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We investigate the theoretical nonlinear response,
Hessian stability, and possible wrinkling behaviour
of a voltage-activated dielectric plate immersed
in a tank filled with silicone oil. Fixed rigid
electrodes are placed on the top and bottom of
the tank, and an electric field is generated by
a potential difference between the electrodes. We
solve the associated incremental boundary value
problem of superimposed, inhomogeneous small-
amplitude wrinkles, signalling the onset of instability.
We decouple the resulting bifurcation equation into
symmetric and antisymmetric modes. For a neo-
Hookean dielectric plate, we show that a potential
difference between the electrodes can induce a
thinning of the plate and thus an increase of its
planar area, similar to the scenarios encountered when
there is no silicone oil. However, we also find that,
depending on the material and geometric parameters,
an increasing applied voltage can also lead to a
thickening of the plate, and thus a shrinking of its area.
In that scenario, Hessian instability and wrinkling
bifurcation may then occur spontaneously once some
critical voltages are reached.

1. Introduction
Dielectric elastomers (DEs) are soft materials capable of
undergoing large deformations when activated by an
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electric field. Compared with other ‘smart’ materials such as, for example, electro-active ceramics
and shape memory alloys, DEs have the advantages of high sensitivity, low noise and large
actuation strains. They have potential applications as sensors, as artificial muscles and as
biologically inspired intelligent devices [1–3].

Typically, a planar dielectric actuator consists of a thin electro-elastic plate with two electrodes
coated on its main surfaces. Carbon grease or a conductive hydrogel are frequently used as
electrodes. These coated films are thin and highly flexible and do not constrain the deformation of
the actuator, hence play no noticeable mechanical role. Applying a potential difference [4–6] or a
surface charge density [7,8] on the electrodes generates electrostatic forces causing a reduction in
thickness and therefore, by incompressibility, a planar expansion. When the thickness of the plate
is small compared to the planar dimensions, there is no electric field outside the plate by Gauss’s
theorem.

Another possible actuation is obtained by immersing a dielectric plate in a conductive fluid,
with the electric field generated by a potential difference or by a surface charge density on two
rigid electrodes positioned appropriately. Notable applications of that set-up include biometric
sensors and wearable or implantable electronic devices. For example, Sun et al. [9] designed an
‘ionic skin’ consisting of a stretchable dielectric membrane sandwiched between two flexible ionic
conductors using rigid electrodes. Their device operates as a strain sensor and can be used to
detect the location and pressure of human touch. Liquid crystal elastomers and ionic electro-
active polymers are considered electro-active elastomers with potential applications in display
technologies and drug delivery systems [10]. Bioelectrical and mechanical interactions exist in
biological tissues such as bones, vessels and nerve cells [11,12] and, more recently, have been
identified as powerful tools of biological pattern control [13]. For an electro-active elastomer
immersed in a conductive medium with non-zero permittivity, the surrounding electric field has
an obvious and significant influence on the mechanical response of the plate.

Advanced theories to describe the main electro-mechanical phenomena observed in DEs
have been developed over the years, including nonlinear deformation [14,15], vibration [16–18],
wrinkling instability [19–21] and wave propagation [22–24]. Most of these studies focused on
electro-elastic plates actuated by flexible electrodes. In contrast, little attention has been devoted
to devices actuated by an external electric field.

Dorfmann & Ogden [25] studied the large plane strain deformation and instability of an
electro-elastic half-space in the presence of a uniform external electric field normal to its surface.
Subsequently, they studied the instability of an equi-biaxially deformed dielectric plate, without
flexible electrodes, but in the presence of an external electric field normal to its faces [26].
Chen & Dai [27] investigated the propagation of axisymmetric waves in a homogeneously
deformed dielectric cylinder subject to an external electric field oriented along the axial direction
and derived the exact wave solution in terms of Bessel functions. Su et al. [28,29] examined
the propagation of non-axisymmetric waves in, and the instability of, an electro-active hollow
cylinder under uniform mechanical and electrical fields. They found that the exterior electric
field can have a stabilizing or destabilizing influence, depending on the electro-elastic coupling
parameters of the materials. Note that in these studies the DEs were surrounded by vacuum to
simplify the forms of the governing equations and of the boundary conditions.

Díaz-Calleja et al. [30] compared the pull-in instabilities of an electro-elastic plate with two
flexible electrodes coated on its faces and of a dielectric plate floating between two fixed rigid
electrodes. They investigated the effect of the permittivity of the surrounding fluid on the
stability of the elastomer. They focused on homogeneous instabilities only and did not include
inhomogeneous wrinkling-type modes. Wang et al. [31] observed experimentally that instabilities
occur in a substrate-bonded elastomer film immersed in a conductive solution sandwiched
between electrodes when the applied voltage exceeds a critical value. They predicted the critical
field for instability by comparing the potential energies in the wrinkled and flat states. However,
they did not consider the mechanical role of the conductive solution.

Su et al. [21] studied the nonlinear deformation and wrinkling behaviour of a dielectric
plate sandwiched between two compliant electrodes (figure 1a). They found that a superposed
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Figure 1. Loading scenarios for an electro-elastic plate. In (a) the electric field is generated by a potential difference between
two flexible electrodes coated on the main faces; in (b) the plate is immersed in a tank filled with silicone oil with the electric
field generated by two rigid electrodes placed at the top and bottom of the tank. (Online version in colour.)

mechanical load is required to induce wrinkling of the plate. In this paper, we consider a DE plate
immersed in silicone oil (figure 1b). In particular, we show that the plate can lose stability by
applying a voltage only, due to electrostriction.

Consider a rectangular electro-elastic plate with permittivity εd and with reference thickness
Hd. Following the application of an electric field, the resulting deformation is homogeneous and
defined in terms of the principal stretches λ1, λ2, λ3. The material is incompressible, so that the
change in thickness is defined by the stretch λ2 = λ−1

1 λ−1
3 . Hence, the deformed plate has uniform

thickness

hd = λ2Hd = λ−1
1 λ−1

3 Hd. (1.1)

For a DE plate immersed in a tank filled with silicone oil having an electric permittivity εf,
the electric field is generated by a potential difference, say V, between two fixed rigid electrodes
placed on the top and bottom of the tank. The distance between the two electrodes is constant
and denoted H. It follows that

E0Hd + E�(H − hd) = V, (1.2)

where E0 is the nominal electric field in the plate and E� denotes the electric field in the silicone
oil. Throughout the paper we use the star superscript � to denote quantities defined in the oil,
outside the region occupied by the plate.

The paper is organized as follows. In §2 we present the equations governing the equilibrium
of an electro-elastic plate and specialize the boundary conditions to the set-up considered here
(figure 1b).

Then, in §3, we extend the method of Su et al. [21] to include the effect of an exterior electric
field. Hence we consider a two-dimensional incremental displacement superposed upon the large
equi-biaxial deformation. Specifically, we look for small sinusoidal variations in the x1-direction
with exponential variation in the x2-direction and rewrite the incremental equations in the Stroh
form to solve the corresponding boundary value problem. We manage to factorize the resulting
wrinkling equation of the plate into symmetric and antisymmetric modes.

In §4 we consider the equilibrium of an equi-biaxially deformed electro-elastic plate and
its stability, when the material is modelled by the neo-Hookean dielectric model. We derive
explicitly the bifurcation criterion for neo-Hookean electro-elastic plates of finite thickness and
its specializations in the thin-plate and thick-plate limits. Our numerical results elucidate the
influences of the material properties of the silicone oil and of the elastomer on the nonlinear
response and on the instability behaviour of the electro-elastic plate. In particular we find
scenarios where the immersed plate (figure 1b) can be made to wrinkle by voltage alone, a
possibility that does not arise when there is no exterior field (figure 1a). We give concluding
remarks in §5.
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2. Large actuation
According to the nonlinear theory of electro-elasticity [32–34], for an incompressible dielectric
plate in mechanical and electrostatic equilibrium, we find that

τ11 − τ22 = λ1
∂W
∂λ1

, τ33 − τ22 = λ3
∂W
∂λ3

, D0 = − ∂W
∂E0

, (2.1)

where τii (i = 1, 2, 3) is the principal component of the total Cauchy stress tensor of the solid in the
xi-direction, W(λ1, λ3, E0) is the energy density of the elastomer and D0 is the non-zero component
of the nominal electric displacement field in the x2-direction inside the plate.

The true electric displacement D in the plate is connected to its nominal counterpart D0 by

D = λ−1
1 λ−1

3 D0 = −λ−1
1 λ−1

3
∂W
∂E0

. (2.2)

The normal component of the electric displacement, in the absence of free surface charge, is
continuous across a material interface. It follows that

D� = D = −λ−1
1 λ−1

3
∂W
∂E0

, (2.3)

where D� denotes the electric displacement in the silicone oil in the x2-direction. The electric field
in the silicone oil can now be determined as

E� = ε−1
f D� = −ε−1

f λ−1
1 λ−1

3
∂W
∂E0

, (2.4)

so that equation (1.2) reads

E0Hd − ε−1
f λ−1

1 λ−1
3

∂W
∂E0

(H − λ−1
1 λ−1

3 Hd) = V. (2.5)

For a given energy function W(λ1, λ3, E0), the nominal electric field in the plate E0 is then obtained
from equation (2.5).

The non-zero components of the Maxwell stress tensor in the silicone oil have the forms [26]

τ �
11 = τ�

33 = −τ�
22 = − 1

2εf

(
D�

)2 = − 1
2εf

λ−2
1 λ−2

3

(
∂W
∂E0

)2
. (2.6)

Assume that the plate is subject to in-plane biaxial nominal stresses s1 and s3 in the x1- and
x3-directions, respectively, with its main surfaces x2 = ±hd/2 being traction-free. The mechanical
continuity condition gives

s1 = λ−1
1

(
τ11 − τ�

11
)

, s3 = λ−1
3

(
τ33 − τ�

33
)

, τ22 = τ�
22. (2.7)

Finally, combining equations (2.1) and (2.7) yields the equations governing the nonlinear
response of the electro-elastic plate:

∂W
∂λ1

+ λ−1
1

(
τ �

22 − τ�
11

) = s1,
∂W
∂λ3

+ λ−1
3

(
τ �

22 − τ�
33

) = s3. (2.8)

3. Linearized stability analysis

(a) Stroh formulation
In this section we use the linearized incremental theory of electro-elasticity to predict the onset of
wrinkling instability for the actuated electro-elastic plate [25,29,35–38]. Here and in the following,
we use a superimposed dot to denote increments.

Superimpose a small-amplitude mechanical perturbation u = ẋ along with an updated
incremental electric field Ė upon the finitely deformed configuration. The corresponding updated
incremental electric displacement field is Ḋ. We look for incremental two-dimensional solutions
independent of x3. A simple analysis then shows that u3 = Ė3 = Ḋ3 = 0.
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The incremental electric field is irrotational and, therefore, it can be expressed as

Ė1 = − ∂φ̇

∂x1
, Ė2 = − ∂φ̇

∂x2
, (3.1)

where φ̇ is the incremental electric potential in the plate.
Following Su et al. [21], we seek solutions of the incremental equilibrium equations that vary

sinusoidally along the x1-direction with amplitude variations in the x2-direction. We use the form

{
u1, u2, Ḋ2, Ṫ21, Ṫ22, φ̇

} = �
{[

k−1U1, k−1U2, i�, iΣ21, iΣ22, k−1Φ
]

eikx1
}

, (3.2)

where Ṫ21, Ṫ22 are the components of the updated incremental nominal stress, U1, U2, �, Σ21,
Σ22, Φ are functions of kx2 only, and k = 2π/L is the wavenumber with L being the wavelength
of the wrinkles of the buckled plate.

It is convenient to rewrite the boundary value problem in the Stroh form:

η′ = iNη = i

[
N1 N2
N3 NT

1

]
η, (3.3)

where i2 = −1, N is the Stroh matrix, η = [U1 U2 � Σ21 Σ22 Φ]T is the Stroh vector [21,39], and
the prime denotes differentiation with respect to kx2. In what follows we use the notation η =
[U S]T, where U = [U1 U2 �]T and S = [Σ21 Σ22 Φ]T represent the generalized displacement and
traction vectors, respectively. Here we find that the 3 × 3 sub-blocks N1, N2 and N3 have the
components

N1 =

⎡
⎢⎣ 0 −1 + τ22/c 0

−1 0 0
0 dτ22/c 0

⎤
⎥⎦ , N2 =

⎡
⎢⎣1/c 0 d/c

0 0 0
d/c 0 d2/c − f

⎤
⎥⎦

and N3 =

⎡
⎢⎣−2(b + c − τ22) + e2/g 0 −e/g

0 −a + (c − τ22)2/c 0
−e/g 0 1/g

⎤
⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

where a, b, c, d, e, f , g are electro-elastic coefficients evaluated for a prescribed finite deformation
and for a given material model; see [21] for their general expressions.

Because the Stroh matrix N is constant, the solution to equation (3.3) is of the exponential form,

η(kx2) =
[

U(kx2)
S(kx2)

]
=

6∑
j=1

cjη
(j)eiqjkx2 , (3.5)

where cj, j = 1, 2, . . . , 6, are arbitrary constants to be determined and qj, j = 1, . . . , 6, are the
eigenvalues found by solving the characteristic equation

det
(
N − qI

) = 0. (3.6)

The eigenvectors η(j), j = 1, 2, . . . , 6, associated with qj are connected through the relation η(j) =
(η(j+3))∗, j = 1, 2, 3, where the asterisk denotes the complex conjugate. Note that for the model
used in the next section (neo-Hookean model) we have the connections qj = ipj and qj+3 = −ipj,
j = 1, 2, 3 with real pj.
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We now write the generalized displacement and traction vectors at the faces x2 = ±hd/2 in the
forms

[
U(khd/2)

U(−khd/2)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
(1)
1 E−

1 η
(2)
1 E−

2 η
(3)
1 E−

3 η
(4)
1 E+

1 η
(5)
1 E+

2 η
(6)
1 E+

3

η
(1)
2 E−

1 η
(2)
2 E−

2 η
(3)
2 E−

3 η
(4)
2 E+

1 η
(5)
2 E+

2 η
(6)
2 E+

3

η
(1)
3 E−

1 η
(2)
3 E−

2 η
(3)
3 E−

3 η
(4)
3 E+

1 η
(5)
3 E+

2 η
(6)
3 E+

3

η
(1)
1 E+

1 η
(2)
1 E+

2 η
(3)
1 E+

3 η
(4)
1 E−

1 η
(5)
1 E−

2 η
(6)
1 E−

3

η
(1)
2 E+

1 η
(2)
2 E+

2 η
(3)
2 E+

3 η
(4)
2 E−

1 η
(5)
2 E−

2 η
(6)
2 E−

3

η
(1)
3 E+

1 η
(2)
3 E+

2 η
(3)
3 E+

3 η
(4)
3 E−

1 η
(5)
3 E−

2 η
(6)
3 E−

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

and

[
S(khd/2)

S(−khd/2)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
(1)
4 E−

1 η
(2)
4 E−

2 η
(3)
4 E−

3 η
(4)
4 E+

1 η
(5)
4 E+

2 η
(6)
4 E+

3

η
(1)
5 E−

1 η
(2)
5 E−

2 η
(3)
5 E−

3 η
(4)
5 E+

1 η
(5)
5 E+

2 η
(6)
5 E+

3

η
(1)
6 E−

1 η
(2)
5 E−

2 η
(3)
5 E−

3 η
(4)
5 E+

1 η
(5)
5 E+

2 η
(6)
5 E+

3

η
(1)
4 E+

1 η
(2)
4 E+

2 η
(3)
4 E+

3 η
(4)
4 E−

1 η
(5)
4 E−

2 η
(6)
4 E−

3

η
(1)
5 E+

1 η
(2)
5 E+

2 η
(3)
5 E+

3 η
(4)
5 E−

1 η
(5)
5 E−

2 η
(6)
5 E−

3

η
(1)
6 E+

1 η
(2)
6 E+

2 η
(3)
6 E+

3 η
(4)
6 E−

1 η
(5)
6 E−

2 η
(6)
6 E−

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
c3
c4
c5
c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.8)

where η
(j)
i , i, j = 1, 2, . . . , 6 is the ith component of the eigenvector η(j), E±

j = e±pjkhd/2, for j =
1, . . . , 6, and the relation E±

j+3 = E∓
j , j = 1, 2, 3 holds. Su et al. [21] showed that for the neo-Hookean,

Mooney–Rivlin and Gent energy functions, the following relationships apply:

η
(j)
1 = −η

(j+3)
1 , η

(j)
2 = η

(j+3)
2 , η

(j)
3 = −η

(j+3)
3 ,

η
(j)
4 = η

(j+3)
4 , η

(j)
5 = −η

(j+3)
5 , η

(j)
6 = η

(j+3)
6 .

(3.9)

(b) Bifurcation equation for wrinkles
The total Cauchy stress tensor used in the Stroh matrix (3.4) has the form

τ22 = τ�
22 = 1

2εf
D2, (3.10)

with the incremental interfacial conditions at x2 = ±hd/2 given by

Ṫ21 = −τ�
11u2,1 + τ̇ �

21, Ṫ22 = −τ�
22u2,2 + τ̇ �

22,

Ḋ2 = Ḋ�
2 − D�u2,2, Ė1 = Ė�

1 + E�
2u2,1.

(3.11)

It is convenient to introduce the incremental electric potential in the silicone oil, denoted
φ̇�. The non-zero components of the incremental external electric field and the corresponding
incremental electric displacements are then calculated as

Ė�
1 = −∂φ̇�

∂x1
, Ė�

2 = −∂φ̇�

∂x2
(3.12)

and

Ḋ�
1 = −εf

∂φ̇�

∂x1
, Ḋ�

2 = −εf
∂φ̇�

∂x2
, (3.13)

respectively.
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Since the applied voltage is fixed, the boundary conditions on the top and bottom faces of the
tank read

φ̇� (x1, ±H/2) = 0. (3.14)

The incremental form of Maxwell’s equation outside the material simplifies to divḊ� = 0 and
the incremental electric potential φ̇� thus satisfies the Laplace equation

∂2φ̇�

∂x2
1

+ ∂2φ�

∂x2
2

= 0. (3.15)

It follows that the incremental electric potential for the silicone oil in the region H/2 ≤ x2 ≤ hd/2
is of the form

φ̇�
+(x1, x2) = k−1

(
C�

1ekx2 + C�
2e−kx2

)
eikx1 , (3.16)

where C�
1 and C�

2 are constants of integration, to be determined from the incremental interfacial
and boundary conditions.

Following Dorfmann & Ogden [26], we write the non-zero components of the associated
incremental Maxwell stress tensor as

τ̇ �
11 = τ̇ �

33 = −τ̇ �
22 = D

∂φ̇�+
∂x2

, τ̇ �
12 = τ̇ �

21 = −D
∂φ̇�+
∂x1

. (3.17)

Substitution of equations (2.3), (3.2), (3.13) and (3.16) into the interfacial conditions
equation (3.11)3 gives the connection

C�
1ekhd/2 − C�

2e−khd/2 = iε−1
f [DU1 (khd/2) − � (khd/2)] . (3.18)

Now substitution of equation (3.16) into the boundary condition (3.14) at x2 = H/2 yields

C�
1ekH/2 + C�

2e−kH/2 = 0. (3.19)

Finally, by solving equations (3.18) and (3.19) we obtain the two constants C�
1, C�

2 as

C�
1 = i [DU1 (khd/2) − � (khd/2)] ekhd/2

εf
(
ekhd + ekH

)
and C�

2 = − i [DU1 (khd/2) − � (khd/2)] ek(2H+hd)/2

εf
(
ekhd + ekH

) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.20)

Using equations (2.3), (3.2), (3.12), (3.13) and (3.16)–(3.20), we write the remaining interfacial
conditions (3.11)1,2,4 in an impedance form, as

S(hd/2) = i Z�
+U(hd/2), (3.21)

where

Z�
+ = ε−1

f

⎡
⎢⎣ D2 tanh [k (H − hd) /2] −iD2/2 −D tanh [k (H − hd) /2]

iD2/2 0 −iD
−D tanh [k (H − hd) /2] iD tanh [k (H − hd) /2]

⎤
⎥⎦ (3.22)

is a surface impedance matrix and S(hd/2) and U(hd/2) are the generalized displacement and
traction vectors at the face x2 = hd/2, respectively.

Similarly, the incremental electric potential φ̇� for the silicone oil occupying the region −hd/2 ≥
x2 ≥ −H/2 and satisfying the Laplace equation (3.15) has the form

φ̇�
−(x1, x2) = k−1

(
C�

3ekx2 + C�
4e−kx2

)
eikx1 , (3.23)

where C�
3 and C�

4 are constants, which can be determined similarly to C�
3 and C�

4, as

C�
3 = i [DU1 (−khd/2) − � (−khd/2)] ek(2H+hd)/2

εf
(
ekhd + ekH

)
and C�

4 = − i [DU1 (−khd/2) − � (−khd/2)] ekhd/2

εf
(
ekhd + ekH

) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.24)
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The interfacial conditions on the plate’s face at x2 = −hd/2 can then be rewritten as

S(−khd/2) = iZ�
−U(−khd/2), (3.25)

where

Z�
− = ε−1

f

⎡
⎢⎣−D2 tanh [k (H − hd) /2] −iD2/2 D tanh [k (H − hd) /2]

iD2/2 0 −iD
D tanh [k (H − hd) /2] iD − tanh [k (H − hd) /2]

⎤
⎥⎦ (3.26)

is a surface impedance matrix and S(−khd/2) and U(−khd/2) are the generalized displacement
and traction vectors on the face x2 = −hd/2, respectively.

Combining equations (3.7), (3.21) and (3.25) gives[
S(kh/2)

S(−kh/2)

]
= i

[
Z�+ 0
0 Z�−

][
U(kh/2)

U(−kh/2)

]

= i

[
Z�+ 0
0 Z�−

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η
(1)
1 E−

1 η
(2)
1 E−

2 η
(3)
1 E−

3 η
(4)
1 E+

1 η
(5)
1 E+

2 η
(6)
1 E+

3

η
(1)
2 E−

1 η
(2)
2 E−

2 η
(3)
2 E−

3 η
(4)
2 E+

1 η
(5)
2 E+

2 η
(6)
2 E+

3

η
(1)
3 E−

1 η
(2)
3 E−

2 η
(3)
3 E−

3 η
(4)
3 E+

1 η
(5)
3 E+

2 η
(6)
3 E+

3

η
(1)
1 E+

1 η
(2)
1 E+

2 η
(3)
1 E+

3 η
(4)
1 E−

1 η
(5)
1 E−

2 η
(6)
1 E−

3

η
(1)
2 E+

1 η
(2)
2 E+

2 η
(3)
2 E+

3 η
(4)
2 E−

1 η
(5)
2 E−

2 η
(6)
2 E−

3

η
(1)
3 E+

1 η
(2)
3 E+

2 η
(3)
3 E+

3 η
(4)
3 E−

1 η
(5)
3 E−

2 η
(6)
3 E−

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

c5

c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.27)

The decoupled bifurcation equations of the plate are then obtained from simple algebraic
manipulations [40] of equations (3.8) and (3.27). Considering antisymmetric modes only, we find∣∣∣∣∣∣∣

P11 P12 P13
P21 P22 P23
P31 P32 P33

∣∣∣∣∣∣∣ = 0, (3.28)

where

P1j = η
(j)
4 − D

2εf

{
Dη

(j)
2 + 2i

(
−Dη

(j)
1 + η

(j)
3

)
tanh [k(H − hd)/2] tanh(pjkhd/2)

}
,

P2j =
[
η

(j)
5 + D

2εf

(
Dη

(j)
1 − 2η

(j)
3

)]
tanh(pjkhd/2)

and P3j = η
(j)
6 + 1

εf

{
Dη

(j)
2 + i

(
−Dη

(j)
1 + η

(j)
3

)
tanh [k(H − hd)/2] tanh(pjkhd/2)

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Equation (3.28) is the bifurcation criterion for the antisymmetric wrinkling mode of instability, which
always occurs first [21,26,35].

4. Numerical results for neo-Hookean dielectric plates
Here we specialize the theory presented in §3 to equi-biaxial deformations (λ1 = λ3 = λ and s1 =
s3 = s) of a neo-Hookean electro-elastic plate. Full details are given in appendix A. The electronic
supplementary material contains all the Mathematica codes of the numerical calculations.

(a) Static response
The nonlinear response of an immersed neo-Hookean electro-elastic plate subject to a biaxial
deformation is given in terms of the non-dimensional in-plane nominal stresses s̄1 = s1/μ,
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Figure 2. The continuous and dashed curves represent the nonlinear responses of a neo-Hookean electro-elastic plate
immersed in silicone oil, for H̄ = 0.8 and H̄ = 0.3, respectively. The non-dimensionalized values of the equi-biaxial in-plane
stress are s̄= 0, 1, 2 and correspond to the red, orange and green curves, respectively. The panel on the left shows the Hessian
criterion and the loading curves for a permittivity ratio ε̄ = 0.1. The panel on the right depicts the V̄–λ curves for ε̄ = 0.6.
The Hessian criteria curves do not cross any of the loading curves and are therefore not included in the latter. (Online version in
colour.)

s̄2 = s2/μ and of the electric potential in appendix A (see equations (A 3) and (A 4)). Specializing
to equi-biaxial deformation, i.e. s̄1 = s̄2 = s̄ and λ1 = λ3 = λ, we obtain

V̄ =
[
H̄ (1 − ε̄) + ε̄λ2

]√
(s̄ − λ) λ5 + 1

(ε̄ − 1) λ8 , (4.1)

where V̄ = (V/H)
√

εd/μ is a non-dimensional measure of the applied voltage, μ is the shear
modulus of the solid in the absence of voltage, H̄ = Hd/H and ε̄ = εd/εf are the ratios of the initial
plate thickness to the distance of the electrodes and of the plate permittivity to that of the silicone
oil, respectively. The voltage-induced stretch of the plate λV is then obtained from equation (4.1)
for s̄ = 0.

It is well established that a pull-in instability of a neo-Hookean dielectric plate may be
triggered when the nonlinear V̄–λ response curve reaches a peak point [4,41]. From equation (4.1),
s̄ corresponding to the peak point dV̄/dλ = 0 is obtained as

s̄cr = 2
[
H̄ (ε̄ − 1)

(
λ6 − 4

) + ε̄λ2 (
λ6 + 2

)]
λ5

[
3H̄ (ε̄ − 1) + ε̄λ2

] . (4.2)

Inserting equation (4.2) into equation (4.1) then yields the Hessian criterion as

V̄ =

√√√√ [
H̄ (1 − ε̄) + ε̄λ2

]3 (
λ6 + 5

)
(ε̄ − 1)

[
3H̄ (ε̄ − 1) + ε̄λ2

]
λ8

. (4.3)

Equations (4.1) and (4.3) show that the response of the electro-elastic plate depends on the
values of H̄ and ε̄. In particular, from equation (4.1) we can see that when ε̄ = 1, the in-plane
nominal stress s̄ is not influenced by V̄ and the plate deformation is independent of the electric
field. When ε̄ = 0, Hd = H, equation (4.1) recovers the equation governing the static deformation
of DE plates with no exterior electric field, and (4.3) recovers its associated Hessian criterion [4].

The left panel in figure 2 displays the behaviour of an electro-elastic neo-Hookean plate
immersed in silicone oil with relative permittivity ε̄ = 0.1, for relative thickness values H̄ = 0.3
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Figure 3. The Hessian criterion and the nonlinear response curves of an immersed neo-Hookean electro-elastic plate with
H̄ = 0.8 and H̄ = 0.3 are depicted by continuous and dashed curves, respectively. The equi-biaxial in-plane stresses, in non-
dimensionalized form, are s̄= 0, 1, 2 and correspond, respectively, to the red, orange and green curves. The panel on the left
represents the behaviour for ε̄ = 1.5, the one on the right for ε̄ = 2. (Online version in colour.)

(dashed curves) and H̄ = 0.8 (solid curves). The non-dimensional in-plane pre-stresses s̄ = 0, 1, 2
are considered, shown by red, orange and green curves, respectively. The curves corresponding
to the Hessian criterion when H̄ = 0.3 (dashed curve) and H̄ = 0.8 (solid curve) are also displayed.
As an electric field is applied, the stretch increases until a homogeneous pull-in instability occurs
when the loading curve crosses the Hessian criterion. This occurs, for example, for s̄ = 0 and
H̄ = 0.8, but not for s̄ = 0 and H̄ = 0.3. The panel on the right shows the results corresponding
to ε̄ = 0.6. In that case, the curves corresponding to the Hessian criteria do not intersect any of the
three loading curves and for the sake of clarity are therefore not shown. The figures show that the
pull-in instability can be suppressed by increasing the value of ε̄ and/or reducing the value of H̄.
They also show that increasing values of ε̄ and/or H̄ stiffen the response, i.e. a larger potential is
needed to achieve the same deformation.

The dependence of the in-plane stretch λ on the non-dimensional form of the electric potential
V̄ for values of ε̄ = 1.5, 2 is shown in figure 3. In contrast to the behaviour depicted in figure 2,
the application of an electric field now induces a lateral contraction of the plate, as λ decreases with
increasing V̄. The initial response is monotonic until a critical point is reached when dV̄/dλ =
0. At this point the Hessian criterion indicates a ‘pull-out’ instability, with a uniform increase in
thickness accompanied by large lateral contraction. The system becomes more stable for lower
values of H̄ and ε̄.

(b) Wrinkling analysis
Specializing equation (A 7) to equi-biaxial deformation, and using equation (A 3), gives the
wrinkling criterion for the immersed plate as

V̄ =
[
H̄ (1 − ε̄) + ε̄λ2

]√
ε̄ tanh

[
π

(
H̄λ2 − 1

)
Hd/

(
λ2L)] + coth

[
πHd/

(
λ2L)]

√√√√(
λ6 + 1

)2 tanh
[
πHd/

(
λ2L)] − 4λ3 tanh (πλHd/L)

λ8 (ε̄ − 1)2 (
λ6 − 1

) . (4.4)
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Figure 4. The wrinkling behaviour of an immersed neo-Hookean electro-elastic plate with H̄ = 0.8 and ε̄ = 0.1. The solid
curves correspond to the thin- and thick-plate limits, the dashed black curve represents the behaviour when Hd/L= 0.2. The
initial state is obtained by the application of an electric potential with s̄= 0 and is depicted by a red dotted curve. It shows that
an exterior electric field has a stabilizing effect. The Hessian criterion indicates the onset of a pull-in instability and is depicted
by the blue dashed curve. (Online version in colour.)

The wrinkling criteria for thin and thick plates are obtained by evaluating (4.4) when Hd/L→ 0
and Hd/L→ ∞, respectively. For thin plates we have

V̄ =
[
H̄ (1 − ε̄) + ε̄λ2

]√
λ6 − 1

(ε̄ − 1)2 λ8
, (4.5)

while for thick plates we have

V̄ =
[
H̄ (1 − ε̄) + ε̄λ2

]√√√√ (ε̄ + 1)
(
λ9 + λ6 + 3λ3 − 1

)
λ8 (ε̄ − 1)2 (

λ3 + 1
) . (4.6)

Note that unlike the results in [21] (no exterior electrical field), the loading curve V̄–λ with no
in-plane pre-stresses is not equivalent to the wrinkling limit for plates with vanishing thickness.

Figures 4 and 5 summarize the response of an immersed neo-Hookean electro-elastic plate
with relative permittivity ε̄ = 0.1 and thickness ratio H̄ = 0.8. Figure 4, in particular, depicts the
Hessian criterion (4.3), the wrinkling criterion (4.4) for Hd/L= 0.2 and the criteria (4.5), (4.6) for
thin and thick plates, respectively. The initial state, depicted by a red dashed curve is obtained
from (4.1) with s̄ = 0. It shows that the electric field generated by V̄ induces a reduction in
thickness and by incompressibility, an equi-biaxial stretch λ. Consider, for example, the initial
state O of a thin plate with Hd/L→ 0 defined by point O in the right panel in figure 4. It shows
that an in-plane biaxial compression s̄ < 0 is required to induce the wrinkled state. This differs
from the behaviour of DE plates shown in figure 1a by Su et al. [21], where a thin plate buckles
immediately upon the application of a small compressive mechanical load. Alternatively, an in-
plane tensile stress deforms the plate from the initial state O to point B where the Hessian criterion
is met, resulting in uncontrolled uniform thinning. Of interest is the initial state defined by point
A and corresponding to an electric potential V̄ = 0.59. It shows that wrinkling occurs for in-plane
contraction with the magnitude a function of the ratio Hd/L. Maintaining V̄ = 0.59 constant, an in-
plane extension of sufficient magnitude will satisfy the Hessian criterion but wrinkling in tension
will not occur.
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Figure 5. The upper and lower panels show the ratioλcr/λV and the non-dimensional in-plane critical stress s̄cr as a function
of the thickness to wavelength ratio Hd/L for the electric potentials V̄ = 0.5 and V̄ = 0.61, respectively (plate immersed in
silicone oil). The solid curves represent the wrinkling behaviour in contraction and extension. The red dotted and blued dashed
curves show the initial state and the Hessian criterion, respectively. (Online version in colour.)

Figure 5 shows the ratio λcr/λV and the non-dimensional in-plane critical stress s̄cr as a function
of the thickness to wavelength ratio Hd/L for the electric potentials V̄ = 0.5 and V̄ = 0.61 using
solid curves to indicate wrinkling (here λcr is the critical stretch of wrinkling). In particular,
for V̄ = 0.5 wrinkling occurs in compression only with in-plane contraction and critical stress
increasing with Hd/L. For an electric potential V̄ = 0.61 the behaviour in compression is similar;
however, the behaviour in extension is different, with equi-biaxial deformation of sufficient
magnitude inducing uniform thinning when the Hessian criterion is met. For increasing values
of λ, wrinkling in extension occurs.

The initial state, the wrinkling behaviour for a plate with Hd/L= 0.2, and the thin- and thick-
plate limits are shown in figure 6 for ε̄ = 0.3, 0.6 and for H̄ = 0.3, 0.8. The initial state for a potential
difference V̄ is defined by stable biaxial stretch λ with magnitude influenced by ε̄ and H̄. Take,
for example, the initial state defined by λ = 2. The two panels on the left show that the required
potential difference increases with ε̄. On the other hand, the two panels on the right show that
a change in H̄ does not significantly influence the value of V̄ to obtain the initial deformation
λ = 2. A subsequently applied in-plane biaxial stress s̄ < 0, with V̄ constant, induces wrinkling
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Figure 6. Dependence of the non-dimensional electric potential V̄ on the in-plane stretch λ for values of ε̄ = 0.3, 0.6 and
H̄ = 0.3, 0.8. Specifically, the panel on the left shows the wrinkling behaviour and the initial state for ε̄ = 0.3, H̄ = 0.3, the
centre panel corresponds to ε̄ = 0.6, H̄ = 0.3 and the results on the right to ε̄ = 0.6, H̄ = 0.8. (Online version in colour.)
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Figure 7. The V̄–λ loading curves and the initial state of an immersed neo-Hookean electro-elastic plate for permittivity and
thickness ratios ε̄ = 2 and H̄ = 0.8, respectively. The solid curves depict the behaviour for the thin- and thick-plate limits, the
dashed curve corresponds to Hd/L= 0.2 and the dotted red curve represents the initial state when s̄= 0. (Online version in
colour.)

with the amount of contraction increasing with Hd/L. Alternatively, to keep λ = 2 constant when
the potential V̄ is increased requires an in-plane stress s̄ < 0. The graphs show that the increase in
V̄ inducing wrinkling, for λ = 2 constant, depends on ε̄ and that the influence of H̄ is minor.

Figures 7 illustrates the V̄–λ loading curves of an immersed electro-elastic plate for a relative
permittivity ε̄ = 2 and for a ratio of plate thickness to electrode distance H̄ = 0.8. In addition to the
wrinkling behaviour for thin- and thick-plate limits and for Hd/L= 0.2, figure 7 also depicts the
initial state obtained by a potential difference at the electrodes with s̄ = 0. As already shown in
figure 3, the potential difference at the electrodes, with s̄ = 0, induces an increase in plate thickness
and by incompressibility a biaxial contraction λ < 1. The initial state of a plate with Hd/L= 0.2,
for example, buckles at point A and can be stabilized by the application of an in-plane biaxial
tension s̄ > 0. For plates with Hd/L> 0.2 and with the electric potential constant and equal to
the one indicated by point A, an in-plane compression s̄ < 0 is necessary to induce a wrinkled
configuration. The electric potential V̄ corresponding to the initial state B induces a pull-out
instability in the plate (see figure 3).
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Figure 8. The panel on the left shows the initial state and the dependence of the non-dimensional electric potential V̄ on the
in-plane stretch λ for values of ε̄ = 1.5 and H̄ = 0.3. The panel in the centre is obtained when ε̄ = 2 and H̄ = 0.3 and the
results on the right correspond to ε̄ = 2 and H̄ = 0.8. (Online version in colour.)

The wrinkling behaviour for the thin- and thick-plate limits and for Hd/L= 0.2 as well as
the initial state are shown in figure 8 for ε̄ = 1.5, 2 and H̄ = 0.3, 0.8. The main difference from the
results in figure 6 is the use of larger values of ε̄. The results indicate that increasing the potential
difference at the electrodes, with in-plane stress s̄ = 0, induces wrinkles at point A for a plate
with Hd/L= 0.2 and at point B for the thick-plate limit. In particular, consider the initial state
defined by a biaxial stretch λ = 0.8. The three panels show a reduction in the electric potential
with increased values of ε̄ and H̄. An in-plane contraction or extension, superposed on the initial
state λ = 0.8, with V̄ constant, induces a wrinkled configuration depending on the specific value
of Hd/L. Figure 8 also shows that an in-plane tension s̄ > 0 must be superposed to keep the stretch
λ = 0.8 constant for increasing values of V̄.

5. Conclusion

(a) Results
This paper analyses the influence of an external field on the stability (Hessian criterion and
wrinkling bifurcation) of an electro-elastic plate subject to an in-plane equi-biaxial contraction
or extension. The plate is immersed in a tank filled with silicone oil with the electric field
generated by two fixed rigid electrodes placed on top and bottom of the tank. Provided the
plate thickness is small compared to the lateral dimensions, which we assume to be the case,
the electric field within the plate can be taken as uniform. We can then obtain the equations
governing the nonlinear response in terms of the non-dimensionalized in-plane nominal stress
s̄ and the potential difference V̄.

We find that the response of the immersed plate depends on the values of ε̄ = εd/εf, the
ratio of plate permittivity to that of the silicone oil, of Hd/L, the ratio of the plate thickness to
the wavelength, and of H̄ = Hd/H, the ratio of the initial plate thickness to the distance of the
electrodes. For example, an increase in the electric potential induces a thinning of the plate and
an accompanied lateral expansion when ε̄ = 0.1, 0.6, similar to the behaviour in the absence of
external field. But for the values ε̄ = 1.5, 2.0, the potential V̄ generates an increase in plate thickness
and therefore a lateral contraction.

First, we use the Hessian criterion to signal electro-mechanical instability. When the electric
field induces uniform thinning of the plate accompanied by a sudden increase in the in-plane
stretch λ, we have the well-known pull-in instability. However, the Hessian criterion also identifies
a pull-out instability, when the plate thickens with the electric field.

Then we derive incremental forms of the governing equations and boundary conditions in the
Stroh form and obtain the explicit bifurcation conditions for antisymmetric and symmetric modes.
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We focus on a neo-Hookean electro-elastic material with a deformation-independent permittivity
to illustrate the results.

For the immersed plate, the curve showing the electric potential V̄ versus the in-plane stretch λ,
with pre-stress s̄ = 0, no longer represents the wrinkling limit for plates with vanishing thickness.
Wrinkling in contraction or extension can now be delayed or suppressed by adjusting the values
of the ratios H̄, ε̄ and Hd/L. The activation protocol analysed in this problem can therefore be
used to optimize the design of electro-elastic sensors and actuators.

(b) Limitations
In this paper, we consider a two-dimensional incremental wrinkling deformation superposed
upon a large equi-biaxial deformation. It is two-dimensional in the sense that the incremental
fields depend on two space variables only, x1 and x2. It follows that on the plate surfaces at
x2 = ±Hd/2 we see a one-dimensional sinusoidal pattern emerge. In general, the deformed plate
may buckle in either a one- or two-dimensional wrinkling pattern, depending on the material
properties and loading conditions.

From a practical viewpoint, we assumed that the incremental loading and boundary
conditions superposed on the equi-biaxial deformed configuration cannot be exactly the same,
and that the wrinkles’ front is normal to the direction of the slightly larger load. Here we chose x1
as the normal to the wrinkles’ front, although we could have equally chosen any other direction
in the (x1, x3) plane (and obtained the same critical thresholds). To predict a two-dimensional
wrinkling pattern, a three-dimensional incremental analysis is required; see Su et al. [42] for an
example.

Note that we focused on the static wrinkling behaviour of electro-elastic plates, and that
viscosity [43] of the conductive fluid was not considered.

We also studied the Hessian instability, but did not look at other instability modes such as,
for example, the necking instability, see Fu et al. [44], and left aside the possibility of an electric
breakdown of the DE plate. For a detailed discussion on that latter topic, the interested readers
are referred to recent papers by Su et al. [21,41].
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Appendix A. Stroh method for a neo-Hookean electro-elastic plate
We restrict attention to an incompressible neo-Hookean electro-elastic plate with underlying in-
plane biaxial deformation λ1, λ3 and with out-of-plane stretch λ2 = λ−1

1 λ−1
3 . The Stroh method is

used to derive the bifurcation equation and details are provided.
Following [21] and [35], we consider an incompressible neo-Hookean electro-elastic material

with the energy function

W(λ1, λ3, E0) = μ

2

(
λ2

1 + λ2
3 + λ−2

1 λ−2
3 − 3

)
− εd

2
λ2

1λ
2
3E2

0, (A 1)

where μ is the shear modulus defined in the undeformed configuration and εd is the electric
permittivity. Then, the explicit expressions of the coefficients in (3.4) are

a = μλ2
1

(
1 − λ2

3Ē2
0

)
, b = μ

2

(
λ2

1 + λ−2
1 λ−2

3 − λ2
1λ

2
3Ē2

0

)
,
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c = μλ−2
1 λ−2

3 , d = μλ1λ3Ē0, e = 2d, f = g = −εd, (A 2)

where Ē0 = E0
√

εd/μ is the non-dimensional form of the nominal electric field in the plate.

(a) Static response
The nominal electric field component E0 is obtained from equation (2.5) using the energy function
(A 1). This component, in non-dimensional form, has the expression

Ē0 = V̄

H̄ (1 − ε̄) + ε̄λ1λ3
, (A 3)

where V̄ = V
√

εd/μ/H is the non-dimensionalized form of the electric potential, H̄ = Hd/H is the
ratio of the initial plate thickness to the distance of the electrodes and ε̄ = εd/εf denotes the ratio
of the plate permittivity to that of the silicone oil.

For the neo-Hookean electro-elastic material (A 1), the expressions of the in-plane nominal
stress components s1, s3 are obtained from (2.6) and (2.8). These are, in non-dimensionalized form

s̄1 = λ1 − λ−3
1 λ−2

3 − (1 − ε̄) Ē2
0λ1λ

2
3, s̄3 = λ3 − λ−2

1 λ−3
3 − (1 − ε̄) Ē2

0λ
2
1λ3, (A 4)

where s̄i = si/μ (i = 1, 3).

(b) Wrinkling stability analysis
The eigenvalues are obtained by solving equation (3.6), which can be written in compact form as

p1 = −p4 = λ2
1λ3, p2 = −p5 = p3 = −p6 = 1. (A 5)

The component forms of the corresponding eigenvectors η(i), i = 1, . . . , 6, are

η(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2iλ4
1λ

3
3

−2λ2
1λ

2
3

2i
√

εdμλ5
1λ

4
3Ē0

μλ4
1λ

2
3
[
λ2

3Ē2
0 (ε̄ − 2) − 2

] − 2μ

iμλ2
1λ3

(
λ4

1λ
4
3ε̄Ē2

0 − 4
)

2
√

μ/εdλ3
1λ

3
3Ē0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

η(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2iλ2
1λ

3
3

−2λ2
1λ

2
3

4i
√

εdμλ3
1λ

3
3Ē0

μ
(
λ4

1λ
4
3ε̄Ē2

0 − 4
)

iμλ4
1λ

2
3
[
λ2

3Ē2
0 (ε̄ + 2) − 2

] − 2μ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

η(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2iλ3
1λ

3
3Ē0

2λ3
1λ

3
3Ē0

i
√

εdμλ4
1λ

2
3
[
2 − λ2

3Ē2
0 (ε̄ − 2)

] + 2i
√

εdμ

−2μλ1λ3Ē0
(
λ4

1λ
4
3Ē2

0 − λ4
1λ

2
3 + 1

)
0

√
εdμλ4

1λ
2
3
[
λ2

3Ē2
0 (ε̄ + 2) − 2

] − 2
√

εdμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

η(4) =
(
η(1)

)∗
, η(5) =

(
η(2)

)∗
, η(6) =

(
η(3)

)∗
. (A 6)
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The wrinkling criterion for antisymmetric modes is obtained from (3.28) and has the explicit
non-dimensional form

Ē0 =
√

ε̄ tanh
[
π

(
H̄ − λ−1

1 λ−1
3

)
Hd/L

]
+ coth

(
πλ−1

1 λ−1
3 Hd/L

)
√√√√√

(
λ4

1λ
2
3 + 1

)2
tanh

(
πλ−1

1 λ−1
3 Hd/L

)
− 4λ2

1λ3 tanh (πλ1Hd/L)

λ4
1λ

4
3 (ε̄ − 1)2 (

λ4
1λ

2
3 − 1

) . (A 7)

The thin- and thick-plate wrinkling criteria are obtained by evaluating (A 7) for H/L→ 0 and
H/L→ ∞, respectively. In non-dimensional forms, these are given by

Ē0 =
√√√√ λ4

1λ
2
3 − 1

λ4
1λ

4
3 (ε̄ − 1)2 (A 8)

and

Ē0 =
√√√√ (ε̄ + 1)

[
λ2

1λ3
(
λ4

1λ
2
3 + λ2

1λ3 + 3
) − 1

]
λ4

1λ
4
3 (ε̄ − 1)2 (

λ2
1λ3 + 1

) . (A 9)

Equation (A 7), using the connection (A 3) with V̄ = 0, identifies a configuration where an
antisymmetric wrinkling mode may exist for a purely elastic plate.
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