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Abstract

New exact solutions are exhibited within the framework of finite viscoelasticity. More precisely, the solutions correspond
to finite-amplitude, transverse, linearly polarized, inhomogeneous motions superposed upon a finite homogeneous static
deformation. The viscoelastic body is composed of a Mooney–Rivlin viscoelastic solid, whose constitutive equation consists
in the sum of an elastic part (Mooney–Rivlin hyperelastic model) and a viscous part (Newtonian viscous fluid model). The
analysis shows that the results are similar to those obtained for the purely elastic case; inter alia, the normals to the planes
of constant phase and to the planes of constant amplitude must be orthogonal and conjugate with respect to theB-ellipsoid,
whereB is the left Cauchy–Green strain tensor associated with the initial large static deformation. However, when the
constitutive equation is specialized either to the case of a neo-Hookean viscoelastic solid or to the case of a Newtonian viscous
fluid, a greater variety of solutions arises, with no counterpart in the purely elastic case. These solutions include travelling
inhomogeneous finite-amplitude damped waves and standing damped waves.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Hayes and Saccomandi[1] initiated the study of finite-amplitude waves in a simple class of viscoelastic materials
of the differential type with a special constitutive equation for the Cauchy stress tensor. For these materials, denoted
asMooney–Rivlin viscoelastic materials, the Cauchy stress tensor is split into an elastic part, which coincides with
the Cauchy stress tensor for a Mooney–Rivlin elastic material, and a dissipative part, which coincides with the
Cauchy stress tensor for a Newtonian fluid (linear in the stretching tensor). Coleman and Noll[2] were the first to
investigate the possibility of splitting the Cauchy stress into an elastic part and a dissipative part, and Fosdick et al.
[3,4] also considered Mooney–Rivlin viscoelastic materials.

With respect to wave propagation, Hayes and Saccomandi[1] obtained all homogeneous plane waves that may
propagate in Mooney–Rivlin viscoelastic materials maintained in a static state of pure homogeneous deformation.
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Then they showed[5] that principal transverse homogeneous waves may propagate when superimposed on a special
class of pseudo-plane inhomogeneous steady motions. Finally, they considered antiplane shear waves superimposed
on a static biaxial stretch[6].

These results[1,5,6] provide a formidable corpus of exact solutions that may be useful as benchmarks for more
complicated problems. Moreover, these solutions allow for a better understanding of the complex subject of non-
linear viscoelasticity[7]. The aim of this note is to extend these results to the case ofinhomogeneous plane waves
that is, plane waves for which the planes of constant phase are not parallel to the planes of constant amplitude.
Here we show that finite-amplitude, linearly polarized, transverse, inhomogeneous plane waves superimposed on
a generic homogeneous deformation are rare because two strict conditions must be met: first, the planes of con-
stant phase must be orthogonal to the planes of constant amplitude; second, the equations of motion lead to a set
of two differential equations to be satisfied simultaneously. However, when the constitutive equation is special-
ized from Mooney–Rivlin to neo-Hookean viscoelastic materials and further, to viscous Newtonian fluids, then
these strict conditions disappear and many more exact solutions are obtained, including finite-amplitude inhomo-
geneous damped plane waves. A remarkable feature of the solutions is that although the static strains are finite,
the viscoelasticity theory nonlinear, and the waves of a generic (separable) finite-amplitude inhomogeneous trav-
elling type, the governing equations nevertheless eventually reduce to a set oflinear differential equations which
are solved exactly. No small parameters nor asymptotic expansions are required, in contrast with most studies
of finite-amplitude waves in solids (see Norris[8] for a review). The only restrictions lie with the specificity
of the constitutive equation and with the form of the finite-amplitude inhomogeneous plane waves. This work
follows the path laid out by Hadamard[9] for small-amplitude homogeneous plane waves in finitely deformed
compressible elastic materials; by John[10] and by Currie and Hayes[11] for finite-amplitude homogeneous
waves in deformed elastic compressible “Hadamard” materials and incompressible Mooney–Rivlin materials, re-
spectively; and by Destrade[12] for finite-amplitude inhomogeneous waves in deformed elastic Mooney–Rivlin
materials.

The plan of the paper is the following. In the next section, we introduce the basic equations governing the constitu-
tive model of a Mooney–Rivlin viscoelastic material, and the propagation of finite-amplitude plane inhomogeneous
waves superposed on a large static pure homogeneous deformation. InSection 3, the equations of motion are solved
and we find the conditions for the directions of polarization, of propagation, and of attenuation under which the
waves may propagate.Sections 4 and 5are devoted to the special cases of neo-Hookean viscoelastic materials and
of Newtonian viscous fluids.

2. Preliminaries

2.1. Constitutive equations

The elastic part of the model is characterized by the Mooney–Rivlin strain-energy densityW which, measured
per unit volume in the undeformed state, is given by

2W = C(I − 3) + D(II − 3), (2.1)

where the constantsC,D satisfyC ≥ 0,D > 0 orC > 0,D ≥ 0 [13]. The sumC + D is the infinitesimal shear
modulus and I, II denote the first and second principal invariants of the left Cauchy–Green strain tensorB = FFT:

I = tr B, 2II = (tr B)2 − tr(B2). (2.2)

The components of the gradient of deformationF are

FiA = ∂xi

∂XA

, (2.3)
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wherexi (i = 1,2,3) are the coordinates at timet of the point whose coordinates areXi in the undeformed
reference configuration. The Mooney–Rivlin viscoelastic solid is incompressible, which means that only isochoric
deformations are possible; in other words, the condition:

detF = 1 (2.4)

must be satisfied at all times.
We assume thatTD, the dissipative part of the stress, is given by

TD = ν(L + LT), L = ḞF−1, (2.5)

whereν > 0 is a constant. TheMooney–Rivlin viscoelastic constitutive equation for the Cauchy stress tensorT is
given by

T = −p1 + CB − DB−1 + ν(L + LT), (2.6)

wherep is the indeterminate pressure introduced by the incompressibility constraint(2.4), to be determined from
the equations of motion and eventual boundary conditions.

We recall that in the absence of body forces, the equations of motion are

div T = ρẍ, (2.7)

whereρ is the constant mass density of the material.

2.2. Transverse inhomogeneous motions in a homogeneously deformed material

Consider a finite static isochoric homogeneous deformation defined by

x = FX, (2.8)

where theFiA are constant and detF = 1. For the deformation(2.8)bothB andB−1 are constant andL = 0. Then
the following constant Cauchy stress tensor:

T = −p01 + CB − DB−1, p0 = const. (2.9)

clearly satisfies the equilibrium equations: divT = 0.
On this state of static deformation, superpose a finite motion taking the particle atx to x̄, given by

x̄ = x + af(b · x)g(n · x − vt). (2.10)

Heref and g are functions to be determined andn, b, anda are linearly independent unit vectors, such that
b × n �= 0,b · a = n · a = 0. The motion(2.10)represents a transverse inhomogeneous plane wave, propagating
with speedv in the direction ofn, linearly polarized in the direction ofa. When the wave is not damped, the amplitude
varies in the direction ofb; when the wave is damped, the amplitude varies in some direction in the (b,n)-plane,
to be determined from the equations of motion. The case wheref is a constant (homogeneous waves) has already
been considered by Hayes and Saccomandi[1]; the case of anelastic Mooney–Rivlin material (ν = 0 in (2.6)) has
been considered by Destrade[12].

For the motion(2.10), the deformation gradient̄F is calculated using the chain rule as

F̄ = F̌F, F̌ := 1 + f ′ga ⊗ b + fg′a ⊗ n. (2.11)

Taking the tensor product of̌F by 1 − f ′ga ⊗ b − fg′a ⊗ n, we find the identity tensor, and so

F̄−1 = F−1F̌−1, F̌−1 = 1 − f ′ga ⊗ b − fg′a ⊗ n. (2.12)
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It follows that the left Cauchy–Green tensorB̄ and its inversēB−1 are given by

B̄ = F̌BF̌T, B̄−1 = F̌−TB−1F̌−1, (2.13)

whereF̌−T is a shorthand notation for(F̌T)−1. Also, the time derivative of̄F is given by

˙̄F = ˙̌FF, where ˙̌F = −v(f ′g′a ⊗ b − fg′′a ⊗ n). (2.14)

Hence, the velocity gradient̄L is here

L̄ = ˙̄FF̄−1 = ˙̌FF̌−1 = −v[f ′g′a ⊗ b + fg′′a ⊗ n] = ˙̌F. (2.15)

Now the corresponding Cauchy stress tensorT̄ (say) takes the form:

T̄ = −p̄1 + CB̄ − DB̄−1 + ν(L̄ + L̄T), (2.16)

where the scalar̄p is to be determined from the equations of motion.

2.3. Equations of motion

In order to write the equations of motion, it proves practical to introduce the Piola–Kirchhoff stress tensorP̄
associated with the motion(2.10) and defined when the static state of pure homogeneous finite deformation is
considered to be the reference configuration. Hence

P̄ik := T̄ijF̌
−1
kj = −p̄F̌−1

ki + CF̌ipBpk − DB̄−1
ij F̌−1

kj + ν
˙̌
F ijF̌

−1
kj + ν

˙̌
F ki (2.17)

and the equations of motion read

ρ
∂2x̄i

∂t2
= ∂P̄ik

∂xk
. (2.18)

We introduce the real variables

ζ := b · x, η := n · x so that f = f(ζ), g = g(η − vt). (2.19)

Now we compute in turn the terms of(2.18), using the expansion(2.17)2 for P̄ik. First, the left-hand side
term:

ρ
∂2x̄i

∂t2
= ρv2fg′′ai. (2.20)

Next, the first term on the right-hand side:

−∂(p̄F̌−1
ki )

∂xk
= −

(
∂p̄

∂xk

)
F̌−1

ki = −(p̄,ζbk + p̄,ηnk)F̌
−1
ki = −p̄,ζbi − p̄,ηni, (2.21)

where we used the Euler–Jacobi–Piola (EJP) identity for incompressible materials∂F̌−1
ki /∂xk = 0 in the first

equality, andaknk = akbk = 0 in the last.
Now, the second term on the right-hand side:

∂(F̌ipBpk)

∂xk
=
(
∂F̌ip

∂xk

)
Bpk = [f ′′g(b · Bb) + 2f ′g′(n · Bb) + fg′′(n · Bn)]ai. (2.22)
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Then, the expansion of the third term on the right-hand side requires the EJP identity:

∂(B̄−1
ij F̌−1

kj )

∂xk
=
(
∂B̄−1

ij

∂xk

)
F̌−1

kj =
(
∂B̄−1

ij

∂xk

)
δkj

=
∂B̄−1

ij

∂xj
= −[f ′′g(a · B−1b) + f ′g′(n · B−1n)]bi − [f ′g′(a · B−1b) + fg′′(n · B−1n)]ni

−[f ′′g + 2f ′g′(n · b) + fg′′]B−1
ij aj + [2f ′f ′′g2 + (3f ′2 + ff′′)gg′(n · b) + ff′(g′2

+gg′′)](a · B−1a)bi + [2f 2g′g′′ + ff′(3g′2 + gg′′)(n · b) + (f ′2 + ff′′)gg′](a · B−1a)ni.

(2.23)

The expansion of the fourth term on the right-hand side also involves the EJP identity:

∂(
˙̌
F

−1

ij F̌−1
kj )

∂xk
=

∂

˙̌
F

−1

ij

∂xk


 F̌−1

kj = −v[f ′′g′bkbj + f ′g′′(nkbj + bknj) + fg′′′nknj]aiF̌
−1
kj

= −v[f ′′g′ + 2f ′g′′(n · b) + fg′′′]ai. (2.24)

Finally the fifth and last term on the right-hand side turns out to be zero:

∂
˙̌
F

−1

ki

∂xk
= −v[f ′′g′bkakbi + f ′g′′nkakbi + f ′g′′bkakni + fg′′′nkakni] = 0, (2.25)

becauseaknk = akbk = 0.
Now we proceed to the resolution of the equations of motion(2.18)using(2.17), (2.20)–(2.25). We treat in turn

the cases of a Mooney–Rivlin viscoelastic material (C > 0,D > 0, ν > 0), of a neo-Hookean viscoelastic material
(C > 0,D = 0, ν > 0), and of a Newtonian viscous fluid (C = 0,D = 0, ν > 0).

3. Mooney–Rivlin viscoelastic solid

3.1. Orthogonality of n and b

Destrade[12] proved that finite-amplitude inhomogeneous plane waves of evanescent sinusoidal type may prop-
agate in a homogeneously deformed Mooney–Rivlinelastic material only when the planes of constant phase are
orthogonal to the planes of constant amplitude. Here we prove that this result is not affected by the addition in(2.6)
of a viscous part to the Cauchy stress.

Take the superposed motionaf(b · x)g(n · x − vt) in (2.10)to be of evanescent sinusoidal type:

f = αe−ωσζ, g = 2β cosωv−1(η − vt), (3.1)

where the amplitudesα, β, the frequencyω, and the attenuation factorσ are arbitrary real scalars. Then, leaving
aside the pressure terms(2.21)for the time being, we find by inspection of(2.20), (2.22)–(2.25)that all the other
terms appearing in the equations of motion(2.18)can be decomposed along the set of linearly independent functions
e−ωσζ cosωv−1(η− vt),e−ωσζ sinωv−1(η− vt),e−2ωσζ cos 2ωv−1(η− vt),e−2ωσζ sin 2ωv−1(η− vt), and e−2ωσζ.
The only terms along this latter (time-independent) function come from the decomposition(2.23), where we have

2f ′f ′′g2 + ff′g′2 = −2α2β2ω3σ(2σ2 + v−2)e−2ωσζ + · · ·
and ff ′(3g′2 + gg′′) = −4α2β2ω3σv−2 e−2ωσζ + · · · . (3.2)
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Here the ellipses stand for terms proportional to time-dependent functions. It follows from the equations of motion
thatp̄ must also be of this form:

p̄ = −α2β2ω2p1 e−2ωσζ + · · · , (3.3)

wherep1 is constant. Then the time-independent part of the equations of motion(2.18)is simply

0 = [−p1 + D(2σ2 + v−2)(a · B−1a)]b + 2Dv−2(n · b)(a · B−1a)n. (3.4)

Becausen andb cannot be parallel for the motion(2.10)to be inhomogeneous, we conclude thatp1 = D(2σ2 +
v−2)(a · B−1a) and that

n · b = 0. (3.5)

This important result, established in[12] for a Mooney–Rivlin elastic solid, still holds when the solid is viscoelastic
with a constitutive equation of the form(2.6) because as we just saw, the viscous terms(2.24)contribute to the
equations of motion only with time-dependent functions. Turning back to a general inhomogeneous motion of the
form (2.10), this result leads us to assume that here also,n andb are orthogonal, so that (n,b,a) is an orthonormal
basis. Accordingly, some simplifications occur in the equations of motion.

We introduce the notation:

ρv2
n := C(n · Bn) + D(a · B−1a) > 0, ρv2

b := C(b · Bb) + D(a · B−1a) > 0, ρb := C(n · Bb).

(3.6)

Herevn (vb) is the speed of a homogeneous finite-amplitude plane wave propagating in the direction ofn (b) and
polarized in the direction ofa, as proved by Boulanger and Hayes[13]. Then the projection of the equation of
motion(2.18)alonga is written in compact form as

ρv2
bf

′′g + 2ρbf ′g′ − νv(fg′′′ + f ′′g′) + ρ(v2
n − v2)fg′′ = 0. (3.7)

Finally, the projections of the equations of motion(2.18)alongn and alongb yield expressions for the derivatives
p̄,η andp̄,ζ; writing p̄,ηζ = p̄,ηζ gives[12]:

(f ′′′g + f ′g′′)(a · B−1n) − (f ′′g′ + fg′′′)(a · B−1b) + [(f ′f ′′ − ff′′′)gg′ − (g′g′′ − gg′′′)ff ′](a · B−1a) = 0.

(3.8)

Hence the propagation of finite-amplitude, linearly polarized, transverse, plane waves in a deformed Mooney–Rivlin
viscoelastic solid is governed by two equations: the “balance equation”(3.7)and the “compatibility equation”(3.8),
to be solved simultaneously.

3.2. Derivation of the solutions

First divide(3.7)by f(ζ)g′(η − vt) to get

ρv2
b

f ′′

f

g

g′ + 2ρb
f ′

f
− νv

(
g′′′

g′ + f ′′

f

)
+ ρ(v2

n − v2)
g′′

g′ = 0. (3.9)

Then differentiate first with respect to the argument off , next with respect to the argument ofg, to obtain(
f ′′

f

)′ (
g

g′

)′
= 0, (3.10)

so that eitherf ′′/f or g/g′ is a constant. The following cases cover all possibilities:

(i)
f ′′

f
= −k2

1, (ii )
f ′′

f
= k2

1, (iii )
g′

g
= k2. (3.11)
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Without loss of generality, we pickk1 > 0 in Case (i) and in Case (ii); in Case (iii) we takek2 > 0 to avoid solutions
which grow exponentially with timet (note that the forthcoming analysis can also be conducted to accomodate
solutions which do grow exponentially with time). We treat each case in turn, keeping in mind thatf must be
trigonometric wheng is exponential andvice versa, for the motion to be inhomogeneous[12].

Case (i): f(ζ) = A cosk1ζ + B sink1ζ.

Substitution of this form of solution into the balanceequation (3.9)and differentiation with respect toζ yields
ρb(f ′/f)′ = 0 and so,

n · Bb = 0. (3.12)

This condition means that the unit vectorsn andb must be conjugate with respect to the central elliptical section of
theB-ellipsoid,x · Bx = 1, by the plane orthogonal toa. Being orthogonal, they must be along the principal axes
of this ellipse.

Then the balanceequation (3.7)(with b = 0) gives a third order linear differential equation forg:

νvg′′′ − ρ(v2
n − v2)g′′ − k2

1νvg′ + k2
1ρv

2
bg = 0. (3.13)

On the other hand, the compatibilityequation (3.8)written as an identity for cosk1ζ, sink1ζ, cos 2k1ζ, and sin 2k1ζ

yields

g′g′′ − gg′′′ = 0, (g′′ − k2
1g)(a · B−1n) = 0, (g′′′ − k2

1g
′)(a · B−1b) = 0. (3.14)

These three equations are satisfied simultaneously either when (a)g′′ = k2
1g or (b) g′′/g = const., a · B−1n =

a · B−1b = 0.
In Case (ia),g is an exponential function. Discarding solutions which blow up with time, we find

g(η − vt) = ek1(η−vt). (3.15)

Substitution into the third-order differentialequation (3.13)fixesv as

ρv2 = ρ(v2
n − v2

b) = C[(n · Bn) − (b · Bb)]. (3.16)

The quantityv is real whenn andb are in the respective directions of the minor and major axes of the elliptical
section of theB-ellipsoid by the plane orthogonal toa.

In Case (ib),g is of the form:

g(η − vt) = ek2(η−vt), (3.17)

wherek2 > 0 to avoid blowing-up solutions. The conditions onn,b,a, together with(3.12), imply that these unit
vectors are alongprincipal directions of theB-ellipsoid. Substitution into the third-order differentialequation (3.13)
relatesk1 to k2 through

k2
1 = ρ(v2

n − v2) − k2νv

ρv2
b − k2νv

k2
2. (3.18)

Recall thatk1 is assumed real so that, in order to construct a solution here, we may pick any values fork2 > 0 and
for v > 0, as long asρ(v2

n − v2) − k2νv andρv2
b − k2νv are of the same sign, wherevn, vb are given by(3.6)with

n, b, a along principal directions of theB-ellipsoid. Thenk1 is given by(3.18).

Case (ii): f(ζ) = A coshk1ζ + B sinhk1ζ.

Substitution of this form of solution into the balanceequation (3.9)and differentiation with respect toζ yields the
condition(3.12)as in Case (i).
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Then the balanceequation (3.8)(with b = 0) gives a third-order linear differential equation forg:

νvg′′′ − ρ(v2
n − v2)g′′ + k2

1νvg′ − k2
1ρv

2
bg = 0. (3.19)

Also, the compatibilityequation (3.8)written as an identity for coshk1ζ, sinhk1ζ, cosh 2k1ζ, and sinh 2k1ζ yields

g′g′′ − gg′′′ = 0, (g′′ + k2
1g)(a · B−1n) = 0, (g′′′ + k2

1g
′)(a · B−1b) = 0. (3.20)

These three equations are satisfied simultaneously either when (a)g′′ = −k2
1g or (b) g′′/g = const.,a · B−1n =

a · B−1b = 0.
In Case (iia),g is of the form:

g(η − vt) = d1 cosk1(η − vt) + d2 sink1(η − vt), (3.21)

and substitution into the third-order differentialequation (3.19)fixesv again as(3.16), v2 = v2
n − v2

b.
In Case (iib),g is of the formg = d1 cosk2(η − vt) + d2 sink2(η − vt), wherek2 is arbitrary. The conditions on

n,b,a, together with(3.12)imply that these unit vectors are along principal directions. Then substitution ofg into
the third-order differentialequation (3.19)gives

νv(k2
1 − k2

2)g
′ − ρ[k2

1v
2
b − k2

2(v
2
n − v2)]g = 0. (3.22)

This equation is satisfied forg trigonometric andν �= 0 only when the respective coefficients ofg andg′ are zero,
conditions which lead back to a solution of the form(3.21)andv uniquely determined by(3.16). The existence of
these ‘special principal motions’ is therefore more limited than when the solid is purely elastic[12] because there
they may propagate at an arbitrary speedv within the interval [0, vn].

Case (iii): g(η − vt) = ek2(η−vt).

Substituting this form of solution into the balanceequation (3.7), we obtain a second-order linear differential
equation forf :

(ρv2
b − k2νv)f

′′ + 2k2ρbf ′ + k2
2[ρ(v2

n − v2) − k2νv]f = 0. (3.23)

Also, the compatibilityequation (3.8)reduces to

(f ′′′ + k2
2f

′)(a · B−1n) − k2(f
′′ + k2

2f)(a · B−1b) + k2(f
′f ′′ − ff′′′)(a · B−1a)ek2(η−vt) = 0. (3.24)

Differentiating this equation with respect to(η − vt), we find thatf ′′/f = const. This constant must be negative
so that the combination off andg represents an inhomogeneous motion[12]. But if f is trigonometric, then the
second order differentialequation (3.23)can be satisfied only whenρb = C(n · Bb) = 0, which leads us back to
Case (i) and the solutions(3.15) and (3.16)(nonprincipal motions) and(3.17) and (3.18)(principal motions).

3.3. Summary of results and comparison with the purely elastic case

For a deformedelastic Mooney–Rivlin material, Destrade[12] proved that only two types of finite-amplitude
inhomogeneous motions are possible: eitherf is trigonometric andg is exponential:

f(ζ) = a1 cosk1ζ + a2 sink1ζ, g(η − vt) = d1 ek2(η−vt), (3.25)

or f is hyperbolic andg is trigonometric:

f(ζ) = a1 coshk1ζ + a2 sinhk1ζ, g(η − vt) = d1 cosk2(η − vt) + d2 sink2(η − vt), (3.26)

wherea1, a2, d1, d2 are constants andk2 is arbitrary.
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When the vectors(a,b,n) are not aligned with the principal axes of deformation, then the quantitiesk1 andv are
determined by

k1 = k2, ρv2 = ρ(v2
n − v2

b) = C[(n · Bn) − (b · Bb)] (3.27)

and the unit vectorsn andb must be conjugate with respect to theB-ellipsoid,x · Bx = 1, that is the condition
(3.12)must be satisfied.

When the vectors(a,b,n) are aligned with the principal axes of deformation (‘special principal motions’), then
the quantityv may takeany value within the interval [0, vn] andk1 is given by

k2
1 = v2

n − v2

v2
b

k2
2. (3.28)

Here we saw that the corresponding results for a deformedviscoelastic Mooney–Rivlin material are essentially the
same as above, with the following difference. When the three vectorsa,b,n are not aligned with the principal axes
of deformation, then the solution is indeed of the form(3.25)–(3.27)with the condition(3.12). However, when
all three vectorsa,b,n are aligned with the principal axes of deformation, then the solution is of the form(3.25)
and (3.26)but: whenf is trigonometric andg is exponential as in(3.25), thenk1 is given by(3.18), andv, k2 are
arbitrary as long ask2

1 is positive; whenf is hyperbolic andg is trigonometric as in(3.26), thenv are determined
by (3.16)that is,v is fixed and no longer arbitrary as in the elastic case.

Now we see that whenD = 0, the viscoelastic solid allows more solutions than its elastic counterpart.

4. Neo-Hookean viscoelastic solid

WhenD = 0 (C �= 0) the strain-energy density(2.1)reduces to the well-known neo-Hookean form. A great variety
of exact solutions is uncovered, in particular solutions in the form of finite-amplitude damped inhomogeneous waves.
Note that this problem was recently studied in theelastic compressible case by Rodrigues Ferreira and Boulanger
[14].

We start with the equations of motion(2.18) written atD = 0. The unit vectorsb andn are not necessarily
orthogonal but the triad (a,b,n) is composed of linearly independent vectors, so that the coefficients along each
vector in the equations of motion are all zero. The coefficients alongb andn are, respectively:

0 = −p̄,ζ, 0 = −p̄,η (4.1)

from which we deduce that̄p = const. satisfies this part of the equations of motion. The other part, alonga, is
independent of̄p and reads

ρ(v2 − v2
n)fg

′′ − ρv2
bf

′′g − 2ρbf ′g′ + νv[f ′′g′ + 2f ′g′′(n · b) + fg′′′] = 0, (4.2)

where the quantities

ρv2
n = Cn · Bn > 0, ρv2

b = Cb · Bb > 0, ρb = Cn · Bb, (4.3)

were used.
Now divide(4.2)by f(ζ)g′(η − vt) and differentiate, first with respect toζ and then with respect to(η − vt), to

obtain the necessary condition:

ρv2
b

(
f ′′

f

)′ (
g

g′

)′
= 2νv (n · b)

(
f ′

f

)′ (
g′′

g′

)′
. (4.4)

We separate the functions of different variables in this equation to conclude that either(
f ′

f

)′ (
g

g′

)′
= 0, or ρv2

b

(f ′′/f)′

(f ′/f)′
= 2νv(n · b)

(g′′/g′)′

(g/g′)′
= const. (4.5)
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The following cases cover all possibilities:

(i) f ′ = k1f, (ii ) g′ = k2g (4.6)

and (iii) ρv2
bf

′′ − k1f
′ − k3f = 0, 2νv(n · b)g′′ − k2g

′ − k1g = 0, wherek1, k2, k3 are constants. In fact, using
expressions forf ′′, g′′, andg′′′ derived from (iii), and substituting into(4.2), it is straightforward to check that Case
(iii) leads to Cases (i) or (ii). In Case (i) we have

f(ζ) = exp(k1ζ), g′′′ +
[ ρ

νv
(v2 − v2

n) + 2k1(n · b)
]
g′′ + k1

(
k1 − 2

ρ

νv
b
)
g′ − ρ

v2
b

νv
k2

1g = 0. (4.7)

In Case (ii) we have

g(η − vt) = exp[k2(η − vt)],

(ρv2
b − k1νv)f

′′ + 2k2[ρb − νvk2(n · b)]f ′ − k2
2[ρ(v2 − v2

n) + νvk2]f = 0. (4.8)

Now consider(4.7) in greater detail. The characteristic equation associated with the third-order differential
equation forg is a cubic. Depending on the values of the coefficients (that is, on the choices forv andk1), the cubic
has either only real roots or one real root and two complex conjugate roots. Real roots lead to a homogeneous motion
and must be discarded. Pure-imaginary roots lead to inhomogeneous plane waves with attenuation in the direction
of b and propagation in the direction ofn. Nonpure-imaginary complex roots lead to inhomogeneousdamped plane
waves with attenuation in the plane ofb andn, exponential damping with time, and propagation in the direction
of n. Becausev or k1 may be prescribed a priori, there is an infinity of such solutions, of which we present one
explicitly.

We choosev such that the coefficient ofg′′ in (4.7)2 is zero, that is we fixv as

ρv = ρv0 := k1ν(n · b) +
√

[k1ν(n · b)]2 + (ρvn)2. (4.9)

Then(4.7)reduces to

g′′′ + β0g
′ − γ0g = 0, β0 = k1

(
k1 − 2

ρb

νv0

)
, γ0 = k2

1
ρv2

b

νv0
. (4.10)

Now we seek a solution in the form:

g(η − v0t) = eλ0(η−v0t) cosω0(η − v0t), (4.11)

whereλ0 andω0 are real constants determined as follows. Substituting(4.11)into (4.10), we find in turn thatω0
andλ0 satisfy

ω2
0 = 3λ2

0 + β0, 8λ3
0 + 2β0λ0 + γ0 = 0. (4.12)

The real root of the cubic inλ0 is

λ0 = 1

12

[
12
√

12β3
0 + 81γ0 − 108γ0

]1/3

− β0

[
12
√

12β3
0 + 81γ0 − 108γ0

]−1/3

. (4.13)

Thatω0 is real is ensured for instance whenβ0 > 0 (seeEq. (4.12)1). A few lines of calculation show that a sufficient
condition forβ0 to be positive is

k2
1 >

(2ρb)2

ν2[v2
n + 4b(n · b)]

= 4ρC(n · Bb)2

ν2[(n · Bn) + 4(n · Bb)(n · b)]
. (4.14)

Thus for anyarbitrary value ofk1 satisfying this inequality, the following finite-amplitude damped inhomogeneous
plane wave may propagate in a deformed neo-Hookean viscoelastic body:

x̄ = x + αae(k1b+λ0n)·x−λ0v0t cosω0(n · x − v0t), (4.15)
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wherex is given by(2.8), α is arbitrary, the orientation of the triad of unit vectorsa,b,n (b andn orthogonal to
a) is arbitrary, andλ0, ω0, andv0 are given by(4.13), (4.12)1, and(4.9), respectively. The wave propagates in the
direction ofn, is exponentially damped with time, and is attenuated in the direction ofk1b + λ0n.

To conclude this section, we point out that inspection of(4.4) makes it clear that a neo-Hookean viscoelastic
constitutive equation yields more inhomogeneous waves than a neo-Hookean elastic constitutive equation, where
ν = 0.

5. Newtonian viscous fluids

With C = D = 0, Eq. (2.6)is the constitutive relation defining an incompressible Newtonian viscous fluid of
viscosityν, and(2.7), or their specialization(4.2) atC = 0, are the (Lagrangian) Navier–Stokes equations in the
absence of body forces for the finite-amplitude inhomogeneous plane wave(2.10), that isf ′′g′ + [2(n · b)f ′ +
(ρv/ν)f ]g′′ + fg′′′ = 0. Integrating with respect to the argument ofg and taking the constant of integration to be
zero for simplicity, we obtain

f ′′g +
[
2(n · b)f ′ + ρv

ν
f
]
g′ + fg′′ = 0. (5.1)

With methods similar to those presented in the two previous sections, it is a straightforward matter to show that
eitherf or g are pure exponential functions that is, either

f(ζ) = exp(k1ζ) and g′′ +
[
2k1(n · b) + ρv

ν

]
g′ + k2

1g = 0, (5.2)

or

g(η − vt) = exp[k2(η − vt)] and f ′′ + 2k2(n · b)f ′ + k2

(ρv
ν

+ k2

)
f = 0, (5.3)

wherek1, k2 are arbitrary constants. The latter case represents a standing damped wave, whatever the form off

may be. The former is a travelling inhomogeneous damped wave as long as the characteristic equation associated
with the second-order differential equation forg has complex roots. This condition reads

0 < ρv < 2k1ν[1 − (n · b)] =: ρv0. (5.4)

Hence the constantsk1 andv arearbitrary as long ask1 is positive andv is less thanv0 defined above. The following
displacement fieldu is solution to the Navier–Stokes equations for any orientation of the pair of unit vectorsb,n
in the planea · x = 0 (which may be taken without loss of generality asz = 0 say, because the fluid is isotropic):

u1 = 0, u2 = 0, u3 = ek1[b·x+
√

1−κ2(n·x−vt)] [A cosk1κ(n · x − vt)B sink1κ(n · x − vt)], (5.5)

whereA, B are constants andκ is defined by

κ :=
√

1 −
[
(n · b) + ρv

2k1ν

]2

. (5.6)

This finite-amplitude wave propagates in the direction ofn with speedv and wave numberk1κ, is damped expo-
nentially with respect to time, and is attenuated in the direction ofb + √

1 − κ2n. The angleθ (say) between the
normal to the planes of constant phase and the normal to the planes of constant amplitude is given by

cotθ = n · b +
√

1 − κ2 = 2(n · b) + ρv

k1ν
. (5.7)

Note that Boulanger et al.[15] also investigated the possibility of linearly polarized, damped, inhomogeneous plane
wave solutions to the Navier–Stokes equations. However, they prescribed a priori the form of the solution. The result



262 M. Destrade, G. Saccomandi / Wave Motion 40 (2004) 251–262

presented above allows for a greater variety of solutions, in the same manner that starting from a finite-amplitude
wave in the form(2.10)wheref andg are unknown functions, rather than prescribed as exponential and sinusoidal
functions, allowed Rodrigues Ferreira and Boulanger[14] to find more solutions than Destrade[16] in the elastic
neo-Hookean case.

We also note that the solutions found here for the Navier–Stokes equations are a generalization of the celebrated
Kelvin modes [17]. These are disturbances in the form of homogeneous plane waves of particular interest in the
stability study of basic flows characterized by spatially uniform shearing rates, i.e. self-equilibrated homogeneous
motions[18]. This is because Craik and Criminale[19] have shown that the superimposition of a single Kelvin mode
to the above mentioned basic flows is an exact solution of the full Navier–Stokes equations. It would be interesting
to investigate if the superimposition of our solutions to homogeneous self-equilibrated motions will give some new
exact solutions for the Navier–Stokes equations, but this investigation is outside the framework of the present paper.
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