicts the experimental result that treated organoids display249

less folds than control ones [compare Figs. 4(a) and 4(b) with250

Figs. 4(d) and 4(e)]. This is in line with results obtained by251

differential growth models where both the lumen and the ring252

grow but at different rates [14]. By contrast in our study, the253

lumen and the ring undergo two different mechanisms: The254

former contracts and the latter remodels according to the INM.255

Furthermore, by comparing the magnitude of the instability256

patterns in Figs. 4(c) and 4(f) we can observe that in Case257

(b) (hard lumen), the pattern is more pronounced at the outer258

radius r0 than at the contact radius rm, whereas in Case (e)259

(soft lumen) the trend of the magnitude is reversed. The model260

thus encapsulates the experimental observation that when the261

contractility of the organoid is disrupted, the apical surface262

(i.e., the interface between the lumen and the cortex) corru- 263

gates more than the basal one (outer surface of the organoid). 264

Our model also predicts the experimentally observed linear 265

scaling law between the critical wavelength λcr and the initial 266

thickness t of the cortex, in agreement with previous models 267

[32,33]. In Fig. 5, we compare quantitatively the predictions 268

of our model with the data reported in Ref. [16] for the 269

LIS1 + /− mutation. In the thickness range 50–150 mm, 270

Karzbrun et al. [16] report linear factors (slopes) between the 271

wavelength and the thickness for the control and the mutant 272

organoids of amounts 0.8 and 1.9, respectively. Moreover, 273

they find that the LIS1 + /− mutation induces a reduction of 274

the lumen stiffness by a factor 2. To validate our model, we 275

calculate the predicted wavelength of the instability pattern 276

for disks with stiffness ratio μC/μL =0.48 (blue line) and for 277

disks with halved lumen stiffness μL, i.e., μC/μL =0.9 (or- 278

ange line). The slopes predicted by our models are 0.75 (blue 279

line, obtained by setting μC/μL = 0.48) and 1.93 (orange 280

line, obtained by halving the lumen ratio, so that μC/μL = 281

0.9), showing good agreement with the experimental observa- 282

tions. 283

Furthermore, the LIS1 mutation not only softens the lumen 284

of the organoid, but it also slows the inward motion of the 285

nuclei. This leads to an accumulation of nuclei at the outer 286

surface of the cortex and introduces a compression along 287

the circumference of the cortical ring. In effect, our model 288

predicts that for disks with stiffness ratio μC/μL =0.9 (orange 289

points, mutant), the critical remodeling threshold of the cortex 290

γ cr
C = 0.61 is higher (i.e., buckling occurs earlier) than for the 291

case μC/μL =0.48 (blue line, control) where γ cr
C = 0.54 [see 292

Fig. 5(b)]. Therefore, our model accurately predicts the effect 293

of the LIS1 mutation of reducing the stiffness of the lumen 294

and perturbing the INM. 295
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FIG. 5. LIS1 + /− mutation. (a) Wavelength λ of the instability pattern vs initial thickness t of the cortical layer. Data with error bars
(reproduced from Ref. [16]) and our model predictions (lines) for control [blue (dark grey)] and for LIS1 + /− mutant organoids [orange
(light grey)]; the blue line is obtained by setting μC/μL = 0.48 and the orange line by setting μC/μL = 0.9. The slopes of the two lines are
also shown (the offsets are discarded for a proper visual display). The last data points of each set are considered as outliers [16]. (b) Associated
instability thresholds for the cortex remodeling parameter γ cr

C .

V. CONCLUSION296

Our model predicts the onset of wrinkling in human brain297

organoids, usually associated with the early gyrification in298

the human brain. We find that both the contraction of the299

lumen and the motion of the nuclei of neuron progenitor cells300

within the cortex play a crucial role in the early stages of brain301

development. Disruption of any of these mechanisms results302

in alteration of the final folding pattern and leads to brain303

malformation.304

In particular, this model gives new insights on the role305

played by the microstructural remodeling of the cortex in de-306

termining the lissencephaly pathology, a mutation associated307

with a smoother cortex.308

Our results suggest that a reduced contractility of the core309

and a slower motion of nuclei both induce a delay in the310

onset of the instability and trigger a smoother instability311

pattern. This model and recent works on brain mechanics312

further emphasize the crucial role of mechanical forces in313

brain development and function [34].314
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APPENDIX A: THE STRESS PROFILE OF THE RADIALLY322

SYMMETRIC SOLUTION323

As shown in the main text, the elastic equilibrium problem324

is given by:325

d

dr
σNrr (r) + σNrr (r) − σNθθ (r)

r
= 0, N = {L,C} (A1)

with326

σCrr (r0) = 0 and σLrr (rm) = σCrr (rm). (A2)
The solution to (A1) and (A2) is 327

σCrr (r) =
∫ r0

r
μ

BCrr (r) − BCθθ (r)

r
dr, (A3)

σCθθ (r) = μ[BCθθ (r) − BCrr (r)] + σCrr (r), (A4)

σLrr (r) = σLrr (rm), (A5)

σLθθ (r) = σLθθ (rm). (A6)

The solution is shown in Fig. 6 in two scenarios: [Fig. 6(a)] 328

growth of the lumen and [Figs. 6(b) and 6(c)] remodeling of 329

the cortex. In the first two cases, the circumferential stress is 330

negative within the cortex, indicating that the outer layer is 331

under circumferential compression. Figures 6(b) and 6(c) also 332

show that when γC <1 a positive radial stress is generated 333

and the force gradient favors the outward nuclei motion. 334

On the other hand, when γC >1 the radial stress component 335

is negative and contributes to pushing the nuclei inwardly, 336

according to the observed cyclic outward or inward nuclear 337

motion within the cortex. 338

APPENDIX B: THE STROH FORMULATION 339

The Stroh formalism is an analytical technique that al- 340

lows to transform the incremental problem (a system of four 341

partial differential equations (PDEs) with boundary condi- 342

tions) into a system of six ODEs with initial conditions. It 343

is based on the assumption that the incremental displace- 344

ments δxN = (δrN , δθN )T , the incremental stress components 345

(δσN )rr, (δσN )rθ and the Lagrange multiplier δpN can be 346

written in the separable form: 347

(δrN , δpN , (δσN )rr ) = (UN (r), PN (r), 	Nrr (r)) cos(m θ )

(δθN , (δσN )rθ ) = (VN (r), 	Nrθ (r)) sin(m θ ) (B1)

with N ={L,C}. Then the incremental problem takes the 348

following form: 349

dηN (r)

dr
= 1

r
MN (r)ηN (r), N = {L,C}, (B2)

where ηN (r)= (UN (r), r�N (r))T , UN (r) = (UN (r),VN (r))T
350

is the displacement vector, and �N (r) = (	Nrr (r), 	Nrθ (r))T
351

is the traction vector and the 4 × 4 block-matrix MN is the 352
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FIG. 6. Axial-symmetric solution to the elastic problem in Eqs. (A1) and (A2). The radial (green solid) and circumferential (red dashed)
components of the Cauchy stress. (a) The lumen undergoes contraction: γL = 0.8, γC = 1. [(b) and (c)] The cortex undergoes remodeling:
γL = 1, γC = 0.8 (b) and γC = 1.2 (c). The aspect ratio and the stiffness ratio are fixed: H = 1.1, μC/μL = 10.

so-called Stroh matrix. Within the lumen, we have353

dηL(r)

dr
= 1

r
ML(r)ηL(r), lim

r→0
UL(r) = 0, (B3)

where the Stroh matrix has the following block-form:354

ML =
(

ML1 ML2

ML3 −MT
L1

)
(B4)

with355

ML1 =
( −1 −m

m[1 − σCrr (rm )/μL] 1 − σCrr (rm )/μL

)
, ML2 =

(
0 0
0 1/μL

)
,

ML3 =
(−[σCrr (rm) − 2μL][m2σCrr (rm) + 2μL]/μL −m

[
σ 2

Crr (rm) − 4μL
]

−m[σCrr (rm)2 − 4] −[σCrr (rm) − 2][σCrr (rm) + 2m2]

)
. (B5)

We note that the blocks in Eq. (B5) are independent on r, and therefore Eq. (B3) becomes an ODE with constant coefficients and356

its solution can be written in terms of the eigenvalues and eigenvectors of ML. Now ML has four eigenvalues: m±1 and −m±1,357

and thus the solution has the following form:358

ηL(r) = c1η
(1)(r)rm−1 + c2η

(2)(r)rm+1 + c3η
(3)(r)r−m−1 + c4η

(4)(r)r−m+1, (B6)

where η(i)(r), i = {1, . . . , 4} are the eigenvectors of ML. We discard the mode m = 1 for which the matrix ML has a repeated359

eigenvalue, indicating the presence of rigid body motions. For m � 2 we can then use the fact that the perturbation must decay360

with r → 0 (thus c3 and c4 must be zero) so that (B6) reduces to:361

ηL(r) = c1η
(1)(r)rm−1 + c2η

(2)(r)rm+1 =
(

ηU1(r) ηU2(r)
η�1(r) η�2(r)

)(
c1rm−1

c2rm+1

)
, (B7)

where η(i) ={ηUi(r), η�i(r)}T , i={1, 2} and ηUi(r) and η�i(r) are 2 × 1 (column) vectors containing the displacement and the362

traction components, respectively, of the eigenvector η(i).363

Within the cortex, the Stroh problem is written as follows:364

dηC (r)

dr
= 1

r
MC (r)ηC (r), (B8)

with initial conditions:365

ηC (rm) = ηL(rm), (B9)

�C (r0) = 0. (B10)

Equation (B9) is the continuity condition at the interface between the lumen and the cortex, and Eq. (B10) imposes a traction-free366

condition at r0. The blocks of the Stroh matrix MC in Eq. (B8) are given by:367

MC1 =
( −1 −m

m pC (r)
ACrθrθ (r)

pC (r)
ACrθrθ (r)

)
, MC2 =

(
0 0
0 1

ACrθrθ (r)

)
,

MC3 =
⎛
⎝αC (r) + m2ACθrθr (r) − p2

C (r)m2

ACrθrθ (r) m[αC (r) + ACθrθr (r)] − m p2
C (r)

ACrθrθ (r)

m[αC (r) + ACθrθr (r)] − m p2
C (r)

ACrθrθ (r) m2αC (r) + ACθrθr (r) − p2
C (r)

ACrθrθ (r)

⎞
⎠ (B11)
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and MC4 = −MT
C1, where we have defined αC (r) =368

ACrrrr (r) + ACθθθθ (r) + 2pC (r). In summary, the solution369

to the Stroh problem within the lumen has the form of370

Eq. (B7). However, to solve the problem within the cortex371

we need to implement a robust numerical scheme. Since the372

initial conditions in Eq. (B10) are on the stress components,373

numerical stiffness issues arise and standard numerical374

techniques fail to converge. Therefore, we use the impedance375

matrix method which allows to implement a robust and stable376

numerical procedure.377

APPENDIX C: THE IMPEDANCE METHOD AND THE378

RICCATI EQUATION379

We introduce the conditional impedance matrix ZN (r, ri),380

N = {L,C} which is related to the displacement and traction381

vectors through:382

ZN (r, ri )UN (r) = r�N (r), N = {L,C}. (C1)

The term conditional refers to the fact that the impedance383

matrix depends on the condition at ri. We now transform the384

general form of the Stroh problem in Eq. (B2) into the Riccati385

equation. On substituting (C1) into (B2), we obtain:386

dUN

dr
= 1

r
(MN1UN + MN2ZN UN ), (C2)

d (ZN UN )

dr
= 1

r

(
MN3UN − MT

N1ZN UN
)
. (C3)

By differentiating and substituting (C2) into (C3) we get the 387

Riccati equation: 388

r
dZN

dr
= −ZN MN1 − ZN MN2ZN + MN3 − MT

N1ZN . (C4)

Now we choose to use the conditional impedance matrix 389

ZC (r, r0), which is obtained by integrating Eq. (C4) within 390

the cortex from r0 to rm, using the initial condition at r0 which 391

[from (B10)] is written as follows: 392

ZC (r0, r0) = 0. (C5)

By using (B9), the continuity condition of the traction vector 393

reads: 394

rm�L(rm) = rm�C (rm) = ZC (rm, r0)UC (rm)

= ZC (rm, r0)UL(rm) (C6)

and then by substituting Eq. (B7), Eq. (C6) reduces to: 395

det[(η�1(rm), η�2(rm)) − ZC (rm, r0)(ηU1(rm), ηU2(rm))] = 0.

(C7)
For fixed values of H and μ, we generate two iterative loops 396

over γN (either γC or γL) and m. Inside the two loops we 397

integrate (C4) with the initial condition (C5), until the stop 398

condition (C7) is satisfied. This algorithm allows to get the 399

critical thresholds γ cr
N of the instability and the associated 400

wave numbers mcr. 401
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