
Extreme Mechanics Letters 39 (2020) 100782

Contents lists available at ScienceDirect

ExtremeMechanics Letters

journal homepage: www.elsevier.com/locate/eml

Electro-elastic Lambwaves in dielectric plates
Hannah Conroy Broderick a,∗, Luis Dorfmann b, Michel Destrade a

a School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland
b Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA

a r t i c l e i n f o

Article history:
Received 25 March 2020
Received in revised form 28 April 2020
Accepted 16 May 2020
Available online 20 May 2020

Keywords:
Electro-elastic waves
Lamb waves
Electro-elasticity
Dielectric plates
Incremental formulations

a b s t r a c t

We study the propagation of Lamb waves in soft dielectric plates subject to mechanical and electrical
loadings and find the explicit expressions for the dispersion equations in the cases of neo-Hookean
and Gent dielectrics. We elucidate the effects of the electric field, of the thickness-to-wavelength ratio,
of pre-stress and of strain-stiffening on the wave characteristics.
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1. Introduction

Wave propagation in soft dielectric materials has been shown
to depend on both the underlying deformation and the applied
electric field for a variety of deformations and geometries.

Dorfmann and Ogden [1] derived the incremental formula-
tion and showed the dependence of the surface wave velocity
on the electric field in an electro-elastic half-space (voltage-
controlled case). The case of a dielectric plate under plane strain
was investigated by Shmuel et al. [2], who showed the effects
of pre-stretch and applied electric displacement on the wave ve-
locity (charge-controlled case). Ziser and Shmuel [3] investigated
experimentally pre-stretched voltage-controlled films and found
that the velocity of the fundamental flexural mode decreases with
increasing voltage under plane strain. In a recent study, Wang
et al. [4] considered the vibration of multi-layered compressible
plates and highlighted interesting phenomena such as frequency
jumping in plates undergoing snap-through.

There has been significant work on cylinders and tubes [5–9],
showing that the velocity of the wave depends on the electric
field and the direction in which it is applied, as well as the direc-
tion of propagation relative to the underlying electro-mechanical
deformation. In particular, Wu et al. [9] highlighted the possibility
of using wave propagation to detect defects or cracks in the
material based on their analysis of circumferential waves.

The dependence of the wave velocity on the applied elec-
tric field suggests the possibility of controlling the velocity of
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the propagating wave by applying an appropriate electric field
[2,4]. It also paves the way for applying acoustic non-destructive
evaluation techniques to dielectric plates.

Here, we first recall the equations governing the large de-
formation of a soft dielectric plate and then the subsequent
propagation of small-amplitude Lamb waves, using incremental
theory (Section 2). We write the equations of motion in the
Stroh form, and then solve them for the neo-Hookean dielectric
model (Section 3). We separate symmetric from antisymmetric
modes of propagation to obtain explicit expressions for the cor-
responding dispersion equations, and for their limits in the long
wavelength-thin plate and short wavelength-thick plate regimes.
In Section 4, we solve the dispersion equations numerically to
highlight the effects of loading and geometry on the wave propa-
gation. We also use the Gent dielectric model to look at the effects
of strain-stiffening and snap-through on the plate’s acoustics.

2. Equations of motion

We use the incremental theory of electro-elasticity [1] to anal-
yse wave propagation in a finitely deformed electro-active plate,
within the context of the electro-acoustic approximation [10].
For completeness of presentation we first summarise the main
parts of the theory.

The incremental (small-amplitude) mechanical displacement
is denoted u and the increments of the total nominal stress and
of the Lagrangian forms of the electric displacement and the
electric field are denoted by Ṫ, ḊL, ĖL, respectively. For an incom-
pressible electro-elastic material the corresponding push-forward
measures are obtained as

Ṫ0 = FṪ, ḊL0 = FḊL, ĖL0 = F−TĖL, (1)
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where F is the deformation gradient. The incremental quantities
satisfy the Lagrangian form of the governing equations

Div Ṫ = ρu,tt , Div ḊL = 0, Curl ĖL = 0, (2)

and, equivalently, their updated (Eulerian) forms

div Ṫ0 = ρu,tt , div ḊL0 = 0, curl ĖL0 = 0, (3)

where ρ is the (constant) mass density per unit volume and ,t
denotes the time derivative.

With no external field and no applied mechanical traction the
incremental boundary conditions have the simple forms

ṪTN = 0, ĖL × N = 0, ḊL · N = σ̇F, (4)

where σ̇F identifies an increment in the referential charge density
on the electrodes attached to the major surfaces of the plate.

Superposed on the current configuration we consider an incre-
mental motion, tracked by the incremental deformation gradient
Ḟ, combined with an increment in the electric field ĖL. This results
in increments of the total nominal stress and of the Lagrangian
electric displacement field as specified by the incremental forms
of the constitutive equations [11].

In particular, for an incompressible material we have det F = 1
at all times. Then, Ṫ and ḊL have the forms

Ṫ = AḞ + AĖL − ṗF−1
+ pF−1ḞF−1, (5)

and

ḊL = −ATḞ − AĖL, (6)

where A, A, A are, respectively, fourth-, third- and second-order
electro-elastic moduli tensors, and p is a Lagrange multiplier due
to incompressibility (and ṗ is its increment). The use of (1) gives
the updated forms of the incremental constitutive equations

Ṫ0 = A0L + A0ĖL0 + pL − ṗI, (7)

and

ḊL0 = −AT
0L − A0ĖL0, (8)

where I is the identity tensor and L the gradient of the Eule-
rian version of the incremental displacement vector u, see [12]
for details. The latter satisfies the incremental incompressibility
condition

trL = divu = 0. (9)

From (4) we find the updated incremental boundary condi-
tions

ṪT
0n = 0, ĖL0 × n = 0, ḊL0 · n = σ̇F0, (10)

where σ̇F0 is the Eulerian form of the charge density increment.
In what follows we focus attention on isotropic and incom-

pressible electro-elastic materials with properties dependent on
just two invariants, denoted I1 and I5, and defined as

I1 = trC, I5 = EL · C−1EL, (11)

where C = FTF is the right Cauchy–Green deformation tensor.
We denote the lateral dimensions and the total thickness of

an electroelastic plate in the undeformed configuration by 2L
and 2H , respectively. The deformed configuration is defined using
the Cartesian coordinates (x1, x2, x3) with x2 oriented normal to
the major surfaces. We focus on equi-biaxial deformations with
principal stretches

λ1 = λ3 = λ, λ2 = λ−2. (12)

The deformed plate is then in the region

− ℓ ≤ x1 ≤ ℓ, −h ≤ x2 ≤ h, −ℓ ≤ x3 ≤ ℓ, (13)

where 2h = 2λ−2H and 2ℓ = 2λ L are the plate’s dimensions in
the deformed configuration.

In addition, a potential difference (voltage) is applied between
the compliant electrodes attached at the top and bottom surfaces.
The in-plane dimensions are much larger than the thickness and
the edge effects can therefore be neglected. It follows that the
accompanying electric and electric displacement fields have a
single component each, denoted E2 and D2, respectively, along the
normal to the major surfaces of the plate. Eq. (1), specialised to
the underlying configuration gives the Lagrangian counterparts as

EL2 = λ−2E2, DL2 = λ2D2. (14)

while the invariants (11) have the simple forms

I1 = 2λ2
+ λ−4, I5 = λ4E2

L2. (15)

Superimposed on the underlying configuration we consider
two-dimensional electro-elastic increments with components
u1, u2, ĖL01, ĖL02, which depend on x1, x2 and t only.

Eq. (3)3 suggests the introduction of a scalar function ϕ =

ϕ(x1, x2) such that

ĖL01 = −ϕ,1, ĖL02 = −ϕ,2, (16)

where the subscripts 1 and 2 following a comma denote partial
derivatives with respect to x1 and x2, respectively. Using (7) we
find the non-zero incremental stress components Ṫ011, Ṫ012, Ṫ021,
and Ṫ022 and the non-zero incremental electric displacement
components ḊL01 and ḊL02 from (8) [1,12,13]. Eq. (3)1 and (3)2
then specialise to

Ṫ011,1 + Ṫ021,2 = ρu1,tt ,

Ṫ012,1 + Ṫ022,2 = ρu2,tt , (17)

ḊL01,1 + ḊL02,2 = 0, (18)

together with the incompressibility condition (9)

u1,1 + u2,2 = 0. (19)

It remains to specify the incremental boundary conditions
(10)1,2 on the major surfaces x2 = ±h, as

Ṫ021 = Ṫ022 = 0, ĖL01 = 0, (20)

while the boundary condition (10)3 is not used, as we are consid-
ering a voltage-controlled plate.

Specifically, we seek solutions with sinusoidal dependence in
the x1 direction for the variables u1, u2, ḊL02, Ṫ021, Ṫ022, ϕ in the
form{
u1, u2, ḊL02, Ṫ021, Ṫ022, ϕ

}
(21)

= ℜ
{
[U1,U2, ik∆, ikΣ21, ikΣ22, Φ] eik(x1−vt)} ,

where the constant k is the wave number, v the wave speed and
the amplitude functions U1, U2, ik∆, ikΣ21, ikΣ22, Φ are functions
of kx2 only.

In what follows, it is convenient to consider the variables U1,
U2, ∆ as the components of a generalised displacement vector U,
and the variables Σ21, Σ22, Φ as the components of a generalised
traction vector S. We find that the governing equations can then
be arranged in the Stroh form

η′
= iNη, (22)

where η = (U, S)T is the Stroh vector and the prime denotes
differentiation with respect to kx2. The 6 × 6 matrix N has the
form

N =

[
N1 N2
N3 NT

1

]
, (23)
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where the Ni are 3 × 3 sub-matrices and N2,N3 are symmet-
ric [13–15].

Next, we introduce shorthand notations for the coefficients in
(7) and (8). For an energy function Ω that depends linearly on
the invariants I1 and I5, we use

a = A01212 = 2
(
λ2Ω1 + λ2E2

L2Ω5
)
,

c = A02121 = 2λ−4Ω1,

2b = A01111 + A02222 − 2A01122 − 2A01221

= 4(λ2
− λ−4)2Ω11 + a + c,

d = A0211 = −2λ2EL2Ω5,

e = A0222 − A0112 = 2d,

f = A011 = A022 = 2Ω5, (24)

where Ωj = ∂Ω/∂Ij for j = 1, 5. We also recall the connec-
tions [11]

A0jilk − A0ijlk =
(
τjl + pδjl

)
δik − (τil + pδil) δjk,

which for τ22 = 0 results in p = c .
We introduce dimensionless versions of (24) as follows

ā = a/µ, b̄ = b/µ, c̄ = c/µ,

d̄ = d/
√

µε, ē = e/
√

µε, f̄ = f /ε, (25)

where µ is the initial shear modulus associated with purely
elastic deformations and ε is the (constant) electric permittivity.
Together with the dimensionless field measures

Ē0 = EL2
√

ε/µ, D̄0 = DL2/
√

µε, (26)

and the non-dimensional components of the Stroh vector η,

Ūi = Ui, ∆̄ = ∆/
√

µε,

Σ̄2i = Σ2i/µ, Φ̄ = Φ
√

ε/µ, (27)

we arrive at a non-dimensional version of the Stroh formulation
(22) [13].

To derive the Stroh equations, we follow the procedure in [13].
As the only change in the governing equations from [13] is to the
equilibrium equation for the stress, i.e. (3)1 or equivalently (17),
the only entries that change are those related to Σ̄21 and Σ̄22. As
a result, N1 and N2 are identical to the forms derived in [13], and
N3 becomes

N3 =

⎡⎢⎢⎢⎢⎢⎣
ē2

f̄
− 2(b̄ + c̄) + v̄2 0 −

ē
f̄

0 c̄ − ā + v̄2 0

−
ē
f̄

0
1
f̄

⎤⎥⎥⎥⎥⎥⎦ , (28)

where v̄2
= ρv2/µ is a non-dimensional version of v2.

3. Resolution for the neo-Hookean dielectric plate

We consider solutions in the form η = η0e−pkx2 , which reduce
(22) to the eigen-problem Nη0 = ipη0. Hence, the eigenvalues
and eigenvectors pj, η(j), j = 1, . . . , 6 are determined by solving
the characteristic equation

det (N − ipI) = 0, (29)

where I is the 6 × 6 identity matrix. Note that the form of the
solution used here is equivalent to the one in [13] using p = iq.
It follows that the general solution for η has the form

η =

6∑
j=1

cjη(j)e−pjkx2 , (30)

where cj, j = 1, . . . , 6 are constants to be determined by the
boundary conditions (20).

To illustrate the solution, we now specialise the constitutive
model Ω(I1, I5) to the neo-Hookean electroelastic form [16]

ΩnH =
µ

2
(I1 − 3) −

ε

2
I5. (31)

Then we find, using a Computer Algebra System, that solving
the characteristic equation (29) results in

p1 = −p4 = 1, p2 = −p5 = 1,

p3 = −p6 = λ2
√

λ2 − v̄2, (32)

with corresponding eigenvectors

η(1)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ4

iλ4

2λ6Ē0
2i

λ4
(
v̄2

− λ2
+ λ4Ē0

)
− 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

η(2)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iλ6Ē2
0

−λ6Ē2
0

i
(
λ6

− λ4v̄2
+ λ8Ē2

0 + 1
)

λ2Ē0
(
λ6

− λ4v̄2
− λ8Ē2

0 − 1
)

0

λ4
(
v̄2

− λ2
+ λ4Ē2

0

)
− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

η(3)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iλ6
√

λ2 − v̄2

−λ4

iλ8Ē0
√

λ2 − v̄2

λ4
(
v̄2

− λ2
− λ4Ē2

0

)
− 1

−2iλ2
√

λ2 − v̄2

λ6Ē0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

and η(4), η(5), η(6) are the respective complex conjugates of these
three vectors.

The boundary conditions (20) on the surfaces x2 = ±h, in
terms of the generalised traction vector S require

S (±kh) = 0. (34)

These boundary conditions constitute six homogeneous equa-
tions that are conveniently represented as a 6 × 6 matrix equa-
tion. For a non-trivial solution the determinant of the matrix
must vanish. The resulting equation can be factorised to give
two independent equations, which identify the configurations
in which antisymmetric and symmetric propagating waves may
occur [13,15]. Specifically, for subsonic waves (v < λ

√
µ/ρ, so

that v̄2 < λ2), we find the following explicit dispersion equations,

(λ6
− λ4v̄2

+ 1)2 − λ8(λ6
− λ4v̄2

− 1)Ē2
0

4λ2
√

λ2 − v̄2

=

[
tanh(kH

√
λ2 − v̄2)

tanh(kHλ−2)

]±1

, (35)

where the exponents ±1 correspond to antisymmetric and sym-
metric modes, respectively.

To evaluate the response in the short wavelength-thick plate
and long wavelength-thin plate limits, we note that kH = 2πH/L,
where L denotes the wavelength. Therefore, for short
wavelengths-thick plates (Rayleigh surface waves), kH → ∞
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Fig. 1. The loading curve Ē0 against the in-plane stretch λ for a neo-Hookean
electroelastic plate with no pre-stress (T̄ = 0.0, upper curve) and with pre-stress
T̄ = 0.8 (lower curve). The field Ē0 increases initially with increasing values of
λ, obtains its maximum Ēmax (marked by ‘•’) and decreases afterwards. As the
pre-stress increases, Ēmax decreases, see [13] for a detailed discussion.

and Eq. (35) specialises to

(λ6
− λ4v̄2

+ 1)2 − λ8(λ6
− λ4v̄2

− 1)Ē2
0

4λ2
√

λ2 − v̄2
= 1. (36)

In the long wavelength-thin plate limit, kH → 0 and the anti-
symmetric mode simplifies to

λ8Ē2
0 − λ4 (

λ2
− v̄2)

+ 1 = 0, (37)

while symmetric incremental modes occur when

λ8Ē2
0 − λ4 (

λ2
− v̄2)

− 3 = 0. (38)

As expected, the above equations recover the purely elastic case
[17] when Ē0 = 0 and the static electro-elastic case [13] when
v̄ = 0.

When v̄2 > λ2, using tanh(ix) = i tan(x), we obtain

(λ6
− λ4v̄2

+ 1)2 − λ8(λ6
− λ4v̄2

− 1)Ē2
0

4λ2
√

v̄2 − λ2

= ∓

[
tan(kH

√
v̄2 − λ2)

tanh(kHλ−2)

]±1

, (39)

where the upper and lower signs correspond to antisymmetric
and symmetric modes, respectively. When kH ≪ 1, Eq. (39) re-
duces to (37) for antisymmetric modes and to (38) for symmetric
modes. When kH → ∞, the limit is indeterminate, as the limit
of tan(kH

√
v̄2 − λ2) is then undefined. This is expected because

supersonic Rayleigh waves do not exist here; as seen in Fig. 4, v̄2

is always less than λ2 for thick plates.

4. Numerical results and discussion

4.1. Neo-Hookean dielectric plate

On specialising to the constitutive model (31) and using the
boundary condition τ22 = 0, the in-plane nominal stress T =

τ11/λ = τ33/λ is obtained as

T = µ
(
λ − λ−5)

− ελ3E2
L2, (40)

or, equivalently

Ē0 =

√
λ−2 − λ−8 − λ−3T̄ , (41)

where T̄ = T/µ is a dimensionless measure of the nominal stress.
Relation (41) is illustrated by the loading curve Ē0 against the
in-plane stretch λ, with pre-stresses T̄ = 0 and T̄ = 0.8 in

Fig. 2. The dimensionless Lamb wave speed v̄ = v
√

ρ/µ against kH of antisym-
metric and symmetric modes shown by solid and dashed curves, respectively,
for a neo-Hookean electroelastic plate with T̄ = 0. (a) Purely elastic un-stretched
case Ē0 = 0, λ = 1, (b) Moderate electrical loading Ē0 = 0.4, λ ≃ 1.03, and (c)
Maximal electrical loading Ē0 = Ēmax =

√
3/24/3 , λ = 21/3 .

Fig. 1. In the absence of pre-stress, the maximum value, Ēmax =√
3/24/3

≃ 0.69, that the plate can support occurs at the critical
stretch λ = 21/3

≃ 1.26, as shown by Zhao and Suo [16]. Loading
curves for increasing amounts of prestress show a continuous
reduction in the value of Ēmax, see for example [11,13,16].

We first consider a plate in the absence of pre-stress, i.e. we
take T̄ = 0.0. To evaluate the effect of an electric field on the
wave speeds of symmetric and antisymmetric modes, we must
consider values of Ē0 and λ on the loading curve (41). Results
show that for increasing values of Ē0 the overall trend of the
curves is maintained as illustrated in Fig. 2. In particular, for
Ē0 = 0 we recover the elastic results of an un-stretched plate [17].
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Fig. 3. The dimensionless wave speed v̄ = v
√

ρ/µ of the fundamental symmet-
ric and antisymmetric modes against the stretch λ in the long wavelength-thin
plate limit (kH → 0) for a neo-Hookean dielectric plate with no pre-stress
(T̄ = 0.0) and with pre-stress T̄ = 0.8. The wave speed when Ē0 = Ēmax ,
is marked by ‘•’ for each case. Beyond Ēmax the plate undergoes the pull-in
instability, as indicated by the dashed portion of the curves.

Fig. 4. The dimensionless squared Rayleigh wave speed v̄2
= ρv2/µ against Ē0

for a neo-Hookean electroelastic plate with T̄ = 0.0 and T̄ = 0.8, and kH → ∞

(short wavelength-thick plate limit). The wave speed v̄2 when Ē0 = Ēmax for
each case is again marked by ‘•’.

A notable feature of the effect of Ē0 on v̄ is the reduction
of the speed of the fundamental symmetric mode in the long
wavelength-thin plate limit, i.e. the mode with finite wave speed
as kH → 0. We can see this effect directly by substituting Eq. (41)
at T̄ = 0 into (38), giving v̄ = 2λ−2. The reduction in v̄ of
the fundamental symmetric mode with increasing values of the
stretch λ is shown in Fig. 3.

The corresponding Rayleigh wave speed is obtained from (36)
using (41) to express the stretch λ in terms of the dimensionless
field Ē0. This is illustrated in Fig. 4 where Ēmax is again indicated
by ‘•’. For Ē0 = 0, we recover Lord Rayleigh’s result [18] of
the purely elastic surface wave, v̄2

= 0.9126. As Ē0 increases
with increasing λ, the Rayleigh wave speed increases as well until
it reaches its maximum at Ē0 ≃ 0.6329, λ ≃ 1.1251, before
Ēmax is reached. The speed then begins to decrease and past Ēmax,
when the electric field decreases at increased stretch, it decreases
rapidly to zero.

These trends are in contrast to those of Shmuel et al. [2],
who found that both the Rayleigh wave speed and the thin-plate
limit of the fundamental symmetric mode increase monotonically
with increased electric displacement. However, they considered a
charge-controlled dielectric plate under the influence of a plane

strain deformation, and so we cannot perform a direct com-
parison. Instead we can compare their results with the case of
a voltage-controlled plate under plane strain. In that case we
also find that the fundamental symmetric mode in the long-
wavelength limit decreases monotonically. We can again see this
by substituting the loading curve into the thin-plate limit giving
v̄ = 2λ−1. The Rayleigh wave speed follows a similar trend
to the equi-biaxial case, increasing towards a maximum as the
electric field increases. The speed then decreases asymptotically,
corresponding to the asymptote of the loading curve.

4.2. Pre-stressed dielectric plate

We now investigate the effect of pre-stress on wave propaga-
tion in a neo-Hookean dielectric plate. We use a pre-stress of T̄ =

0.8 as a representative example. In that case the corresponding
pre-stretch is λ ≃ 1.2 in the absence of an electric field, and
the loading curve reaches its maximum at Ē0 = Ēmax ≃ 0.4148,
λ ≃ 1.5916, as seen in Fig. 1.

We again consider values of Ē0 and λ along the loading curve
(41), and plot the dispersion curves (35) when T̄ = 0.8 in Fig. 5.
When Ē0 = 0, the dispersion curves recover the corresponding
curves in the elastic case (see, for example, [17] for similar plots at
different values of pre-stress). As before, as Ē0 increases towards
Ēmax, the overall trend of the Ē0 = 0 curve is maintained. The
symmetric long-wave limit decreases and the thick-plate limit
increases as Ē0 is increased towards Ēmax, following similar trends
to the case without pre-stress (Figs. 3, 4).

The major difference between the pre-stressed and non-pre-
stressed cases is the behaviour in the long wavelength-thin plate
regime: once a pre-stress is introduced, the speed of the anti-
symmetric modes in this limit become non-zero. As the stretch
is increased, the speed of the fundamental antisymmetric mode
in that limit also increases (Fig. 3), which can be seen explicitly by
substituting the loading curve (41) into Eq. (37), giving v̄ =

√

λT̄ ,
a monotonically increasing function of λ for any positive T̄ . We
note that in the plane strain case, the antisymmetric long wave-
length limit becomes v̄ =

√

λ−1T̄ , a monotonically decreasing
function for any positive T̄ , corresponding to the slowing found
experimentally by Ziser and Shmuel [3].

By substituting (41) into (38) we see that the limit for the
symmetric modes becomes

v̄ =

√
4λ−4 + λT̄ , (42)

in the pre-stressed case. As λ increases beyond λ ≃ 1.5916, the
λT̄ term dominates and the speed in the long wavelength-thin
plate limit begins to increase, unlike in the case without pre-
stress where it decreases monotonically. As a result, for large
λ the symmetric and antisymmetric thin-plate/long wavelength
limits converge to the same value (v̄ =

√

λT̄ ), as seen in Fig. 3.
The short wavelength-thick plate limit (kH ≫ 1) also deviates

from the trend in the case with no pre-stress (Fig. 4). Initially,
the wave speed v̄2 increases as the electric field increases, until
it reaches the maximum Ē0 ≃ 0.4148, as before. At this point, the
curve changes suddenly and the speed begins to increase, as the
electric field decreases with increased stretch. At lower values of
pre-stress (not shown here), the wave speed initially follows a
similar trend as in Fig. 4, and begins to decrease, after which it
begins to increase, as in the T̄ = 0.8 case.

4.3. Gent dielectric plate

In this section we investigate wave propagation characteris-
tics in a plate made of an electro-elastic, strain-stiffening Gent
dielectric, with energy function

ΩG = −
µJm
2

log
[
1 −

(I1 − 3)
Jm

]
−

ε

2
I5, (43)
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Fig. 5. The dimensionless wave speed v̄ = v
√

ρ/µ against kH of antisymmetric
(solid) and symmetric (dashed) modes for a pre-stressed neo-Hookean elec-
troelastic plate, with T̄ = 0.8. (a) The elastic case with Ē0 = 0, λ ≃ 1.2, (b)
Moderate electric field Ē0 = 0.4, λ ≃ 1.4387, and (c) The maximal electric field
Ē0 ≃ 0.4148, λ ≃ 1.5916.

where the invariants I1, I5 are given in (15) and Jm is a mate-
rial constant, capturing strain-stiffening effects at large stretches.
Following the work of Dorfmann and Ogden [11,19] we use the
specific value Jm = 97.2, which is typical for soft rubber.

The in-plane nominal stress is now connected to the stretch λ

and the Lagrangian electric field by

T = µ
λ − λ−5

1 − (2λ2 + λ−4 − 3)/Jm
− ελ3E2

L2, (44)

Fig. 6. The loading curve Ē0 against the in-plane stretch λ for a Gent
electro-elastic plate with Jm = 97.2 and T̄ = 0.

leading to the following non-dimensional form of the loading
curve

Ē0 =

√
λ−2 − λ−8

1 − (2λ2 + λ−4 − 3)/Jm
− λ−3T̄ . (45)

Fig. 6 illustrates relation (45) for the special case when T̄ = 0,
highlighting the snap-through instability. The field Ē0 increases
with increasing λ and reaches a local maximum, Ēmax ≃ 0.689
when λ ≃ 1.264. The stretch then increases with constant electric
field until it reaches λ ≃ 6.926, after which the stretch and
electric field increase together, i.e. the snap-through instability,
see [11,13] for detailed discussions.

The explicit expression of the Stroh matrix N for the Gent
dielectric is obtained by following the steps identified in Section 3
with the derivatives in (24) evaluated using the energy function
(43). Then, the solution of (29) gives the eigenvalues

p1 =1, (46)

p2,3 =
1
2

√
(1 + κ)2 + 2(λ4 − λ−2)2

Ω̄11

Ω̄1

±
1
2

√
(1 − κ)2 + 2(λ4 − λ−2)2

Ω̄11

Ω̄1
,

with

p4 = −p1, p5 = −p2, p6 = −p3, (47)

where

κ =

√
λ6 −

λ4v̄2

2Ω̄1
, (48)

and

Ω̄1 =
1
2

Jm
3 + Jm − I1

, Ω̄11 =
1
2

Jm
(3 + Jm − I1)2

, (49)

are the (non-dimensional) derivatives of (43) with respect to I1.
In addition, the solution of (29) gives the corresponding eigen-
vectors

η(1)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−i

−λ2Ē0
−iλ2Ē0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (50)
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η(2)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iλ4p2
−λ4

iλ6Ē0p2
−

(
2Ω̄1(p22 + 1) + λ8Ē2

0

)
−i

(
2Ω̄1(λ6

+ p22) − λ4v̄2
)
/p2

λ6Ē0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

η(3)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iλ4p3
−λ4

iλ6Ē0p3
−

(
2Ω̄1(p23 + 1) + λ8Ē2

0

)
−i

(
2Ω̄1(λ6

+ p23) − λ4v̄2
)
/p3

λ6Ē0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with η(4), η(5), η(6) their complex conjugates.
For antisymmetric wave modes and v̄2/(2Ω̄1) < λ2 we find

the following dispersion equation

κ(p22 − p23)λ
8Ē2

0 tanh (λ−2kH) + p3(p23 + 1)
×

[
2Ω̄1(λ6

+ p22) − λ4v̄2] tanh (λ−2p2kH)

−p2(p22 + 1)
[
2Ω̄1(λ6

+ p23) − λ4v̄2] tanh (λ−2p3kH) = 0, (51)

where the in-plane stretch λ and the field Ē0 are connected
by (45). The corresponding equation for symmetric modes is
obtained from (51) by replacing the hyperbolic function tanh with
coth. Note that for v̄2/(2Ω̄1) > λ2 the eigenvalue p2 is imaginary
and, therefore, to obtain real solutions the dispersion equation for
antisymmetric and symmetric modes must be multiplied by the
imaginary unit i.

Again the dispersion relation (51) recovers the electrostatic
case when v̄ = 0 and the elastic case when Ē0 = 0.

When kH ≫ 1 (Rayleigh waves), Eq. (51) and its symmetric
counterpart tend to

λ8κ(p2 + p3)Ē2
0 + λ4v̄2(p22 + p23 + 1 + κ)

− 2
[
λ6(p2 + p3)2 + (1 − κ)(λ6

− κ)
]
Ω̄1 = 0. (52)

The Rayleigh wave speed v̄2 in (52) is evaluated using (45) and
depicted in Fig. 7 against the field Ē0. For the purely elastic case
with no pre-stress (Ē0 = 0, λ = 1) we again recover the Rayleigh
wave speed of a linear incompressible solid [18], v̄2

= 0.9126
(see [20,21] for Rayleigh waves in a deformed, purely elastic, Gent
material). Initially, the wave speed follows a similar trend as in
the neo-Hookean case (Fig. 4), but shortly after the snap-through
point (E0 ≃ 0.689) the speed begins to increase substantially
with decreasing electric field, due to the exponential stiffening
of the material with increasing stretch after the snap-through
instability.

When the plate undergoes the snap-through instability, the
Rayleigh wave speed is increased by more than a thousandfold,
with a jump to the value v̄2

≃ 1,045, and then increases
further with the electric field. Wang et al. [4] found a similar
phenomenon, with natural frequency jumping occurring during
snap-through. However, they considered a pre-stretched plate
and a compressible energy density function, which results in a
smaller increase in stretch due to the snap-through instability
than when incompressibility is enforced and when there is no
pre-stretch. For the Gent dielectric considered here, the increase
in stretch is very large (about 600%, see Fig. 6), which explains
the very large jump in speed (or frequency).

In the long wavelength-thin plate limit kH → 0, the dispersion
equation for antisymmetric incremental modes simplifies to

λ8Ē2
0 − 2Ω̄1(λ6

− 1) + λ4v̄2
= 0, (53)

Fig. 7. The dimensionless Rayleigh wave speed v̄2 against Ē0 for a Gent electro-
elastic plate with no pre-stress (T̄ = 0.0) in the short wavelength-thick plate
limit. (a) The jump in velocity due to snap-through. (b) The Rayleigh wave
speed before the snap-through instability. The values of v̄2 corresponding to
Ē0 = Ēmax = 0.689 are denoted by ‘•’.

while the wave speed for symmetric modes is governed by

λ12Ē2
0 + λ8v̄2

− 4Ω̄11(λ6
− 1)2 − 2λ4Ω̄1(λ6

+ 3) = 0. (54)

It is easy to check that Eq. (53) gives the trivial solution v̄ = 0 for
Ē0 and λ taken on the loading curve (45), while Eq. (54) simplifies
to

8λ4Ω̄1 + 4Ω̄11(λ6
− 1)2 − λ8v̄2

= 0. (55)

The corresponding non-dimensionalised velocity v̄ of the sym-
metric fundamental mode in the limit kH → 0 against the
in-plane stretch λ is shown in Fig. 8. As λ increases towards the
snap-through point (λ ≃ 1.264), the speed of the symmetric
fundamental mode decreases, as in the neo-Hookean case (Fig. 3).
When λ ≃ 1.9, the speed begins to increase as the stretch
increases, and continues to increase monotonically beyond the
past snap-through point (λ ≃ 6.926). This effect is due to the
stiffening after the snap-through instability.

To illustrate the effect of the snap-through instability on the
wave velocity, we plot the dispersion relation (51) at the snap-
through point (Ē0 = Ēmax ≃ 0.689, λ ≃ 1.264) and the past
snap-through point where λ ≃ 6.926 in Fig. 9. At the snap-
through point (λ ≃ 1.264), the curves follow the same trend
as those of the neo-Hookean energy density function, see Fig. 2c.
After the snap-through has taken place (λ ≃ 6.926), the velocity
increases dramatically. The speeds of the symmetric modes in the
kH ≪ 1 and kH ≫ 1 regimes have both increased, but the overall
trend of the fundamental modes remains the same. The dramatic
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Fig. 8. The dimensionless velocity v̄ of the fundamental symmetric mode in the
long wavelength-thin plate limit (kH → 0) against the stretch λ for a Gent
electro-elastic plate. The wave speed marked by ‘•’ occurs when λ = 1.264
and Ē0 = Ēmax = 0.689.

Fig. 9. The non-dimensionalised Lamb wave speed v̄ = v
√

ρ/µ against kH
of antisymmetric and symmetric modes shown by solid and dashed curves,
respectively, for a Gent electroelastic plate with no pre-stress (T̄ = 0.0). (a)
The response at the snap-through point where Ēmax = 0.689 and λ = 1.264,
and (b) The past snap-through point where Ēmax = 0.689 and λ = 6.926, see
Fig. 6.

increase in the values of the speed is due to the very large stretch
at the past snap-through point, where the plate is under large
strain and is much stiffened.

The first antisymmetric and symmetric modes also converge
to the short-wave limit much slower than in all other cases. This
is again due to the large stretch, as the competition between kH
and λ−2 is greater for large λ.

5. Concluding remarks

In this paper, we investigated Lamb wave characteristics in the
presence of an electric field generated by a potential difference
between two flexible electrodes mounted on the major surfaces
of a dielectric plate. The incremental governing equations and
the electrical and mechanical boundary conditions are given in
Stroh form and solved numerically for neo-Hookean and Gent
dielectric models. The dispersion equation is factorised to give
two independent equations, which identify the configurations
where antisymmetric and symmetric propagating waves may oc-
cur. Explicit expressions of the dispersion equations for the short
wavelength-thick plate and long wavelength-thin plate limits
are obtained. In particular, we investigated the effects of plate
thickness, of the electric field, of an in-plane pre-stress and of
stretch-stiffening on the wave characteristics.
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