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Abstract

New exact solutions are exhibited within the framework of finite viscoelasticity. More precisely, the solutions correspond
to finite-amplitude, transverse, linearly polarized, inhomogeneous motions superposed upon a finite homogeneous static
deformation. The viscoelastic body is composed of a Mooney—Rivlin viscoelastic solid, whose constitutive equation consists
in the sum of an elastic part (Mooney—Rivlin hyperelastic model) and a viscous part (Newtonian viscous fluid model). The
analysis shows that the results are similar to those obtained for the purely elastic case; inter alia, the normals to the planes
of constant phase and to the planes of constant amplitude must be orthogonal and conjugate with respgallipsbi,
whereB is the left Cauchy—Green strain tensor associated with the initial large static deformation. However, when the
constitutive equation is specialized either to the case of a neo-Hookean viscoelastic solid or to the case of a Newtonian viscous
fluid, a greater variety of solutions arises, with no counterpart in the purely elastic case. These solutions include travelling
inhomogeneous finite-amplitude damped waves and standing damped waves.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Hayes and Saccomaridj initiated the study of finite-amplitude waves in a simple class of viscoelastic materials
of the differential type with a special constitutive equation for the Cauchy stress tensor. For these materials, denoted
asMooney-Rivlin viscoelastic materials, the Cauchy stress tensor is split into an elastic part, which coincides with
the Cauchy stress tensor for a Mooney—Rivlin elastic material, and a dissipative part, which coincides with the
Cauchy stress tensor for a Newtonian fluid (linear in the stretching tensor). Coleman aifi@g] Madte the first to
investigate the possibility of splitting the Cauchy stress into an elastic part and a dissipative part, and Fosdick et al.
[3,4] also considered Mooney—Rivlin viscoelastic materials.

With respect to wave propagation, Hayes and Sacconjahdbtained all homogeneous plane waves that may
propagate in Mooney—Rivlin viscoelastic materials maintained in a static state of pure homogeneous deformation.
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Then they showe[b] that principal transverse homogeneous waves may propagate when superimposed on a special
class of pseudo-plane inhomogeneous steady motions. Finally, they considered antiplane shear waves superimpos
on a static biaxial stretc}®].

These resultfl,5,6] provide a formidable corpus of exact solutions that may be useful as benchmarks for more
complicated problems. Moreover, these solutions allow for a better understanding of the complex subject of non-
linear viscoelasticity7]. The aim of this note is to extend these results to the cas#ofnogeneous plane waves
that is, plane waves for which the planes of constant phase are not parallel to the planes of constant amplitude
Here we show that finite-amplitude, linearly polarized, transverse, inhomogeneous plane waves superimposed or
a generic homogeneous deformation are rare because two strict conditions must be met: first, the planes of con
stant phase must be orthogonal to the planes of constant amplitude; second, the equations of motion lead to a se
of two differential equations to be satisfied simultaneously. However, when the constitutive equation is special-
ized from Mooney—Rivlin to neo-Hookean viscoelastic materials and further, to viscous Newtonian fluids, then
these strict conditions disappear and many more exact solutions are obtained, including finite-amplitude inhomo-
geneous damped plane waves. A remarkable feature of the solutions is that although the static strains are finite
the viscoelasticity theory nonlinear, and the waves of a generic (separable) finite-amplitude inhomogeneous trav-
elling type, the governing equations nevertheless eventually reduce to alisebofifferential equations which
are solved exactly. No small parameters nor asymptotic expansions are required, in contrast with most studies
of finite-amplitude waves in solids (see Norfg for a review). The only restrictions lie with the specificity
of the constitutive equation and with the form of the finite-amplitude inhomogeneous plane waves. This work
follows the path laid out by Hadamaf@] for small-amplitude homogeneous plane waves in finitely deformed
compressible elastic materials; by Jofif®] and by Currie and Hayed 1] for finite-amplitude homogeneous
waves in deformed elastic compressible “Hadamard” materials and incompressible Mooney—Rivlin materials, re-
spectively; and by Destradé?] for finite-amplitude inhomogeneous waves in deformed elastic Mooney—Rivlin
materials.

The plan of the paper is the following. In the next section, we introduce the basic equations governing the constitu-
tive model of a Mooney—Rivlin viscoelastic material, and the propagation of finite-amplitude plane inhomogeneous
waves superposed on a large static pure homogeneous deformaBeaction 3the equations of motion are solved
and we find the conditions for the directions of polarization, of propagation, and of attenuation under which the
waves may propagat8ections 4 and &re devoted to the special cases of neo-Hookean viscoelastic materials and
of Newtonian viscous fluids.

2. Preliminaries
2.1. Constitutive equations
The elastic part of the model is characterized by the Mooney—Rivlin strain-energy dénsitich, measured
per unit volume in the undeformed state, is given by
2W = C(I —3) + D(l —3), (2.1)

where the constant§, D satisfyC > 0, D > 0 orC > 0, D > 0[13]. The sumC + D is the infinitesimal shear
modulus and,lll denote the first and second principal invariants of the left Cauchy—Green strain BersBF " :

| =trB, 2Il = (trB)? —tr(B?). (2.2)

The components of the gradient of deformatioare

0x;
Fin — i 2.3
A= 9X 4 ( )
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wherex; (i = 1, 2,3) are the coordinates at tinreof the point whose coordinates akg in the undeformed
reference configuration. The Mooney—Rivlin viscoelastic solid is incompressible, which means that only isochoric
deformations are possible; in other words, the condition:

detF = 1 (2.4)

must be satisfied at all times.
We assume thatP, the dissipative part of the stress, is given by

TP =L +L"), L=FF1 (2.5)
wherev > 0 is a constant. Thlooney—Rivlin viscoelastic congtitutive equation for the Cauchy stress tensbris
given by

T=—pl+CB—DB 14+ ulL +LT"), (2.6)

wherep is the indeterminate pressure introduced by the incompressibility cong@aljtto be determined from
the equations of motion and eventual boundary conditions.
We recall that in the absence of body forces, the equations of motion are

divT = p¥, @2.7)

wherep is the constant mass density of the material.

2.2. Transverse inhomogeneous motionsin a homogeneously deformed material

Consider a finite static isochoric homogeneous deformation defined by

where theFa are constant and dEt= 1. For the deformatiof2.8) bothB andB~! are constant and = 0. Then
the following constant Cauchy stress tensor:

T=—pol+CB—DB™!, po=const (2.9)

clearly satisfies the equilibrium equations: @iv= 0.
On this state of static deformation, superpose a finite motion taking the particte &t given by

X=x+af(b-x)g(n-x — vt). (2.10)

Here f and g are functions to be determined andb, anda are linearly independent unit vectors, such that
bxn#0b-a=n-a=0.The motion2.10)represents a transverse inhomogeneous plane wave, propagating
with speed in the direction oh, linearly polarized in the direction af When the wave is not damped, the amplitude
varies in the direction d; when the wave is damped, the amplitude varies in some direction iffmg-plane,
to be determined from the equations of motion. The case whée constant (homogeneous waves) has already
been considered by Hayes and Saccométjcdihe case of arlastic Mooney—Rivlin material { = 0 in (2.6)) has
been considered by Destrade].

For the motion(2.10) the deformation gradieffitis calculated using the chain rule as

F=FF, F:i=1+ fga®b+fga®n. (2.12)
Taking the tensor product of byl- fga® b —fga® n, we find the identity tensor, and so
Fl=F11 Fl=1-/fga®b-fga®n. (2.12)
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It follows that the left Cauchy—Green tenddiand its inversé&—1 are given by

B=FBF', B l=FTB 1 (2.13)
whereF~T is a shorthand notation fgFT)~1. Also, the time derivative of is given by

F= IEF, where F = —v(f'gda®b—fg’a®n). (2.14)
Hence, the velocity gradieht is here

[—EEl—FEl= _y[fda®b+fga®n] = E. (2.15)
Now the corresponding Cauchy stress teris¢say) takes the form:

T=—pl+CB—DB 14 ul +L"), (2.16)

where the scalap is to be determined from the equations of motion.

2.3. Equations of motion

In order to write the equations of motion, it proves practical to introduce the Piola—Kirchhoff stress Rensor
associated with the motio2.10) and defined when the static state of pure homogeneous finite deformation is
considered to be the reference configuration. Hence

Py = Tij IV'_'kjl = —l_ylv*"le + C]v*"ipok — DBHlﬁgl + Ulv*"ij Ivrkjl + VFki (2.17)

and the equations of motion read

32)_Ci 3P
—_— = 2.18
ar? X ( )
We introduce the real variables
:=b-X, n:=n.x sothatf= f(¢), g=gn—t). (2.19)

Now we compute in turn the terms ¢2.18) using the expansio(2.17) for Py. First, the left-hand side
term:

0°X; ,
TZ = pvfg’a;. (2.20)

Next, the first term on the right-hand side:

ApFgh AN o
- axkl =\ ) o~ = Pt Ponid By ™ = =p.cbi = pani (2.21)

where we used the Euler—Jacobi—Piola (EJP) identity for incompressible maﬁdfﬁ%xk = 0 in the first
equality, andyn; = arbr = 0 in the last.
Now, the second term on the right-hand side:

d(FipBp) (aﬁip

) Bp =[f"g(b-Bb) +2f'¢'(n - Bb) + fg’(n - Bn)]a;. (2.22)
Xy Xy
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Then, the expansion of the third term on the right-hand side requires the EJP identity:

(B Fgh) ot ., [0By*
= Fg~= 8
00Xy 0Xp | ox
aBij_l 7 -1 /) -1 /) -1 /" -1
=, = [fs@BTb)y+ fgn-Bmlbi —[fg(@ B ) +1g (n- B n)]n;
J
—[f"g+2f'¢'(n-b) +1g"1B  a; + [2f f"g* + Bf %+ f")ag (n - b) + ff (g

+gg")](@- B ra)b; + [2f%¢'s" + ' (3g? +9g")(n - b) + (f? + ff")gg(a- B~ tayn;.

(2.23)
The expansion of the fourth term on the right-hand side also involves the EJP identity:
M i 1 ¢ -1
a(Fij ij ) aFij —1 1" 7 ’ fo” —1
™ =\ o Fyg~ = —ulf"g'bxbj + 8" (nibj + bxnj) + 19" nin jlai Fiy
=—v[f"g +2f'¢"(n-b) +1g"]a:. (2.24)
Finally the fifth and last term on the right-hand side turns out to be zero:
oy
Bxki = —u[f"g'bragb; + f'¢"nxarbi + f'g"bragn; + 9" nrarni] = 0, (2.25)
k

becauseyn; = aiyby = 0.

Now we proceed to the resolution of the equations of mofh8)using(2.17), (2.20)—(2.25We treat in turn
the cases of a Mooney-Rivlin viscoelastic materak{ 0, D > 0, v > 0), of a neo-Hookean viscoelastic material
(C >0, D=0,v > 0), and of a Newtonian viscous fluid’'(= 0, D = 0, v > 0).

3. Mooney—Rivlin viscoelastic solid
3.1. Orthogonality of n and b

Destradd12] proved that finite-amplitude inhomogeneous plane waves of evanescent sinusoidal type may prop-
agate in a homogeneously deformed Mooney—Riglastic material only when the planes of constant phase are
orthogonal to the planes of constant amplitude. Here we prove that this result is not affected by the ad@it)n in
of aviscous part to the Cauchy stress.

Take the superposed motiarf(b - x)g(n - x — vt) in (2.10)to be of evanescent sinusoidal type:

f=ae ¢ g=2Bcoswv i(n —1t), (3.1)

where the amplitudes, 8, the frequencyn, and the attenuation facterare arbitrary real scalars. Then, leaving
aside the pressure terr& 21)for the time being, we find by inspection (#.20), (2.22)—(2.25)hat all the other
terms appearing in the equations of mot{@ri 8)can be decomposed along the set of linearly independent functions
e~ ¢ coswv (5 — vt), €% sinwv~1(n — vt), €299 cos v~ L(n — vt), € 29%¢ sin 2wv 1 (5 — vt), and e2*¢,

The only terms along this latter (time-independent) function come from the decompd@2i@3j) where we have

2f/f//g2 + ﬁ:/g/z — _2a2’32w30_(20_2 + v—2) e—Zwa{ + ...
and ff'(3g"2 4+ gg’) = —4a?pPwiov2e 2 4 ... (3.2)
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Here the ellipses stand for terms proportional to time-dependent functions. It follows from the equations of motion
that p must also be of this form:

P = —a?pl’pre ot 4 ... (3.3)
wherep is constant. Then the time-independent part of the equations of m@tib8)is simply

0=[-p1+ D%+ v (@ -Bta)b+2Dv2(n-b)@@ B ta)n. (3.4)
Becausen andb cannot be parallel for the motig.10)to be inhomogeneous, we conclude that= D(202 +
v=2)(a- B~1a) and that

n-b=0. (3.5)
This important result, established[it2] for a Mooney—Rivlin elastic solid, still holds when the solid is viscoelastic
with a constitutive equation of the for2.6) because as we just saw, the viscous tefn24) contribute to the
equations of motion only with time-dependent functions. Turning back to a general inhomogeneous motion of the
form (2.10) this result leads us to assume that here alsmdb are orthogonal, so thath(b, a) is an orthonormal
basis. Accordingly, some simplifications occur in the equations of motion.

We introduce the notation:
pv? == C(n-Bn) + D(a-Bta) > 0, pv? ;= C(b-Bb) + D(a-B1a) > 0, pb = C(n - Bb).
(3.6)

Herev, (vp) is the speed of a homogeneous finite-amplitude plane wave propagating in the directi¢) ahd

polarized in the direction o, as proved by Boulanger and Hayd8]. Then the projection of the equation of
motion(2.18)alonga is written in compact form as

pvi g+ 2pbt'g’ —wu(fg” + f'g) + p(v3 — vAfg’ = 0. (3.7
Finally, the projections of the equations of moti@l8)alongn and alongo yield expressions for the derivatives
D.pandp ¢, writing p ,r = p 5 Qives[12]:

(f///g _"_ f/g//)(a . Bfln) _ (f//g/ + fg///)(a . Bflb) _"_ [(f/f// _ ﬁ///)gg/ _ (g/g// _ gg///)ﬂ: /] (a . Bfla) — 0

(3.8)

Hence the propagation of finite-amplitude, linearly polarized, transverse, plane waves in a deformed Mooney—Rivlin
viscoelastic solid is governed by two equations: the “balance equdBoryand the “compatibility equation(3.8),
to be solved simultaneously.

3.2. Derivation of the solutions
First divide(3.7) by f(¢)g'(n — vt) to get

4 / n /! 1

2/ 8 f g f 2_ 28

oV ——+2pb——vv(—+—>+p(v —v9)= =0. (3.9)
"re f g f " g

Then differentiate first with respect to the argumenyohext with respect to the argumentgfto obtain

() () -

so that eitherf” /f or g/g’ is a constant. The following cases cover all possibilities:
. f‘// 2 i f‘// 5 g/
(i) — = —k7, (i) — = k7, (i) = = k. (3.11)
f ' fot g
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Without loss of generality, we pidky > 0 in Case (i) and in Case (ii); in Case (iii) we take> 0 to avoid solutions
which grow exponentially with time (note that the forthcoming analysis can also be conducted to accomodate
solutions which do grow exponentially with time). We treat each case in turn, keeping in ming thast be
trigonometric whery is exponential andice versa, for the motion to be inhomogeneoi<].

Case (i): f(¢) = Acoski¢ + Bsinkje.

Substitution of this form of solution into the balanegquation (3.9)and differentiation with respect to yields
pb(f'/f) =0 and so,

n-Bb=0. (3.12)
This condition means that the unit vectorandb must be conjugate with respect to the central elliptical section of
the B-ellipsoid,x - Bx = 1, by the plane orthogonal o Being orthogonal, they must be along the principal axes

of this ellipse.

Then the balancequation (3.7jwith b = 0) gives a third order linear differential equation for
wg” — p(vZ —v?)g" — k3wg + kZpuig = 0. (3.13)

On the other hand, the compatibilgguation (3.8)vritten as an identity for cadls ¢, sink1Z, cos Z1¢, and sin 21¢
yields

¢¢ —99”" =0, (¢ —kg)@-Bln)=0, (¢ —k3¢)a B b =0. (3.14)
These three equations are satisfied simultaneously either wheff ea)kfg or (b) g’ /g = const,a-B~In =

a-B b =0.
In Case (ia) ¢ is an exponential function. Discarding solutions which blow up with time, we find

g(n — vt) = 17, (3.15)
Substitution into the third-order differentiafuation (3.13jixesv as
pv? = p(v2 — v2) = C[(n - Bn) — (b - Bb)]. (3.16)

The quantityv is real whem andb are in the respective directions of the minor and major axes of the elliptical
section of theB-ellipsoid by the plane orthogonal o
In Case (ib) g is of the form:

g(n —vt) = 2017, (3.17)

wherek, > 0 to avoid blowing-up solutions. The conditions rb, a, together with(3.12), imply that these unit
vectors are alongrincipal directions of theB-ellipsoid. Substitution into the third-order differentejuation (3.13)
relatesk; to k, through

K2 = p(v2 — v?) — kv
1=

k3. 3.18
pv,% — kovv 2 ( )

Recall thatk; is assumed real so that, in order to construct a solution here, we may pick any valkes-forand
for v > 0, as long ap(v2 — v?) — kovv andpv? — kovv are of the same sign, whewg, v, are given by(3.6) with
n, b, a along principal directions of thB-ellipsoid. Thenk; is given by(3.18)

Case (ii): f(¢) = Acoshk1¢ + Bsinhki¢.

Substitution of this form of solution into the balaneguation (3.9and differentiation with respect topyields the
condition(3.12)as in Case (i).
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Then the balancequation (3.8)with » = 0) gives a third-order linear differential equation gor

/1!

wg” — p(v?2 — v?)g" 4 k2vug — k2 pv2g = 0. (3.19)
Also, the compatibilityequation (3.8yvritten as an identity for cosh ¢, sinhk1¢, cosh Z1¢, and sinh 21¢ yields
g€’ —09" =0, (+Kg@ B )=0 (¢"+ig)@ B b =0 (3.20)

These three equations are satisfied simultaneously either whefi éa)—k%g or (b) g’/g = const.,a-B~1n =
a-B b =0.
In Case (iia) ¢ is of the form:

g(n — vt) = dq coski(n — vt) + d2 Sink1(n — vt), (3.21)

and substitution into the third-order differenteduation (3.19Jixesv again ag3.16), v? = v2 — v2.

In Case (iib),g is of the formg = d1 coska(n — vt) + d2 Sink2(n — vt), whereky is arbitrary. The conditions on
n, b, a, together with(3.12)imply that these unit vectors are along principal directions. Then substitutipimtd
the third-order differentiabquation (3.19yives

wk? — k3)g' — plkZv2 — k3(v2 — 1%)]g = 0. (3.22)

This equation is satisfied fartrigonometric and # 0 only when the respective coefficientsgoindg’ are zero,
conditions which lead back to a solution of the fof&21)andv uniquely determined bg3.16) The existence of
these ‘special principal motions’ is therefore more limited than when the solid is purely ¢l&qtlmecause there
they may propagate at an arbitrary speetthin the interval [Q v, ].

Case (iii): g(n — vt) = k20—,

Substituting this form of solution into the balanegquation (3.7)we obtain a second-order linear differential
equation forf:

(pv2 — kovv) £ + 2kppbf’ + k3[p(v2 — v?) — kavv] f = 0. (3.23)
Also, the compatibilityequation (3.8yeduces to
(f"+k3f)@-B™In) — ka(f" + k2 pH(@- B~ tb) + ko(f' f" — ") (@a- B La) &2~V = 0, (3.24)

Differentiating this equation with respect ¢g — vt), we find thatf”/f = const. This constant must be negative
so that the combination of andg represents an inhomogeneous mofib2]. But if f is trigonometric, then the
second order differenti@quation (3.23fan be satisfied only whesb = C(n - Bb) = 0, which leads us back to
Case (i) and the solutior{8.15) and (3.16fnonprincipal motions) an¢B.17) and (3.18Jprincipal motions).

3.3. Summary of results and comparison with the purely elastic case

For a deformeddastic Mooney—Rivlin material, Destradd 2] proved that only two types of finite-amplitude
inhomogeneous motions are possible: eitfié trigonometric ang is exponential:

f(0) = a1 cosk1l + apsink1r,  g(n — vt) = dq 207 (3.25)
or f is hyperbolic ang; is trigonometric:
f(©) = a1 coshky¢ + ap sinhk1g, g(n — vt) = d1 coska(n — vt) + da Sinka(n — ot), (3.26)

whereas, az, d1, do are constants ang is arbitrary.
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When the vectorga, b, n) are not aligned with the principal axes of deformation, then the quartkitiesdv are
determined by

k1= ko, pv? = p(v2 — v2) = C[(n - Bn) — (b - Bb)] (3.27)

and the unit vectora andb must be conjugate with respect to tBeellipsoid,x - Bx = 1, that is the condition
(3.12)must be satisfied.

When the vectorga, b, n) are aligned with the principal axes of deformation (‘special principal motions’), then
the quantityy may takeany value within the interval [Qv,] andk; is given by

K= g2 (3.28)

Here we saw that the corresponding results for a defowisedel astic Mooney—Rivlin material are essentially the
same as above, with the following difference. When the three veatbra are not aligned with the principal axes
of deformation, then the solution is indeed of the fof®i25)—(3.27)with the condition(3.12) However, when
all three vectors, b, n are aligned with the principal axes of deformation, then the solution is of the (&i26)
and (3.26)out: whenf is trigonometric ang is exponential as i3.25) thenk is given by(3.18) andv, k2 are
arbitrary as long akf is positive; wheny is hyperbolic ang; is trigonometric as ir{3.26), thenv are determined
by (3.16)that is,v is fixed and no longer arbitrary as in the elastic case.

Now we see that wheP = 0, the viscoelastic solid allows more solutions than its elastic counterpart.

4. Neo-Hookean viscoelastic solid

WhenD = 0(C # 0) the strain-energy densit®.1)reduces to the well-known neo-Hookean form. A great variety
of exact solutions is uncovered, in particular solutions in the form of finite-amplitude damped inhomogeneous waves.
Note that this problem was recently studied in ghestic compressible case by Rodrigues Ferreira and Boulanger
[14].

We start with the equations of motid@.18) written at D = 0. The unit vectord andn are not necessarily
orthogonal but the triada( b, n) is composed of linearly independent vectors, so that the coefficients along each
vector in the equations of motion are all zero. The coefficients abosugdn are, respectively:

0=—py, 0=-p, 4.1

from which we deduce thgi = const satisfies this part of the equations of motion. The other part, adpig
independent op and reads

p(v? —v2)fg" — pu f'g — 20bF g’ + vl f"g +2f'g"(n - b) +1g"] =0, (4.2)
where the quantities

pv2=Cn-Bn>0, p?=Cb-Bb>0, pb=Cn-Bb, (4.3)
were used.

Now divide (4.2) by f(¢)g'(n — vt) and differentiate, first with respect toand then with respect t@ — vt), to
obtain the necessary condition:

AN >\’ AN AN
,ov,f (f—) <é/) =2vw(n-h) <L> (g_/) . (4.4)
f g A g
We separate the functions of different variables in this equation to conclude that either

<£) <§> =0, or pvi(fﬁ/f)/ = 2w(n - b) (&"/8)" _ const (4.5)
f g 10 (8/8
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The following cases cover all possibilities:
(i) f'=kf, (i) §' = kog (4.6)

and (iii) ,ovif” —kif' —ksf =0, 20v(n-b)g” — kog' — k1g = 0, whereky, ko, k3 are constants. In fact, using
expressions for”, ¢”, andg” derived from (iii), and substituting int@.2), it is straightforward to check that Case
(iii) leads to Cases (i) or (ii). In Case (i) we have

P .2 2 P v% 2
fO =expad, g+ [0 )+ 2am-b)|¢ +ki (i -22b) ¢ —pthEg=0.  (47)
Vv Vv Vv
In Case (ii) we have

g(n — vt) = explka(n — vb)],
(pv2 — kyvv) £ + 2ko[ pb — vuka(n - )] £/ — k3[p(v? — v2) 4 vvkg] f = 0. (4.8)

Now consider(4.7) in greater detail. The characteristic equation associated with the third-order differential
equation forg is a cubic. Depending on the values of the coefficients (that is, on the choiaearidk;), the cubic
has either only real roots or one real root and two complex conjugate roots. Real roots lead to a homogeneous motior
and must be discarded. Pure-imaginary roots lead to inhomogeneous plane waves with attenuation in the directior
of b and propagation in the direction nf Nonpure-imaginary complex roots lead to inhomogenelangped plane
waves with attenuation in the plane lpfandn, exponential damping with time, and propagation in the direction
of n. Because or k1 may be prescribed a priori, there is an infinity of such solutions, of which we present one
explicitly.

We choose such that the coefficient gf’ in (4.7), is zero, that is we fix as

pv = pvo = kaw(n - b) + /Tkav(n - D)I2 + (ov,)2 (4.9)
Then(4.7)reduces to
" b ,01)2
¢" 4+ Pog —veg=0, Po=ki (kl—Zp—>, yo=ki—%, (4.10)
vug vug

Now we seek a solution in the form:
g(n — vor) = €017 coswg(n — vob), (4.11)

whereig andwq are real constants determined as follows. Substitudniyl)into (4.10) we find in turn thatog
andag satisfy

w3 =343+po, 83+ 2Boro+y0=0. (4.12)

The real root of the cubic ing is

1 1/3 ~1/3
o= 25 |:12\/12,3(3)T1y0 - 1083/0] ~ fo [%/M - 108;/0} . (4.13)

Thatwq is real is ensured for instance wheg > 0 (seeEq. (4.12)). A few lines of calculation show that a sufficient
condition for g to be positive is
) (2pb)? 4pC(n - Bb)2
> = .
17 22 +4b(n-b)] ~ v2[(n-Bn) +4(n-Bb)(n - b)]

Thus for anyarbitrary value ofk4 satisfying this inequality, the following finite-amplitude damped inhomogeneous
plane wave may propagate in a deformed neo-Hookean viscoelastic body:

(4.14)

X = X + aaekib+iomx=1ov! cogy(n - X — vof), (4.15)
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wherex is given by(2.8), « is arbitrary, the orientation of the triad of unit vectes, n (b andn orthogonal to
a) is arbitrary, andvg, wo, anduvg are given by(4.13) (4.12), and(4.9), respectively. The wave propagates in the
direction ofn, is exponentially damped with time, and is attenuated in the directiépof- Aon.

To conclude this section, we point out that inspectiorf4ofl) makes it clear that a neo-Hookean viscoelastic
constitutive equation yields more inhomogeneous waves than a neo-Hookean elastic constitutive equation, where
v=0.

5. Newtonian viscous fluids

With C = D = 0, Eq. (2.6)is the constitutive relation defining an incompressible Newtonian viscous fluid of
viscosityv, and(2.7), or their specializatioif4.2) at C = 0, are the (Lagrangian) Navier—Stokes equations in the
absence of body forces for the finite-amplitude inhomogeneous plane(@a that is g + [2(n - b) ' +
(pv/v) flg” + fg” = 0. Integrating with respect to the argumentgadind taking the constant of integration to be
zero for simplicity, we obtain

flg+[2m-bf + 2 r ¢ +1g' =0, (5.1)

With methods similar to those presented in the two previous sections, it is a straightforward matter to show that
either f or g are pure exponential functions that is, either

/ v
f©) =expkay) and ¢+ [2ka(n-b)+ %] g +k2g =0, (5.2)
or
11 / pv
g(n— vt) = explka(n — )] and f” + 2ka(n - b) £+ k2 (7 +ke) f =0, (5.3)
wherek1, ko are arbitrary constants. The latter case represents a standing damped wave, whatever thg form of

may be. The former is a travelling inhomogeneous damped wave as long as the characteristic equation associated
with the second-order differential equation fohas complex roots. This condition reads

0 < pv < 2k1v[l — (n - b)] =: pvo. (5.9

Hence the constants andv arearbitrary as long a1 is positive and is less thang defined above. The following
displacement field is solution to the Navier—Stokes equations for any orientation of the pair of unit véxtors
in the planea - x = 0 (which may be taken without loss of generalityzas 0 say, because the fluid is isotropic):

u =0, up =0, ug = elbXEVIEMX=WI 4 cogk (N - X — vt) BSinkyie(n - X — wt)], (5.5)

whereA, B are constants andis defined by

2
— l1_1m. v
K= \/1 [(n b) + 2klv} . (5.6)

This finite-amplitude wave propagates in the directiom afith speedv and wave numbek;«, is damped expo-
nentially with respect to time, and is attenuated in the directiom ¢f+/1 — «2n. The angled (say) between the
normal to the planes of constant phase and the normal to the planes of constant amplitude is given by

cot9=n-b+\/1—/c2=2(n-b)+lf—v. (5.7)
1V

Note that Boulanger et gL 5] also investigated the possibility of linearly polarized, damped, inhomogeneous plane
wave solutions to the Navier—Stokes equations. However, they prescribed a priori the form of the solution. The result
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presented above allows for a greater variety of solutions, in the same manner that starting from a finite-amplitude
wave in the form(2.10)where f andg are unknown functions, rather than prescribed as exponential and sinusoidal
functions, allowed Rodrigues Ferreira and Boularigdi to find more solutions than Destraflés] in the elastic
neo-Hookean case.

We also note that the solutions found here for the Navier—Stokes equations are a generalization of the celebrate
Kelvin modes [17]. These are disturbances in the form of homogeneous plane waves of particular interest in the
stability study of basic flows characterized by spatially uniform shearing rates, i.e. self-equilibrated homogeneous
motions[18]. This is because Craik and Crimin§l®] have shown that the superimposition of a single Kelvin mode
to the above mentioned basic flows is an exact solution of the full Navier—Stokes equations. It would be interesting
to investigate if the superimposition of our solutions to homogeneous self-equilibrated motions will give some new
exact solutions for the Navier—Stokes equations, but this investigation is outside the framework of the present paper

Acknowledgements

We thank Elizabete Rodrigues Ferreira and Philippe Boulanger for providing a preptifi pfior to publication.
We are very grateful to Michael A. Hayes and to the referees for valuable suggestions. For GS, this work was partially
supported by Gruppo Nazionale di Fisica Matematica of Italian INDAM and by PRINEo@demi Matematici
Non Lineari di Propagazione e Stabilita nel modelli del Continuo.

References

[1] M.A. Hayes, G. Saccomandi, Finite amplitude transverse waves in special incompressible viscoelastic solids, J. Elast. 59 (2000) 213-225.
[2] B.D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys. 33 (1961) 239-249.
[3] R.L. Fosdick, J.-H. Yu, Thermodynamics, stability and non-linear oscillations of viscoelastic solids. I, Int. J. Non-Lin. Mech. 31 (1996)
495-516.
[4] R.L. Fosdick, Y. Ketema, J.-H. Yu, Vibration damping through the use of materials with memory, Int. J. Solids Struct. 35 (1998) 403-420.
[5] M.A. Hayes, G. Saccomandi, Finite amplitude waves superimposed on pseudoplanar motions for Mooney—Rivlin viscoelastic solids, Int.
J. Non-Lin. Mech. 37 (2002) 1139-1146.
[6] M.A. Hayes, G. Saccomandi, Antiplane shear motions for viscoelastic Mooney—Rivlin materials, Quart. J. Mech. Appl. Mech., in press.
[7] R.W. Ogden, Inelasticity of rubber, in: G. Saccomandi, R.W. Ogden (Eds.), Thermomechanics of Rubber-like Materials: CISM Courses
and Lectures Series 452, Springer, Wien, 2004 (Chapter 4).
[8] A. Norris, Finite amplitude waves in solids, in: M.F. Hamilton, D.T. Blackstock (Eds.), Nonlinear Acoustics, Academic Press, San Diego,
1998, pp. 263-277 (Chapter 9).
[9] J. Hadamard, Lecons sur la propagation des ondes et les équations de I'’hydrodynamique, Hermann, Paris, 1903.
[10] F. John, Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials, Commun. Pure Appl. Math. 19 (1966)
309-341.
[11] P.K. Currie, M. Hayes, Longitudinal and transverse waves in finite elastic strain. Hadamard and Green materials, J. Inst. Math. Appl. 5
(1969) 140-161.
[12] M. Destrade, Finite-amplitude inhomogeneous plane waves in a deformed Mooney-Rivlin material, Quart. J. Mech. Appl. Math. 53 (2000)
343-361.
[13] Ph. Boulanger, M. Hayes, Further properties of finite-amplitude plane waves in deformed Mooney—Rivlin materials, Quart. J. Mech. Appl.
Math. 48 (1995) 427-464.
[14] E. Rodrigues Ferreira, Ph. Boulanger, Finite-amplitude damped inhomogeneous waves in a deformed Blatz-Ko material, Mech. Math.
Solids, in press.
[15] Ph. Boulanger, M. Hayes, K.R. Rajagopal, Some unsteady exact solutions in the Navier—Stokes and the second-grade fluid theories, Stabil
Appl. Anal. Contin. Media 1 (1991) 185-204.
[16] M. Destrade, Finite-amplitude inhomogeneous plane waves in a deformed Blatz-Ko material, in: E. Croitoro (Ed.), Proceedings of the First
Canadian Conference on Nonlinear Solid Mechanics, University of Victoria Press, Victoria, 1999, pp. 89-98.
[17] L. Kelvin, W. Thomson, Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates, Phil. Mag. 24 (1887)
188-196.
[18] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, 2nd ed., Springer, Berlin, 1992.
[19] A.D.D. Craik, W.O. Criminale, Evolution of wavelike disturbances in shear flows: a class of exact solutions in the Navier—Stokes equations,
Proc. Roy. Soc. London, Ser. A 406 (1986) 13-26.



	Finite-amplitude inhomogeneous waves in Mooney-Rivlin viscoelastic solids
	Introduction
	Preliminaries
	Constitutive equations
	Transverse inhomogeneous motions in a homogeneously deformed material
	Equations of motion

	Mooney-Rivlin viscoelastic solid
	Orthogonality of n and b
	Derivation of the solutions
	Summary of results and comparison with the purely elastic case

	Neo-Hookean viscoelastic solid
	Newtonian viscous fluids
	Acknowledgements
	References


