
International Journal of Mechanical Sciences 187 (2020) 106006 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

Nonlinear response and axisymmetric wave propagation in functionally 

graded soft electro-active tubes 

Bin Wu 

a , Michel Destrade 

a , b , Weiqiu Chen 

b , c , d , ∗ 

a School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland 
b Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China 
c State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, PR China 
d Soft Matter Research Center, Zhejiang University, Hangzhou 310027, PR China 

a r t i c l e i n f o 

Keywords: 

Soft electro-active tube 

Functionally graded 

Biasing fields 

State-space formalism 

Axisymmetric waves 

Tunable waveguide 

a b s t r a c t 

Soft electro-active (SEA) materials can be designed and manufactured with gradients in their material properties, 

to modify and potentially improve their mechanical response in service. Here, we investigate the nonlinear re- 

sponse of, and axisymmetric wave propagation in a soft circular tube made of a functionally graded SEA material 

and subject to several biasing fields, including axial pre-stretch, internal/external pressure, and through-thickness 

electric voltage. We take the energy density function of the material to be of the Mooney-Rivlin ideal dielectric 

type, with material parameters changing linearly along the radial direction. We employ the general theory of non- 

linear electro-elasticity to obtain explicitly the nonlinear response of the tube to the applied fields. To study wave 

propagation under inhomogeneous biasing fields, we formulate the incremental equations of motion within the 

state-space formalism. We adopt the approximate laminate technique to derive the analytical dispersion relations 

for the small-amplitude torsional and longitudinal waves superimposed on a finitely deformed state. Comprehen- 

sive numerical results then illustrate that the material gradients and biasing fields have significant influences on 

the static nonlinear response and on the axisymmetric wave propagation in the tube. This study lays the ground- 

work for designing SEA actuators with improved performance, for tailoring tunable SEA waveguides, and for 

characterizing non-destructively functionally graded tubular structures. 
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. Introduction 

As a new type of inhomogeneous materials, functionally graded ma-

erials (FGMs) are characterized by gradual variations in composition

nd structure over their volume, resulting in continuous changes in their

echanical, physical, or biological properties along one or more direc-

ions. Compared with traditional materials, FGMs may display some un-

recedented performance such as reducing residual stress and thermal

tress, enhancing fracture toughness of interface bonding, eliminating

harp stress discontinuities, and improving efficiency and life of acous-

ic wave devices [1,2] . 

Historically, the concept of FGMs was first proposed in the mid-

980s by a group of Japanese material scientists, who manufactured a

unctionally graded thermal barrier capable of withstanding a large tem-

erature gradient. Since then, FGMs have been widely used not only in

he field of aerospace engineering but also in biology [3,4] . No less than

ourteen different fabrication approaches of FGMs are described in de-

ail in the book by Schwartz [5] , including bulk particulate processing,
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reform processing, layer processing, and melt processing. In the con-

ext of linear elasticity, a considerable amount of literature has focused

n the theoretical modelling, numerical methods, and experimental test-

ng of FGMs, and the interested reader is referred to the review article

y Birman and Byrd [1] and the book edited by Zhong et al. [2] . 

Although the concept of FGMs is now well established, it is still rel-

tively rare to use it in soft materials with highly elastic behavior such

s rubber-like materials and gels. A unique superiority of a soft FGM is

hat it can be exploited to create a smooth transition between a soft and

 hard material, thereby eliminating the structural stiffness mismatch. 

Recently, several soft hyperelastic structures with functionally

raded properties have been proposed and prepared. Hence, making

se of a construction-based layering method, Ikeda [6] achieved func-

ionally graded styrene-butadiene rubber vulcanization. Libanori et al.

7] used a hierarchical reinforcement approach to successfully produce

 heterogeneous composite with extreme soft-to-hard transition and tun-

ble local elastic stiffness. Bartlett et al. [8] 3D-printed a combustion-

owered soft robot, whose explosive actuator connected to pneumatic

egs possesses a stiffness gradient spanning three orders of magnitude.
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𝝉  
i et al. [9] used repeated freeze/thaw cycles to create a vertical gradi-

nt of mechanical properties in blocs of soft PVA cryogels. 

With respect to a theoretical analysis of soft FGMs, several works

ave been devoted to the static nonlinear response and elastic wave

ehaviors of incompressible or compressible functionally graded hyper-

lastic structures [9–14] . Already, the existing research recognizes the

ritical role played by material gradients in the mechanical response and

he function of soft materials and structures. 

As one type of promising intelligent materials, soft electro-active

SEA) materials have received intensive academic and industrial interest

wing to their superior electro-mechanical coupling properties. This is

eflected by the following three breakthroughs: (i) A general theoreti-

al framework of nonlinear electro-elasticity has been well developed

o describe their high nonlinearity and notable electro-mechanical cou-

ling [15–18] ; (ii) Their advantages, such as rapid response and large

eformation under electric stimuli as well as high energy density, have

een confirmed experimentally, making SEA materials ideal candidates

or broad applications as transducers, actuators, sensors, energy har-

esters, biomedical devices and flexible electronics [19–22] ; (iii) The

pplication of biasing fields (for example, pre-stretch, internal/external

ressure, electric stimuli, etc.) results in significant changes in vibration

nd wave characteristics of SEA materials, prefiguring various poten-

ial prospects in tunable resonators, loudspeakers, vibration isolators,

aveguides, phononic crystals and metamaterials [23–29] . 

Since Pelrine et al. [30] proposed an SEA tube actuator, there has

een an increasing interest in studying the nonlinear static and dynamic

esponses of this particular structural configuration subject to biasing

elds [16,31–34] . Based on the theory of nonlinear electro-elasticity

nd its linearized incremental theory developed by Dorfmann and Og-

en [16,35] , considerable efforts have been devoted to elucidating the

ffects of biasing fields on the structural stability of SEA tubes [31,36–

8] , elastic wave propagation [39–43] , and tunable vibrations and oscil-

ations [32,34,44–46] . Note that recent advances in the study of insta-

ilities, tunable phononic crystals, and acoustic/vibration control based

n SEA materials have been reviewed in the papers by Zhao et al. [25] ,

orfmann and Ogden [47] and Wang et al. [48] . 

To model electrode protection from aggressive agents, achieve

reater actuation and improve the efficiency of energy harvesting, some

esearchers have proposed laminated or stacked SEA actuators and en-

rgy harvesters [49–51] , which have been recently studied theoretically

y Gei et al. [52] , Cohen [53] , or Bortot [54] . 

The present work introduces the concept of functional gradients of

roperties into the study of SEA materials, to investigate the nonlinear

esponse of, and elastic guided wave propagation in tubes under cou-

led biasing fields. The tubes are characterized by the Mooney-Rivlin

deal dielectric model with affine variations of material parameters in

he radial direction [11,12] . The biasing fields are induced by the com-

ined action of an axial pre-stretch, a pressure difference and an elec-

ric voltage applied to the electrodes on the inner and outer cylindrical

urfaces, resulting in nonlinear axisymmetric deformations as shown in

ig. 1 (a)-(b). We consider both incremental torsional and longitudinal

uided waves (hereafter abbreviated as the T waves and L waves, respec-

ively) along the axial direction in the deformed functionally graded SEA

ube (see Fig. 1 (c)-(d)). To deal with the inhomogeneous biasing fields,

e use the state-space method (SSM) [13,43] to analyze axisymmetric

lastic wave propagation. 

This paper is organized as follows. Section 2 summarizes the nonlin-

ar electro-elasticity theory and the corresponding linearized incremen-

al theory. The nonlinear axisymmetric deformation of a tube is analyzed

n Section 3.1 for any form of energy density function, and then special-

zed to the functionally graded Mooney-Rivlin ideal dielectric model in

ection 3.2 . Numerical results are illustrated in Section 3.3 for the static

onlinear response and the distributions of biasing fields. Section 4 com-

ines the state-space formalism with the approximate laminate tech-

ique. We derive the dispersion relations for both T and L waves in

ection 5 . Numerical calculations are presented in Section 6 to validate
he effectiveness of the SSM and elucidate the effects of material gradi-

nt parameters and biasing fields on the propagation characteristics of

 and L waves. Finally, we provide a summary in Section 7 . 

. Theoretical background 

To describe the kinematics of a deformable SEA continuum, the po-

ition vector of a given material point is denoted as X in the undeformed

tate (the reference configuration  𝑟 ), and as x in the deformed state (the

urrent configuration  𝑡 ). The mapping 𝐱 = 𝝌( 𝐗 , 𝑡 ) , with t being the time

ariable, is assumed to be sufficiently smooth, and its derivative with re-

pect to X defines the deformation gradient tensor 𝐅 = Grad 𝝌 = Grad 𝐱,
here ‘Grad’ is the gradient operator with respect to  𝑟 . The local mea-

ure of change in material volume is tracked by 𝐽 = det 𝐅 , which always

quals one for an incompressible material, as considered throughout this

aper. In this work, we adopt the general theoretical framework of non-

inear electro-elasticity and its relevant linearized incremental theory

or the superimposed small-amplitude motions developed by Dorfmann

nd Ogden [16,17,35] . We also show that all seemingly different the-

ries in the literature are actually equivalent and have no substantive

ifference [55] . 

.1. Nonlinear electro-elasticity 

For incompressible SEA materials, the nonlinear constitutive rela-

ions can be written as 

 = 

𝜕Ω
𝜕𝐅 

− 𝑝 𝐅 −1 ,  = 

𝜕Ω
𝜕  

, (1)

here Ω = Ω( 𝐅 ,  ) is the total energy density function per unit volume

n the reference configuration, p is a Lagrange multiplier related to the

ncompressibility constraint, 𝐓 = 𝐅 −1 𝛕 is the total nominal stress tensor

ith 𝝉 being the total Cauchy stress tensor , and  = 𝐅 −1 𝐃 and  = 𝐅 T 𝐄
re the Lagrangian counterparts of the Eulerian electric displacement vec-

or D and electric field vector E , respectively. Note that the superscripts

 ⋅) −1 and ( ⋅) T signify the inverse and transpose of a tensor, respectively.

Accordingly, the corresponding expressions for 𝝉 and E read as 

= 𝐅 𝜕Ω
𝜕𝐅 

− 𝑝 𝐈 , 𝐄 = 𝐅 − T 𝜕Ω
𝜕  

, (2)

here I is the identity tensor. For an incompressible and isotropic SEA

aterial, Ω can be seen as a function of the following five invariants: 

𝐼 1 = tr 𝐂 , 𝐼 2 = 

1 
2 
[
( tr 𝐂 ) 2 − tr 

(
𝐂 

2 )], 
 4 =  ⋅ , 𝐼 5 =  ⋅ 𝐂  , 𝐼 6 =  ⋅ 𝐂 

2  , (3) 

here 𝐂 = 𝐅 T 𝐅 is the right Cauchy-Green deformation tensor. 

Combination of Eqs. (2) and (3) gives the total Cauchy stress tensor

nd the electric field vector as 

𝝉 = 2Ω1 𝐛 + 2Ω2 
(
𝐼 1 𝐛 − 𝐛 2 

)
− 𝑝 𝐈 + 2Ω5 𝐃 ⊗ 𝐃 + 2Ω6 ( 𝐃 ⊗ 𝐛𝐃 + 𝐛𝐃 ⊗ 𝐃 ) , 

 = 2 
(
Ω4 𝐛 −1 𝐃 + Ω5 𝐃 + Ω6 𝐛𝐃 

)
, (4) 

here 𝐛 = 𝐅𝐅 T is the left Cauchy-Green deformation tensor and the

horthand notation Ω𝑚 = 𝜕 Ω∕ 𝜕 𝐼 𝑚 ( 𝑚 = 1 , 2 , 4 , 5 , 6) is adopted hereafter. 

Under the quasi-electrostatic approximation and in the absence of

echanical body forces as well as free charges and electric currents, the

quations of motion, the Gauss law and the Faraday law are 

iv 𝝉 = 𝜌𝜕 2 𝐱∕ 𝜕𝑡 2 , div 𝐃 = 0 , curl 𝐄 = 𝟎 , (5) 

espectively, where 𝜌 is the unchanged mass density during the motion,

nd ‘curl’ and ‘div’ are the curl and divergence operators in  𝑡 , respec-

ively. We emphasize that 𝝉 takes account of the contribution of the

lectric body forces and that the conservation of angular momentum

nsures the symmetry of 𝝉. 

The mechanical and electric boundary conditions to be satisfied on

he boundary 𝜕  𝑡 are expressed in Eulerian form as 

T 
𝒏 = 𝐭 a , 𝐄 × 𝐧 = 𝟎 , 𝐃 ⋅ 𝐧 = − 𝜎 , (6)
𝑡 𝑡 𝑡 f 
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Fig. 1. Schematic diagram of a functionally graded SEA tube 

with its cylindrical coordinates and cross sections: (a) unde- 

formed configuration before activation; (b) deformed config- 

uration after activation induced by a combined action of ax- 

ial pre-stretch 𝜆z , radial electric voltage V as well as inter- 

nal ( P inn ) and external ( P out ) pressures. Incremental motion 

fields created by (c) torsional T-waves and (d) longitudinal 

L-waves. 
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here n t is the outward unit normal vector of the current configuration

 𝑡 , and t a and 𝜎f denote the applied mechanical traction vector per unit

rea of 𝜕  𝑡 and the free surface charge density on 𝜕  𝑡 , respectively. Note

hat, since an electric voltage will be applied to the surfaces of the SEA

ody coated with flexible electrodes, the electric field in the surrounding

acuum can been neglected in Eq. (6) . 

.2. Linearized theory for incremental motions 

When a time-dependent infinitesimal incremental motion �̇� ( 𝐗 , 𝑡 ) is
uperimposed on a finitely deformed SEA body that occupies a static

onfiguration  associated with the mapping 𝐱 = 𝝌( 𝐗 ) , the linearized

ncremental incompressibility condition, governing equations and con-

titutive laws for incompressible SEA materials can be written in updated

agrangian form as 

iv 𝐮 = tr 𝐇 = 0 , (7)

iv �̇� 0 = 𝜌𝜕 2 𝐮 ∕ 𝜕𝑡 2 , div ̇ 0 = 0 , curl ̇ 0 = 𝟎 , (8)

here 

̇
 0 =  0 𝐇 +  0 ̇ 0 + 𝑝 𝐇 − �̇� 𝐈 , 

̇ 0 =  

T 
0 𝐇 +  0 ̇ 0 . (9) 

ere a superposed dot indicates an increment in the quantity con-

erned, 𝐮 ( 𝐱, 𝑡 ) = �̇� ( 𝐗 , 𝑡 ) is the incremental mechanical displacement vec-

or, 𝐇 = grad 𝐮 denotes the incremental displacement gradient tensor

ith ‘grad’ being the gradient operator in  , �̇� is the incremental La-

range multiplier, and �̇� 0 , ̇ 0 and ̇ 0 represent the push-forward versions

f the corresponding Lagrangian increments, all updating the reference

onfiguration from the original unstressed reference configuration  𝑟 to

he initial deformed configuration  . Note that a subscript ‘0’ is utilized

o identify the resultant push-forward variables. 

In component notation, the components of the instantaneous electro-

lastic moduli tensors  ,  and  in Eq. (9) are defined as 
0 0 0 
 0 piqj = 𝐹 𝑝𝛼𝐹 𝑞𝛽 𝛼𝑖𝛽𝑗 ,  0 ij = 𝐹 −1 
𝛼𝑖 
𝐹 −1 
𝛽𝑗 

 𝛼𝛽 , 

 0 piq = 𝐹 𝑝𝛼𝐹 
−1 
𝛽𝑞 

 𝛼𝑖𝛽 , (10) 

here  = 𝜕 2 Ω∕( 𝜕 𝐅 𝜕 𝐅 ) ,  = 𝜕 2 Ω∕( 𝜕 𝐅 𝜕  ) and  = 𝜕 2 Ω∕( 𝜕  𝜕  ) are the

eferential electro-elastic moduli tensors. Note the following symme-

ries 

 0 piqj =  0 qjpi ,  0 ij =  0 ji ,  0 piq =  0 ipq . (11) 

When we neglect the increments of electrical variables in vacuum,

he updated Lagrangian incremental forms of the mechanical and elec-

ric boundary conditions satisfied on 𝜕 are 

̇
 

T 
0 𝐧 = �̇� A 0 , ̇ 0 × 𝐧 = 𝟎 , ̇ 0 ⋅ 𝐧 = − ̇𝜎F0 , (12)

here n is the outward unit normal vector of the static configuration

 , �̇� A 0 is the updated Lagrangian incremental traction vector per unit

rea of the boundary 𝜕 , and �̇�F0 is the incremental surface charge den-

ity on 𝜕 . When a hydrostatic pressure P a is applied to the boundary

 , the incremental mechanical boundary condition Eq. (12) 1 becomes

13,56,57] 

̇
 

T 
0 𝐧 = 𝑃 a 𝐇 

T 𝐧 − �̇� a 𝐧 , (13)

here �̇� a denotes the increment of the applied pressure. 

. Axisymmetric deformation of a functionally graded SEA tube 

The nonlinear axisymmetric deformations of a homogeneous SEA tube

ubject to different electro-mechanical biasing fields have been exam-

ned by several authors [16,31,33,40,43] . For a functionally graded hy-

erelastic hollow cylinder without electro-mechanical coupling, several

tudies have also been carried out on the static nonlinear response [11–

3] . This section further extends these results to consider the finite ax-

symmetric deformations of functionally graded SEA tubes under the com-

ined actions of axial pre-stretch, radial electric voltage and pressure

ifference. 
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.1. General dielectric material model 

We consider an incompressible isotropic functionally graded SEA

ube coated with flexible electrodes on its inner and outer surfaces.

ig. 1 (a)-(b) show schematic diagrams of its nonlinear axisymmetric de-

ormation under electro-mechanical activation. 

The cylindrical coordinates in the undeformed and deformed config-

rations are denoted by ( R , Θ, Z ) and ( r, 𝜃, z ), respectively, with cor-

esponding vector bases ( 𝐄 𝑅 , 𝐄 Θ, 𝐄 𝑍 ) and ( e r , e 𝜃 , e z ), respectively. Let

he length, inner and outer radii of the tube in the undeformed config-

ration be L, A and B , respectively, with the thickness 𝐻 = 𝐵 − 𝐴 . The

ube is deformed by an axial stretching, a pressure difference and an

lectric voltage in the radial direction to maintain the axial symmetry.

he current length, inner and outer radii are 𝓁, a and b , respectively,

ith the thickness ℎ = 𝑏 − 𝑎 . 

We take the nonlinear axisymmetric deformation in the following

orm: 

 = 

√ 

𝐺 + 𝜆−1 
𝑧 
𝑅 

2 , 𝜃 = Θ, 𝑧 = 𝜆𝑧 𝑍, (14)

here 𝐺 = 𝑎 2 − 𝜆−1 
𝑧 
𝐴 2 and 𝜆z is the uniform axial principal stretch. Note

hat it is a simple exercise to check that this deformation is isochoric

nd thus compatible with the incompressibility constraint. The corre-

ponding deformation gradient has components 𝐅 = diag [ 𝜆𝑟 , 𝜆𝜃, 𝜆𝑧 ] in
he e i ⊗E k basis, where 𝜆𝑟 = 𝜆−1 

𝜃
𝜆−1 
𝑧 

and 𝜆𝜃 = 𝑟 ∕ 𝑅 are the radial and cir-

umferential principal stretches, respectively. 

The underlying Eulerian electric displacement vector is taken to be

adial only, so that 𝐃 = [ 𝐷 𝑟 , 0 , 0] T , say, and its Lagrangian counterpart

s  = 𝐅 −1 𝐃 = [  𝑟 , 0 , 0] T , where  𝑟 = 𝜆𝜃𝜆𝑧 𝐷 𝑟 . 

From Eq. (14) 1 , we obtain the connection between the circumferen-

ial stretches 𝜆𝑎 = 𝑎 ∕ 𝐴 on the inner surface and 𝜆𝑏 = 𝑏 ∕ 𝐵 on the outer

urface, as 

2 
𝑎 
𝜆𝑧 − 1 = Λ2 (𝜆2 

𝜃
𝜆𝑧 − 1 

)
= 𝜂2 

(
𝜆2 
𝑏 
𝜆𝑧 − 1 

)
, (15)

here 𝜂 = 𝐵∕ 𝐴 is the outer-to-inner radius ratio, and Λ = 𝑅 ∕ 𝐴 ∈ [1 , 𝜂]
s the dimensionless radial coordinate in the undeformed configuration.

In terms of the stretches and the radial electric displacement, the five

ndependent invariants in Eq. (3) and the nonzero components of 𝝉 and

 in Eq. (4) are calculated as 

 1 = 𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝜃
+ 𝜆2 

𝑧 
, 𝐼 2 = 𝜆2 

𝜃
𝜆2 
𝑧 
+ 𝜆−2 

𝜃
+ 𝜆−2 

𝑧 
, 

 4 = 𝜆2 
𝜃
𝜆2 
𝑧 
𝐷 

2 
𝑟 
, 𝐼 5 = 𝜆−2 

𝜃
𝜆−2 
𝑧 
𝐼 4 , 𝐼 6 = 𝜆−4 

𝜃
𝜆−4 
𝑧 
𝐼 4 , (16)

nd 

𝜏rr = 2 𝜆−2 
𝜃
𝜆−2 
𝑧 

[
Ω1 + Ω2 

(
𝜆2 
𝜃
+ 𝜆2 

𝑧 

)]
+ 2 

(
Ω5 + 2Ω6 𝜆

−2 
𝜃
𝜆−2 
𝑧 

)
𝐷 

2 
𝑟 
− 𝑝, 

𝜃𝜃 = 2 𝜆2 
𝜃

[
Ω1 + Ω2 

(
𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝑧 

)]
− 𝑝, 

𝜏zz = 2 𝜆2 
𝑧 

[
Ω1 + Ω2 

(
𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝜃

)]
− 𝑝, 

𝐸 𝑟 = 2 
(
Ω4 𝜆

2 
𝜃
𝜆2 
𝑧 
+ Ω5 + Ω6 𝜆

−2 
𝜃
𝜆−2 
𝑧 

)
𝐷 𝑟 . (17)

Now by defining a reduced energy density function 𝜔 ∗ as

 

∗ ( 𝜆𝜃, 𝜆𝑧 , 𝐼 4 ) = Ω( 𝐼 1 , 𝐼 2 , 𝐼 4 , 𝐼 5 , 𝐼 6 ) , we obtain the following relations from

qs. (16) and (17) for a general dielectric material model [33,43] : 

𝜃𝜔 
∗ 
𝜆𝜃

= 𝜏𝜃𝜃 − 𝜏rr , 𝜆𝑧 𝜔 
∗ 
𝜆𝑧 

= 𝜏zz − 𝜏rr , 

𝐸 𝑟 = 2 𝜆2 
𝜃
𝜆2 
𝑧 
𝜔 ∗ 4 𝐷 𝑟 , (18)

here 𝜔 ∗ 
𝜆𝜃

= 𝜕 𝜔 ∗ ∕ 𝜕 𝜆𝜃, 𝜔 ∗ 𝜆𝑧 = 𝜕 𝜔 ∗ ∕ 𝜕 𝜆𝑧 and 𝜔 ∗ 4 = 𝜕 𝜔 ∗ ∕ 𝜕 𝐼 4 . 
Due to the considered axisymmetric deformation, all initial physical

uantities depend only on r . Therefore, Faraday’s law Eq. (5) 3 is satisfied

utomatically, and Gauss’s law Eq. (5) 2 and the equilibrium equation

iv 𝝉 = 𝟎 simplify to 

1 
𝑟 

𝜕( 𝑟 𝐷 𝑟 ) 
𝜕𝑟 

= 0 , 
d 𝜏𝑟𝑟 
d 𝑟 

= 

𝜏𝜃𝜃 − 𝜏𝑟𝑟 

𝑟 
= 

𝜆𝜃𝜔 
∗ 
𝜆𝜃

𝑟 
, (19)

espectively, where Eq. (18) 1 has been used. Integration of Eq. (19) 1 
eads to 

 𝑟 = 

𝑄 ( 𝑎 ) 
2 𝜋𝑟 𝜆 𝐿 

= − 

𝑄 ( 𝑏 ) 
2 𝜋𝑟 𝜆 𝐿 

, (20)

𝑧 𝑧 
here Q ( a ) and Q ( b ) (satisfying 𝑄 ( 𝑎 ) + 𝑄 ( 𝑏 ) = 0 ) are total free surface

harges on the inner and outer surfaces of the deformed tube, respec-

ively. These charges are related to the free surface charge densities 𝜎fa 

nd 𝜎fb on the inner and outer deformed surfaces as 𝜎fa = 𝑄 ( 𝑎 ) ∕( 2 𝜋𝑎 𝜆𝑧 𝐿 )
nd 𝜎fb = 𝑄 ( 𝑏 ) ∕( 2 𝜋𝑏 𝜆𝑧 𝐿 ) , respectively. Note that the initial boundary

ondition Eq. (6) 3 (i.e., 𝐷 𝑟 ( 𝑎 ) = 𝜎fa and 𝐷 𝑟 ( 𝑏 ) = − 𝜎fb ) has been employed

o derive Eq. (20) . 

Moreover, the curl-free electric field can be expressed as 𝐄 = − grad 𝜙

y introducing an electrostatic potential 𝜙, which here yields the only

onzero electric field component as 𝐸 𝑟 = − d 𝜙∕ d 𝑟 . Inserting Eq. (20) into

q. (18) 3 and integrating the resultant equation from the inner surface

o the outer one, we obtain 

 = 𝜆𝑧 
𝑄 ( 𝑎 ) 
𝜋𝐿 ∫

𝑏 

𝑎 

𝜆2 
𝜃
𝜔 ∗ 4 

d 𝑟 

𝑟 
, (21)

here 𝑉 = 𝜙( 𝑎 ) − 𝜙( 𝑏 ) is the electric potential difference or electric volt-

ge between the inner and outer surfaces. Thus, Eq. (21) represents a

eneral relationship between the electric voltage V and the surface free

harge Q , which is affected by the initial deformation. 

Additionally, integrating Eq. (19) 2 from a to b and assuming that the

nternal and external pressures P inn and P out are applied to the inner and

uter surfaces (i.e., 𝜏𝑟𝑟 ( 𝑎 ) = − 𝑃 inn and 𝜏𝑟𝑟 ( 𝑏 ) = − 𝑃 out ), we have 

 out − 𝑃 inn = − ∫
𝑏 

𝑎 

𝜆𝜃𝜔 
∗ 
𝜆𝜃

d 𝑟 

𝑟 
, (22)

ote that 𝜆b may be expressed in terms of 𝜆a and 𝜆z by Eq. (15) . Thus,

q. (22) establishes a general nonlinear relation between the pressure

ifference (or the net pressure) Δ𝑃 = 𝑃 out − 𝑃 inn , the electrical variable

 or V (included in 𝜔 ∗ ) and the inner radius a (measured by 𝜆a ) for any

iven geometric parameter 𝜂 and the axial pre-stretch 𝜆z . Similarly, the

adial normal stress is obtained by integrating Eq. (19) 2 from a to r as 

𝑟𝑟 ( 𝑟 ) = ∫
𝑟 

𝑎 

𝜆𝜃𝜔 
∗ 
𝜆𝜃

d 𝑟 

𝑟 
− 𝑃 inn . (23)

In order to maintain the fixed axial stretch and the axisymmetric

eformation state, an axial load is required at the ends of the tube, which

an be open or closed. Using Eq. (18) 1,2 , the equilibrium Eq. (19) 2 and

he initial mechanical boundary conditions, the axial normal stress 𝜏zz 

nd the resultant axial force N are written as 

𝑧𝑧 = 

1 
2 

[ 
1 
𝑟 

d 

d 𝑟 

(
𝑟 2 𝜏𝑟𝑟 

)
− 𝜆𝜃𝜔 

∗ 
𝜆𝜃

] 
+ 𝜆𝑧 𝜔 

∗ 
𝜆𝑧 
, (24)

nd 

 = 2 𝜋 ∫
𝑏 

𝑎 

𝜏𝑧𝑧 ( 𝑟 ) 𝑟 d 𝑟 = 𝜋 ∫
𝑏 

𝑎 

(
2 𝜆𝑧 𝜔 ∗ 𝜆𝑧 − 𝜆𝜃𝜔 

∗ 
𝜆𝜃

)
𝑟 d 𝑟 + 𝜋

(
𝑎 2 𝑃 inn − 𝑏 2 𝑃 out 

)
, 

(25) 

hich is required in the case where the tube has open ends . However, in

he case of closed ends , the resultant axial force N includes a contribution

rom the internal and external pressures on the tube ends. Consequently,

 reduced axial force (i.e. the externally applied axial force) is defined

s 

 𝑟 ≡ 𝑁 − 𝜋
(
𝑎 2 𝑃 inn − 𝑏 2 𝑃 out 

)
= 𝜋 ∫

𝑏 

𝑎 

(
2 𝜆𝑧 𝜔 ∗ 𝜆𝑧 − 𝜆𝜃𝜔 

∗ 
𝜆𝜃

)
𝑟 d 𝑟 , (26)

hich eliminates the contribution of the pressures from the resultant

xial force N . 

We emphasize that the theoretical formulations obtained above are

ompletely general for an incompressible isotropic functionally graded

EA tube characterized by an arbitrary reduced energy function 𝜔 ∗ . The

ntegrations in Eqs. (21) –(26) can be conducted analytically or numeri-

ally once the form of 𝜔 ∗ is prescribed. 

.2. Functionally graded Mooney-Rivlin ideal dielectric model 

For definiteness, the previous results are now specialized to the

eneralized functionally graded Mooney-Rivlin ideal dielectric model,
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hich is characterized by the following energy density function: 

Ω = Ω0 
(
𝐼 1 , 𝐼 2 

)
+ 

1 
2 𝜀 ( 𝑅 ) 

𝐼 5 , 

0 
(
𝐼 1 , 𝐼 2 

)
= 

𝜇1 ( 𝑅 ) 
2 

(
𝐼 1 − 3 

)
− 

𝜇2 ( 𝑅 ) 
2 

(
𝐼 2 − 3 

)
, (27) 

here 𝜇1 ( R ), 𝜇2 ( R ) and 𝜀 ( R ) are the electro-mechanical material param-

ters, with properties depending on the undeformed radial coordinate

 . The quantity 𝜇1 ( 𝑅 ) − 𝜇2 ( 𝑅 ) is the shear modulus 𝜇( R ) > 0 in the ab-

ence of electrical fields. In view of Eq. (16) 1,2,4 , the reduced form of

he energy density is 

 

∗ (𝜆𝜃, 𝜆𝑧 , 𝐼 4 ) = 𝜔 ∗ 0 
(
𝜆𝜃, 𝜆𝑧 

)
+ 

𝜆−2 
𝜃
𝜆−2 
𝑧 
𝐼 4 

2 𝜀 ( 𝑅 ) 
, 

𝜔 ∗ 0 
(
𝜆𝜃, 𝜆𝑧 

)
= 

𝜇1 ( 𝑅 ) 
2 

(
𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝜃
+ 𝜆2 

𝑧 
− 3 

)
− 

𝜇2 ( 𝑅 ) 
2 

(
𝜆2 
𝜃
𝜆2 
𝑧 
+ 𝜆−2 

𝜃
+ 𝜆−2 

𝑧 
− 3 

)
. (28) 

To be specific, we assume affine variations of material parameters

11,13] , as follows 

1 ( 𝑅 ) = 𝜇10 
(
1 + 𝛽1 Λ

)
, 𝜇2 ( 𝑅 ) = 𝜇20 

(
1 + 𝛽2 Λ

)
, 

𝜀 ( 𝑅 ) = 𝜀 𝑎 0 
(
1 + 𝛽3 Λ

)
, (29) 

here 𝜇10 and 𝜇20 are elastic material constants (in N/m 

2 ), 𝜀 a 0 is a

ielectric constant (in F/m), 𝛽1 and 𝛽2 are elastic moduli gradient param-

ters , and 𝛽3 is the permittivity gradient parameter. Note that 𝛽1 , 𝛽2 , 𝛽3 

re dimensionless and characterize the functionally graded properties

f the SEA tube. 

Differentiation of Eq. (28) 1 with respect to I 4 , 𝜆𝜃 and 𝜆z yields in

urn 

𝜆2 
𝜃
𝜔 ∗ 4 = 

𝜆−2 
𝑧 

2 𝜀 ( 𝑅 ) 
, 𝜆𝜃𝜔 

∗ 
𝜆𝜃

= 𝜆𝜃𝜔 
∗ 
0 ,𝜆𝜃

− 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
, 

𝑧 𝜔 
∗ 
𝜆𝑧 

= 𝜆𝑧 𝜔 
∗ 
0 ,𝜆𝑧 

− 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
, (30) 

here 𝜔 ∗ 0 , 𝜆𝜃
= 𝜕 𝜔 ∗ 0 ∕ 𝜕 𝜆𝜃, 𝜔 

∗ 
0 , 𝜆𝑧 

= 𝜕 𝜔 ∗ 0 ∕ 𝜕 𝜆𝑧 and Eq. (16) 3 has been used.

ubstituting Eqs. (30) 1 and (29) 3 into Eq. (21) and conducting the inte-

ration, we obtain the dimensionless electric voltage 𝑉 ∗ = 𝑉 
√
𝜀 𝑎 0 ∕ 𝜇10 ∕ 𝐻

s 

 

∗ = 

𝑄 

∗ 

2 𝜆𝑧 ( 𝜂 − 1 ) 
(
1 + 𝐺 

∗ 𝛽2 3 𝜆𝑧 
) [
𝑉 ∗ 0 ( Λ) 

]|||𝜂1 , (31)

here 𝑄 

∗ = 𝑄 ( 𝑎 )∕(2 𝜋𝐴𝐿 
√
𝜇10 𝜀 𝑎 0 ) is the dimensionless surface charge ,

 

∗ = 𝐺∕ 𝐴 2 = 𝜆2 
𝑎 
− 𝜆−1 

𝑧 
, and 

[
𝑉 ∗ 0 ( Λ) 

]|||𝜂1 = 𝑉 ∗ 0 ( 𝜂) − 𝑉 ∗ 0 ( 1 ) with 

 

∗ 
0 ( Λ) = ln 

𝜆𝑧 𝐺 

∗ + Λ2 (
1 + 𝛽3 Λ

)2 + 2 𝛽3 
√
𝜆𝑧 𝐺 

∗ tan −1 
Λ√
𝜆𝑧 𝐺 

∗ 
. (32)

n the absence of functional gradients (i.e., 𝛽𝑖 = 0 ), the relation (31) re-

overs Eq. (51) in the paper by Melnikov and Ogden [33] and Eq. (63) 2 
n the paper by Wu et al. [43] for homogeneous SEA tubes. 

After substituting Eq. (30) 2,3 into Eqs. (22) and (26) , the pressure

ifference and the reduced axial force become 

Δ𝑃 = 𝑃 out − 𝑃 inn = − ∫
𝑏 

𝑎 

𝜆𝜃𝜔 
∗ 
0 ,𝜆𝜃

d 𝑟 

𝑟 
+ ∫

𝑏 

𝑎 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
d 𝑟 

𝑟 
, 

 𝑟 = 𝜋 ∫
𝑏 

𝑎 

(
2 𝜆𝑧 𝜔 ∗ 0 ,𝜆𝑧 − 𝜆𝜃𝜔 

∗ 
0 ,𝜆𝜃

)
𝑟 d 𝑟 − 𝜋 ∫

𝑏 

𝑎 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
𝑟 d 𝑟. (33) 

nserting Eq. (20) into the second terms of Eqs. (33) 1 and (33) 2 and

ntegrating the resultant expressions, we have 

∫
𝑏 

𝑎 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
d 𝑟 

𝑟 
= 

( 

𝑄 ( 𝑎 ) 
2 𝜋𝜆𝑧 𝐿 

) 2 
𝐴 𝜆𝑧 

2 𝜀 𝑎 0 
(
𝐴 2 + 𝐺𝛽2 𝜆𝑧 

)2 
[ 

𝐴𝛽2 3 ln 
𝜆𝑧 𝐺 + 𝑅 

2 (
𝐴 + 𝛽3 𝑅 

)2 

3 
+ 

𝛽3 
(
𝐺𝛽2 3 𝜆𝑧 − 𝐴 2 

)√
𝜆𝑧 𝐺 

tan −1 
𝑅 √
𝜆𝑧 𝐺 

+ 

(
𝐴 2 + 𝐺𝛽2 3 𝜆𝑧 

) 𝛽3 𝑅 − 𝐴 

𝜆𝑧 𝐺 + 𝑅 

2 

] ||||||
𝐵 

𝐴 

, (34) 

nd 

∫
𝑏 

𝑎 

𝐷 

2 
𝑟 

𝜀 ( 𝑅 ) 
𝑟 d 𝑟 = 

( 

𝑄 ( 𝑎 ) 
2 𝜋𝜆𝑧 𝐿 

) 2 
𝜋𝐴 

2 𝜀 𝑎 0 
(
𝐴 2 + 𝛽2 3 𝜆𝑧 𝐺 

)[ 

𝐴 ln 
𝜆𝑧 𝐺 + 𝑅 

2 (
𝐴 + 𝛽3 𝑅 

)2 
+2 𝛽3 

√
𝜆𝑧 𝐺 tan −1 

𝑅 √
𝜆𝑧 𝐺 

] ||||||
𝐵 

𝐴 

. (35) 

n addition, differentiating Eq. (28) 2 with respect to 𝜆𝜃 and 𝜆z leads to 

𝜃𝜔 
∗ 
0 ,𝜆𝜃

= 

[
𝜇1 ( 𝑅 ) − 𝜇2 ( 𝑅 ) 𝜆2 

𝑧 

]𝜆2 𝑧 𝑟 4 − 𝑅 

4 

𝜆2 
𝑧 
𝑅 

2 𝑟 2 
, 

𝜆𝑧 𝜔 
∗ 
0 ,𝜆𝑧 

= 

[ 
𝜇1 ( 𝑅 ) 
𝑟 2 

− 

𝜇2 ( 𝑅 ) 
𝑅 

2 

] 
𝜆4 
𝑧 
𝑟 2 − 𝑅 

2 

𝜆2 
𝑧 

, (36) 

here we have used 𝜆𝜃 = 𝑟 ∕ 𝑅 . Thus, substituting Eq. (36) into the first

erms of Eq. (33) 1,2 and carrying out the integration of the resultant

xpressions, we obtain 

− ∫
𝑏 

𝑎 

𝜆𝜃𝜔 
∗ 
0 , 𝜆𝜃

d 𝑟 

𝑟 
= 

[ ( 

𝜇10 
𝜆𝑧 

− 𝜇20 𝜆𝑧 

) (
ln 𝜆𝜃 + 

𝐺 

2 𝑟 2 
)

+ 

1 
2 𝐴 

( 

𝜇10 
𝜆𝑧 
𝛽1 − 𝜇20 𝜆𝑧 𝛽2 

) 

( 

𝐺𝑅 

𝑟 2 
− 3 

√
𝜆𝑧 𝐺 tan −1 𝑅 √

𝜆𝑧 𝐺 

) ] ||||||
𝐵 

𝐴 

, (37) 

nd 

∫
𝑏 

𝑎 

(
2 𝜆𝑧 𝜔 ∗ 0 , 𝜆𝑧 − 𝜆𝜃𝜔 

∗ 
0 , 𝜆𝜃

)
𝑟 d 𝑟 = 𝜋

[ ( 

𝜇10 𝜆𝑧 + 

𝜇20 

𝜆3 
𝑧 

) 

𝑅 

2 

− 

( 

𝜇10 
𝜆𝑧 

+ 𝜇20 𝜆𝑧 

) ( 

𝑅 

2 

𝜆𝑧 
− 𝐺 ln 𝜆𝜃

) 

+ 

2 𝑅 

3 

3 𝐴 

( 

𝜇10 𝜆𝑧 𝛽1 + 

𝜇20 𝛽2 

𝜆3 
𝑧 

) 

− 

( 

𝜇10 𝛽1 

𝐴 𝜆𝑧 
+ 

𝜇20 𝜆𝑧 𝛽2 

𝐴 

) 

( 

2 𝑅 

3 

3 𝜆𝑧 
+ 𝐺 

√
𝜆𝑧 𝐺 tan −1 

𝑅 √
𝜆𝑧 𝐺 

) ] ||||||
𝐵 

𝐴 

. (38) 

Consequently, the combination of Eqs. (34) –(35) and (37) –(38)

ields the dimensionless pressure difference Δ𝑃 ∗ = Δ𝑃 ∕ 𝜇10 and the re-

uced axial force 𝑁 

∗ 
𝑟 
= 𝑁 𝑟 ∕( 𝜋𝜇10 𝐴 2 ) as 

𝑃 ∗ = 

[
Δ𝑃 ∗ 1 ( Λ) + Δ𝑃 ∗ 2 ( Λ) 

]|||𝜂1 , 
 

∗ 
𝑟 
= 𝑁 

∗ − 

(
𝜆2 
𝑎 
𝑃 ∗ 

inn 
− 𝜆2 

𝑏 
𝜂2 𝑃 ∗ out 

)
= 

[
𝑁 

∗ 
𝑟 1 ( Λ) − 𝑁 

∗ 
𝑟 2 ( Λ) 

]|||𝜂1 , (39) 

here 𝑁 

∗ = 𝑁∕( 𝜋𝜇10 𝐴 2 ) is the dimensionless resultant axial force, and

 

∗ 
inn 

= 𝑃 inn ∕ 𝜇10 , 𝑃 ∗ out = 𝑃 out ∕ 𝜇10 denote the dimensionless internal and

xternal pressures, respectively, and 

𝑃 ∗ 1 ( Λ) = 

( 

1 
𝜆𝑧 

− 

𝜇20 
𝜇10 
𝜆𝑧 

) 

( 

ln 𝜆𝜃 + 

𝐺 

∗ 

2 
(
𝐺 

∗ + 𝜆−1 
𝑧 
Λ2 

)) 

+ 

1 
2 

( 

𝛽1 

𝜆𝑧 
− 

𝜇20 
𝜇10 
𝜆𝑧 𝛽2 

) 

( 

𝐺 

∗ Λ
𝐺 

∗ + 𝜆−1 
𝑧 
Λ2 − 3 

√
𝜆𝑧 𝐺 

∗ tan −1 Λ√
𝜆𝑧 𝐺 

∗ 

) 

, 

𝑃 ∗ 2 ( Λ) = 

( 𝑄 

∗ ) 2 

2 𝜆𝑧 
(
1 + 𝛽2 3 𝜆𝑧 𝐺 

∗ 
)2 

[ 

𝛽2 3 ln 
𝜆𝑧 𝐺 

∗ + Λ2 (
1 + 𝛽3 Λ

)2 
+ 

𝛽3 
(
𝛽2 3 𝜆𝑧 𝐺 

∗ − 1 
)√

𝜆𝑧 𝐺 

∗ 
tan −1 Λ√

𝜆𝑧 𝐺 

∗ 
+ 

(
1 + 𝐺 

∗ 𝛽2 3 𝜆𝑧 
) 𝛽3 Λ − 1 
𝜆𝑧 𝐺 

∗ + Λ2 

] 

, 

𝑁 

∗ 
𝑟 1 ( Λ) = 

( 

𝜆𝑧 + 

𝜇20 

𝜇10 𝜆
3 
𝑧 

) 

Λ2 − 

( 

1 
𝜆𝑧 

+ 

𝜇20 
𝜇10 
𝜆𝑧 

) ( 

Λ2 

𝜆𝑧 
− 𝐺 

∗ ln 𝜆𝜃
) 

+ 

2 Λ3 

3 

( 

𝜆𝑧 𝛽1 + 

𝜇20 𝛽2 

𝜇10 𝜆
3 
𝑧 

) 

− 

( 

𝛽1 

𝜆𝑧 
+ 

𝜇20 𝜆𝑧 𝛽2 

𝜇10 

) 

( 

2 Λ3 

3 𝜆𝑧 
+ 𝐺 

∗ √𝜆𝑧 𝐺 

∗ tan −1 Λ√
𝜆𝑧 𝐺 

∗ 

) 

, 
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n  

S  

a  

𝛽  

t  

b  

d  
𝑁 

∗ 
𝑟 2 ( Λ) = 

( 𝑄 

∗ ) 2 

2 𝜆2 
𝑧 

(
1 + 𝛽2 3 𝜆𝑧 𝐺 

∗ 
)[ 

ln 
𝜆𝑧 𝐺 

∗ + Λ2 (
1 + 𝛽3 Λ

)2 + 2 𝛽3 
√
𝜆𝑧 𝐺 

∗ tan −1 Λ√
𝜆𝑧 𝐺 

∗ 

] 

. 

(40)

Using Mathematica (Wolfram Research, Inc., 2013), we validated the

revious formulations derived from the analytical integrations. When

here are no functional gradients (i.e., 𝛽𝑖 = 0 ) and the SEA tube is

haracterized by the neo-Hookean ideal dielectric model (i.e., 𝜇20 = 0 ),
qs. (39) and (40) reduce to 

𝑃 = − 

𝜇10 
𝜆𝑧 

( 

ln 
𝜆𝑎 

𝜆𝑏 
+ 

1 
2 𝜆𝑧 

𝜆2 
𝑎 
− 𝜆2 

𝑏 

𝜆2 
𝑎 
𝜆2 
𝑏 

) 

+ 

( 

𝑄 ( 𝑎 ) 
2 𝜋AL 

) 2 𝐴 4 
(
𝜂2 − 1 

)
2 𝜀 𝑎 0 𝜆3 𝑧 𝑎 2 𝑏 2 

, 

𝑁 𝑟 = 𝜋𝜇10 𝐴 
2 

[ (
𝜆𝑧 − 𝜆−2 

𝑧 

)(
𝜂2 − 1 

)
− 

𝜆2 
𝑎 
𝜆𝑧 − 1 
𝜆2 
𝑧 

ln 
𝜆𝑎 

𝜆𝑏 

] 

− 

( 

𝑄 ( 𝑎 ) 
2 𝜋AL 

) 2 
𝜋𝐴 2 

𝜀 𝑎 0 𝜆
2 
𝑧 

ln 
𝑏 

𝑎 
, (41)

hich, for 𝑃 out = 0 , are equal to Eqs. (59) and (60) obtained by Mel-

ikov and Ogden [33] but expressed in a different notation. 

Analogous to the derivation of the pressure difference in Eq. (39) 1 ,

ntegration of Eq. (23) gives the radial normal stress as 

∗ 
𝑟𝑟 
= − 

[
Δ𝑃 ∗ 1 ( Λ) + Δ𝑃 ∗ 2 ( Λ) 

]|||Λ1 − 𝑃 ∗ 
inn 
, (42)

here 𝜏∗ 
𝑟𝑟 
= 𝜏𝑟𝑟 ∕ 𝜇10 . Substituting Eqs. (30) 2,3 and (36) into Eq. (18) 1,2 ,

e find the circumferential and axial normal stresses as 

∗ 
𝜃𝜃

= 𝜏∗ rr + 

(
1 + 𝛽1 Λ

)(
𝜆2 
𝜃
− 𝜆−2 

𝜃
𝜆−2 
𝑧 

)
+ 

𝜇20 
𝜇10 

(
1 + 𝛽2 Λ

)(
𝜆−2 
𝜃

− 𝜆2 
𝜃
𝜆2 
𝑧 

)
− 

(
𝐷 

∗ 
𝑟 

)2 
1 + 𝛽3 Λ

, 

𝜏∗ zz = 𝜏∗ rr + 

(
1 + 𝛽1 Λ

)(
𝜆2 
𝑧 
− 𝜆−2 

𝜃
𝜆−2 
𝑧 

)
+ 

𝜇20 
𝜇10 

(
1 + 𝛽2 Λ

)(
𝜆−2 
𝑧 

− 𝜆2 
𝜃
𝜆2 
𝑧 

)
− 

(
𝐷 

∗ 
𝑟 

)2 
1 + 𝛽3 Λ

, (43)

here 𝜏∗ 
𝜃𝜃

= 𝜏𝜃𝜃∕ 𝜇10 , 𝜏∗ 𝑧𝑧 = 𝜏𝑧𝑧 ∕ 𝜇10 and 𝐷 

∗ 
𝑟 
= 𝐷 𝑟 ∕ 

√
𝜇10 𝜀 𝑎 0 . The Lagrange

ultiplier can be obtained by Eqs. (27) and (17) 1 as 

 

∗ = 

(
1 + 𝛽1 Λ

)
𝜆−2 
𝜃
𝜆−2 
𝑧 

− 

𝜇20 
𝜇10 

(
1 + 𝛽2 Λ

)
( 𝜆−2 
𝜃

+ 𝜆−2 
𝑧 
) + 

(
𝐷 

∗ 
𝑟 

)2 
1 + 𝛽3 Λ

− 𝜏∗ 
𝑟𝑟 
, (44)

here 𝑝 ∗ = 𝑝 ∕ 𝜇10 . The dimensionless form of the relation (20) is written

s 

𝐷 

∗ 
𝑟 

)2 = 

( 𝑄 

∗ ) 2 

𝜆2 
𝑧 

(
𝐺 

∗ + 𝜆−1 
𝑧 
Λ2 

) . (45)

Without the electro-mechanical coupling, the results obtained above

ecover those of Batra and Bahrami [11] and Chen et al. [12] for the

urely elastic functionally graded tube. We note from Eqs. (42) –(45) that

he initial physical variables are radially inhomogeneous due to the ap-

lication of a pressure difference or a radial electric voltage, even for

omogeneous tubes. In the absence of pressure and voltage, a uniform

eformation state always exists in functionally graded elastomeric tubes

ubject to an axial stretch only. In that state, 𝜆𝑟 = 𝜆𝜃 = 𝜆
−1∕2 
𝑧 , the radial

nd circumferential stresses both vanish, and the only nonzero stress

omponent is the axial normal stress 𝜏zz , given by 

𝑧𝑧 = 𝜇1 ( 𝑅 ) 
(
𝜆2 
𝑧 
− 𝜆−1 

𝑧 

)
+ 𝜇2 ( 𝑅 ) 

(
𝜆−2 
𝑧 

− 𝜆𝑧 
)
, (46)

hich varies along the radial direction of the functionally graded tube.

.3. Numerical results 

In the following numerical calculations, the elastic material con-

tants 𝜇10 and 𝜇20 take the values 𝜇10 = 1 . 858 × 10 5 Pa and 𝜇20 =
0 . 1935 × 10 5 Pa, as obtained for rubber by Batra et al. [58] ; thus here,

∕ 𝜇 = −0 . 104 . The two elastic moduli gradient parameters 𝛽 and
20 10 1 
2 are assumed to be equal, 𝛽1 = 𝛽2 . Moreover, the requirement that the

hear modulus 𝜇( 𝑅 ) = 𝜇1 ( 𝑅 ) − 𝜇2 ( 𝑅 ) and the dielectric permittivity 𝜀 ( R )

f the functionally graded SEA material in the undeformed state should

e positive leads to the following condition for the material gradient pa-

ameters: 𝛽𝑖 > −1∕ 𝜂 ( 𝑖 = 1 , 2 , 3) . Here the initial undeformed shape factor

= 𝐵∕ 𝐴 is fixed as 𝜂 = 2 . 0 , which gives 𝛽𝑖 > −0 . 5 . 

.3.1. Nonlinear axisymmetric deformation 

First, we examine the nonlinear axisymmetric response of the func-

ionally graded SEA tube to different biasing fields. The numerical re-

ults are calculated from Eqs. (31) , (32), (39) 1 and (40) 1,2 . 

For three axial pre-stretches 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 , Fig. 2 shows the vari-

tions of 𝜆a with the dimensionless pressure difference ΔP ∗ for various

aterial gradient values 𝛽 = 𝛽𝑖 ( 𝑖 = 1 , 2 , 3) . Note that we consistently set

he lower bound of 𝜆a to be 0.5, which corresponds to a positive pres-

ure difference. A smaller 𝜆a induced by a larger positive ΔP ∗ may lead

o an instability of the tube [12] . As explained earlier, a uniform defor-

ation state always exists for the functionally graded tube when there

s no pressure difference and no voltage, i.e., 𝜆𝑟 = 𝜆𝜃 = 𝜆
−1∕2 
𝑧 = con-

tant when Δ𝑃 ∗ = 𝑉 ∗ = 0 . Specifically we find 𝜆𝑎 = 1 . 11803 , 1 . 0 , 0 . 70711
hen 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 , respectively, as seen at the intersection point of

ll curves in each of the panels of Fig. 2 . For a fixed axial pre-stretch

nd fixed material gradient, 𝜆a increases monotonically when ΔP ∗ de-

reases. Beyond a critical negative pressure difference Δ𝑃 ∗ 
𝑐 
< 0 , no so-

ution exists for the axisymmetric deformation and the tube collapses,

s the compressive force exceeds the mechanical resistance force of the

ube. For example, when 𝛽 = 5 . 0 , we find that the critical pressure differ-

nce is Δ𝑃 ∗ 
𝑐 
= −7 . 42 , −6 . 20 , −4 . 04 for 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 , respectively. This

henomenon was observed by Melnikov and Ogden [33] for a pressur-

zed homogeneous SEA tube. What is clearly seen in Fig. 2 is the gradual

ecline of the critical pressure difference with an increase in 𝛽 and a de-

rease in 𝜆z . This trend reveals that increasing the material gradient and

xial compression widens the existence range of the nonlinear response.

oreover, in order to reach the same level of 𝜆a , a larger absolute value

f ΔP ∗ is required when increasing the value of 𝛽, indicating that the

unctionally graded SEA tube is stiffened by an increasing material gra-

ient. 

Fig. 3 displays 𝜆a as a function of ΔP ∗ for the three axial pre-

tretches 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 and various values of increasing voltage ( 𝑉 ∗ =
 . 0 , 0 . 4 , 0 . 6 , 0 . 8 ). We observe that 𝜆a rises notably when the voltage in-

reases for a fixed ΔP ∗ , which indicates that the voltage tends to inflate

he SEA tube. Furthermore, the critical pressure difference Δ𝑃 ∗ 
𝑐 

is lifted

p with an increase in V 

∗ . In particular, for 𝜆𝑧 = 2 . 0 and a high voltage

 𝑉 ∗ = 0 . 8 ), Δ𝑃 ∗ 
𝑐 

becomes positive , which means that an external pressure

arger than the internal pressure is needed to maintain the axisymmetric

eformation. 

For the three axial pre-stretches 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 , Fig. 4 illustrates

he variations of the inner side circumferential stretch 𝜆a with the di-

ensionless voltage V 

∗ , for various values of pressure difference ΔP ∗ .

t shows that there is a nonlinear monotonous increase in 𝜆a with V 

∗ ,

hus inflating the SEA tube. Similar to the case of pressure difference

n Figs. 2 and 3 , there is no solution of the axisymmetric deformation

eyond a critical voltage 𝑉 ∗ 
𝑐 
, once the electrostatic compressive force

urpasses the elastic resistance force of the tube itself [40,43] . The crit-

cal voltage value 𝑉 ∗ 
𝑐 

increases with the pressure difference ΔP ∗ but

ecreases with the axial pre-stretch 𝜆z . Thus, when the applied voltage

ecomes large, the axisymmetric deformation may be maintained by

ncreasing the external pressure. 

Fig. 5 highlights the influence of material gradient parameters on the

onlinear response of 𝜆a with V 

∗ for a pre-stretched functionally graded

EA tube with 𝜆𝑧 = 2 . 0 and Δ𝑃 ∗ = 0 . What is striking here is the remark-

ble decrease in the critical voltage 𝑉 ∗ 
𝑐 

when the permittivity gradient

3 increases. The reason for this behaviour is that the larger the permit-

ivity gradient, the stronger the electrostatic compressive force induced

y the electric field in the tube, leading to a lower critical voltage. In or-

er to reach the same level of circumferential stretch 𝜆 , a lower voltage
a 
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Fig. 2. Variations of the inner surface circumferential ratio 𝜆a with the dimensionless pressure difference ΔP ∗ in a functionally graded SEA tube with no voltage 

𝑉 ∗ = 0 , for different values of material gradient 𝛽 = 𝛽1 = 𝛽2 = 𝛽3 and various axial pre-stretches 𝜆z : (a) 𝜆𝑧 = 0 . 8 ; (b) 𝜆𝑧 = 1 . 0 ; (c) 𝜆𝑧 = 2 . 0 . 

Fig. 3. Variations of the inner surface circumferential ratio 𝜆a with the dimensionless pressure difference ΔP ∗ in a functionally graded SEA tube with material 

gradient 𝛽 = 𝛽1 = 𝛽2 = 𝛽3 = 5 . 0 , for different values of voltage V ∗ and various axial pre-stretches 𝜆z : (a) 𝜆𝑧 = 0 . 8 ; (b) 𝜆𝑧 = 1 . 0 ; (c) 𝜆𝑧 = 2 . 0 . 

Fig. 4. Variations of the inner surface circumferential ratio 𝜆a with the dimensionless voltage V ∗ in a functionally graded SEA tube with material gradient 𝛽 = 𝛽1 = 
𝛽2 = 𝛽3 = 5 . 0 , for different values of pressure difference ΔP ∗ and various axial pre-stretches 𝜆z : (a) 𝜆𝑧 = 0 . 8 ; (b) 𝜆𝑧 = 1 . 0 ; (c) 𝜆𝑧 = 2 . 0 . 

m  

t  

t  

𝑉  

m  

e

 

t  

N  

p  

v  

s  
ay be applied to a functionally graded SEA tube with a larger permit-

ivity gradient. Moreover, we find that for a stiffer functionally graded

ube (with a larger elastic moduli gradient 𝛽1 = 𝛽2 ), the critical voltage

 

∗ 
𝑐 

increases markedly. As a result, a greater actuation at a low voltage

ay be achieved by increasing the permittivity gradient or by decreasing the

lastic moduli gradients . 
𝜏  
We emphasize that according to Eqs. (31) , (32), (39) and (40) ,

he nonlinear axisymmetric deformation and the reduced axial force

 r are independent of the specific value of the internal or external

ressure, and depend only on the material gradients, axial pre-stretch,

oltage, and pressure difference. The actual internal or external pres-

ure, however, affects the resultant axial force N and the initial stresses

𝑖𝑖 ( 𝑖 = 𝑟, 𝜃, 𝑧 ) , see Eqs. (39) 2 , (42) and (43) . The effect of the circumfer-
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Fig. 5. Variations of the inner surface circumferential ratio 𝜆a with the dimensionless voltage V ∗ in a functionally graded SEA tube with 𝜆𝑧 = 2 . 0 and Δ𝑃 ∗ = 0 , for 

different permittivity gradients 𝛽3 and three sets of elastic moduli gradients: (a) 𝛽1 = 𝛽2 = −0 . 25 ; (b) 𝛽1 = 𝛽2 = 0 ; (c) 𝛽1 = 𝛽2 = 2 . 0 . 

Fig. 6. Variations of the inner surface circumferential ratio 𝜆a with the dimensionless resultant axial force N 

∗ (a-c) and reduced axial force 𝑁 

∗ 
𝑟 

(d-f) in a functionally 

graded SEA tube with 𝑃 ∗ 
out 

= 0 and 𝑉 ∗ = 0 , for different material gradients 𝛽 = 𝛽1 = 𝛽2 = 𝛽3 and various axial pre-stretches 𝜆z : (a, d) 𝜆𝑧 = 0 . 8 ; (b, e) 𝜆𝑧 = 1 . 0 ; (c, f) 

𝜆𝑧 = 2 . 0 . 

e  

a  

t  

N  

i  

t  

i  

s

n  

i  

t  

p  

c  

i  

c  

i  

a  

F  
ntial stretch 𝜆a on the dimensionless resultant ( N 

∗ ) and reduced ( 𝑁 

∗ 
𝑟 
)

xial forces in a functionally graded SEA tube is illustrated in Fig. 6 for

he same material gradients 𝛽 and axial pre-stretches 𝜆z as those in Fig. 2 .

ote that there is no external pressure here (i.e., 𝑃 out = 0 ) and only an

nternal pressure 𝑃 inn is applied on the inner surface of the tube. Here

he increase of 𝜆a reflects the inflation of the tube resulting from the

ncrease in 𝑃 inn . The starting point of 𝜆a corresponding to 𝑃 inn = 𝑉 ∗ = 0
atisfies the relation 𝜆𝑎 = 𝜆

−1∕2 
𝑧 . 

In the case where the tube has open ends , a resultant axial force N 

∗ 

eeds to be applied to maintain a fixed axial pre-stretch 𝜆z , as shown
n Fig. 6 (a)–(c). For an axial contraction, 𝜆𝑧 = 0 . 8 in Fig. 6 (a), a nega-

ive (compressive) resultant axial force is required. As the inflation takes

lace, the axial force eventually becomes positive (tensile) once a suffi-

ient value of 𝜆a is reached. In contrast, a positive (tensile) axial force

s initially required for an axial extension 𝜆𝑧 = 2 . 0 , which then increases

ontinuously with the inflation, as displayed in Fig. 6 (c). For 𝜆𝑧 = 1 . 0
n Fig. 6 (b), there is no axial force initially, but an increasing tensile

xial force is then required during the inflation. We also observe from

ig. 6 (a)–(c) that an increase in the material gradient significantly in-
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Fig. 7. Radial distributions of the dimensionless radial normal stress 𝜏∗ 
𝑟𝑟 

(a), circumferential normal stress 𝜏∗ 
𝜃𝜃

(b), circumferential stretch 𝜆𝜃 (c), and radial electric 

displacement 𝐷 

∗ 
𝑟 

(d) in a functionally graded SEA tube with 𝑃 ∗ 
out 

= 0 , 𝑃 ∗ 
inn 

= 1 . 12 , 𝜆𝑧 = 1 . 0 and 𝛽1 = 𝛽2 = 𝛽3 = 5 . 0 , for different values of V ∗ . 
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reases the absolute value of N 

∗ required to reach the same level of 𝜆a ,

ue to the material stiffening effect. 

When the tube has closed ends , the externally applied axial load is de-

ned as the reduced axial force N r in Eq. (26) . We present the variation

f 𝑁 

∗ 
𝑟 

with 𝜆a (i.e., 𝑃 inn ) in Fig. 6 (d)–(f). We observe that a stiffer tube

ith a larger material gradient 𝛽 requires a larger absolute value of 𝑁 

∗ 
𝑟 

o reach the same level of 𝜆a , a phenomenon similar to that observed

n Fig. 6 (a)–(c). However, the reduced axial force 𝑁 

∗ 
𝑟 

decreases mono-

onically with 𝜆a , which is in contrast to the behaviour of the resultant

orce N 

∗ . This is because the increase of internal pressure accompanied

y an increase in 𝜆a makes the tube with closed ends exhibit both in-

ation and elongation trends, and the decreasing axial force caused by

he elongation trend prevails over the increasing inflation-induced axial

orce (also see Eq. (26) ). 

.3.2. Inhomogeneous biasing fields 

Next, we examine the effect of the applied voltage and of the material

radients on the inhomogeneous biasing fields. 

Fig. 7 is plotted according to Eqs. (15) , (42), (43) 1 and (45) . It il-

ustrates the variations of 𝜏∗ 
𝑟𝑟 
, 𝜏∗ 
𝜃𝜃
, 𝜆𝜃 and 𝐷 

∗ 
𝑟 

along the radial direction

 Λ = 𝑅 ∕ 𝐴 ) in a functionally graded SEA tube subject to the internal pres-

ure 𝑃 ∗ 
inn 

= 1 . 12 , for different values of voltage V 

∗ . It is clear that these

iasing fields are radially inhomogeneous in the tube, even for 𝑉 ∗ = 0 ,
here 𝐷 

∗ 
𝑟 

disappears. As expected, the radial stress component 𝜏∗ 
𝑟𝑟 

is

ompressive throughout the tube and has its minimum value at the inner

urface, independent of the applied voltage. The circumferential stress

omponent 𝜏∗ 
𝜃𝜃
, on the other hand, is tensile in the tube and its radial

istribution is affected by the voltage. Specifically, the maximum value

f 𝜏∗ 
𝜃𝜃

appears at the inner surface for a low voltage and at the outer

urface for a higher voltage, as expected from Eq. (43) 1 . The radial dis-

ribution of 𝜏∗ 
𝜃𝜃

is almost uniform for a moderate voltage, as seen for

 

∗ = 0 . 12 in Fig. 7 (b). Therefore, as the voltage increases, the degree of

nhomogeneity of 𝜏∗ 
𝜃𝜃

decreases first and then increases. Another inter-
sting phenomenon is that 𝜏∗ 
𝜃𝜃

remains essentially unchanged with the

pplied voltage at the point Λ ≃ 1.31. Fig. 7 (c)–(d) show that increasing

he electric voltage enlarges substantially the inhomogeneous degree of

𝜃 and 𝐷 

∗ 
𝑟 
, and that their values at the inner surface are always larger

han those at the outer surface, which is in agreement with Eqs. (15) and

45) . 

Fig. 8 shows the effect of the elastic moduli gradients 𝛽 = 𝛽1 = 𝛽2 and

he permittivity gradient 𝛽3 on the radial distributions of 𝜏∗ 
𝜃𝜃

and 𝐷 

∗ 
𝑟 

in

 functionally graded SEA tube subject to the voltage 𝑉 ∗ = 0 . 4 . We see

rom Fig. 8 (a)-(b) that the value of 𝐷 

∗ 
𝑟 

drops down with an increase in

he elastic moduli gradient 𝛽 = 𝛽1 = 𝛽2 and goes up with an increasing

ermittivity gradient 𝛽3 . This is because the value of 𝐷 

∗ 
𝑟 

depends mainly

n the denominator in the fraction of Eq. (31) , where a larger 𝛽 leads

o a smaller 𝜆a for a given voltage (i.e., a smaller 𝐺 

∗ = 𝜆2 
𝑎 
− 𝜆−1 

𝑧 
) while a

arger 𝛽3 results in the opposite trend (also seen in Fig. 5 ). Fig. 8 (c)-(d)

learly show that the material gradients also influence noticeably the

istribution of 𝜏∗ 
𝜃𝜃

. Similar to the role of voltage in Fig. 7 (b), as 𝛽 or

3 increases, the inhomogeneous degree of 𝜏∗ 
𝜃𝜃

decreases first and then

ecomes large. In particular, the radial distribution of 𝜏∗ 
𝜃𝜃

when 𝛽1 =
2 = 2 . 0 and 𝛽3 = −0 . 25 is nearly uniform. Thus, the stress concentration or

harp stress variations in SEA tubes subject to electric fields may be alleviated

y properly tailoring the material gradient parameters . Interestingly, the

ircumferential stress 𝜏∗ 
𝜃𝜃

takes almost the same value at the point Λ =
𝜂 ≃ 1 . 414 when varying 𝛽 or 𝛽3 , which has been observed by Batra

nd Bahrami [11] for purely elastic functionally graded tubes. 

. State-space method for incremental fields 

Because of the functional gradients and of the radially inhomoge-

eous character of the biasing fields for the static nonlinear deformation

n the SEA tube shown in Section 3 , the instantaneous electro-elastic

oduli also depend on the radial coordinate r . Thus, it is intractable

o solve analytically the resulting incremental governing equations by
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Fig. 8. Radial variations of the dimensionless electric displacement 𝐷 

∗ 
𝑟 

(a, b) and circumferential normal stress 𝜏∗ 
𝜃𝜃

(c, d) in a functionally graded SEA tube with 

𝑃 ∗ 
out 

= 𝑃 ∗ 
inn 

= 0 , 𝜆𝑧 = 1 . 0 and 𝑉 ∗ = 0 . 4 : (a, c) for fixed permittivity gradient 𝛽3 = 2 . 0 and different elastic moduli gradients 𝛽 = 𝛽1 = 𝛽2 ; (b, d) for fixed elastic moduli 

gradients 𝛽1 = 𝛽2 = 2 . 0 and different permittivity gradients 𝛽3 . 
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eans of the conventional displacement-based method because they are

 system of coupled partial differential equations with variable coeffi-

ients . Moreover, their numerical resolution may run into problems be-

ause they are likely to be stiff. Note that Shmuel and deBotton [40] used

he compound matrix method to study axisymmetric waves propagating

n neo-Hookean ideal SEA tubes under radial electric voltage, but met

he problem of numerical divergence when searching for roots in the

ase of thick-walled tubes. 

In this work, we rely on the state-space method (SSM) to combine

he incremental state-space formalism ( Section 4.1 ) with the approx-

mate laminate technique ( Section 4.2 ) in order to derive the disper-

ion relations of the superimposed axisymmetric waves propagating

n the deformed functionally graded SEA tube. The SSM, as a special

ixed-variable method, transforms the governing equations into a set

f first-order ordinary differential equations with respect to one partic-

lar coordinate, the radial coordinate here. The SSM presents several

dvantages over the displacement-based methods in solving many prac-

ical problems, such as multi-layered or functionally graded structures

12,13] and inhomogeneous biasing fields [28,43] , as it is numerically

obust. The interested readers are referred to Ding and Chen [59] for

ore details and the references cited therein. 

.1. Incremental equations and state-space formalism in cylindrical 

oordinates 

In the cylindrical coordinates ( r, 𝜃, z ) shown in Fig. 1 (b), the basic in-

remental governing equations of the deformed tube are the incremental

quations of motion and incremental Gauss’s law, 

𝜕 �̇� 0 rr 
𝜕𝑟 

+ 

1 
𝑟 

𝜕 �̇� 0 𝜃𝑟 
𝜕𝜃

+ 

�̇� 0 rr − �̇� 0 𝜃𝜃
𝑟 

+ 

𝜕 �̇� 0 zr 

𝜕𝑧 
= 𝜌

𝜕 2 𝑢 𝑟 
2 , 
𝜕𝑡 
𝜕 �̇� 0 𝑟𝜃
𝜕𝑟 

+ 

1 
𝑟 

𝜕 �̇� 0 𝜃𝜃
𝜕𝜃

+ 

�̇� 0 𝜃𝑟 + �̇� 0 𝑟𝜃
𝑟 

+ 

𝜕 �̇� 0 𝑧𝜃
𝜕𝑧 

= 𝜌
𝜕 2 𝑢 𝜃

𝜕𝑡 2 
, 

𝜕 �̇� 0 rz 
𝜕𝑟 

+ 

1 
𝑟 

𝜕 �̇� 0 𝜃𝑧 
𝜕𝜃

+ 

𝜕 �̇� 0 zz 

𝜕𝑧 
+ 

�̇� 0 rz 
𝑟 

= 𝜌
𝜕 2 𝑢 𝑧 

𝜕𝑡 2 
, 

𝜕 ̇ 0 𝑟 
𝜕𝑟 

+ 

1 
𝑟 

( 

𝜕 ̇ 0 𝜃
𝜕𝜃

+ ̇ 0 𝑟 

) 

+ 

𝜕 ̇ 0 𝑧 
𝜕𝑧 

= 0 , (47) 

ogether with the incremental incompressibility constraint, 

𝜕 𝑢 𝑟 

𝜕𝑟 
+ 

1 
𝑟 

( 

𝜕 𝑢 𝜃

𝜕𝜃
+ 𝑢 𝑟 

) 

+ 

𝜕 𝑢 𝑧 

𝜕𝑧 
= 0 , (48)

nd the incremental constitutive relations, 

�̇� 0 rr = 𝑐 11 
𝜕𝑢 𝑟 

𝜕𝑟 
+ 𝑐 12 

1 
𝑟 

( 

𝜕𝑢 𝜃

𝜕𝜃
+ 𝑢 𝑟 

) 

+ 𝑐 13 
𝜕𝑢 𝑧 

𝜕𝑧 
+ 𝑒 11 

𝜕 �̇�

𝜕𝑟 
− �̇� , 

̇
 0 𝜃𝜃 = 𝑐 12 

𝜕𝑢 𝑟 

𝜕𝑟 
+ 𝑐 22 

1 
𝑟 

( 

𝜕𝑢 𝜃

𝜕𝜃
+ 𝑢 𝑟 

) 

+ 𝑐 23 
𝜕𝑢 𝑧 

𝜕𝑧 
+ 𝑒 12 

𝜕 �̇�

𝜕𝑟 
− �̇� , 

�̇� 0 zz = 𝑐 13 
𝜕𝑢 𝑟 

𝜕𝑟 
+ 𝑐 23 

1 
𝑟 

( 

𝜕𝑢 𝜃

𝜕𝜃
+ 𝑢 𝑟 

) 

+ 𝑐 33 
𝜕𝑢 𝑧 

𝜕𝑧 
+ 𝑒 13 

𝜕 �̇�

𝜕𝑟 
− �̇� , 

�̇� 0 𝜃𝑧 = 𝑐 44 
1 
𝑟 

𝜕𝑢 𝑧 

𝜕𝜃
+ 𝑐 47 

𝜕𝑢 𝜃

𝜕𝑧 
, �̇� 0 𝑧𝜃 = 𝑐 47 

1 
𝑟 

𝜕𝑢 𝑧 

𝜕𝜃
+ 𝑐 77 

𝜕𝑢 𝜃

𝜕𝑧 
, 

�̇� 0 rz = 𝑐 55 
𝜕𝑢 𝑧 

𝜕𝑟 
+ 𝑐 58 

𝜕𝑢 𝑟 

𝜕𝑧 
+ 𝑒 35 

𝜕 �̇�

𝜕𝑧 
, �̇� 0 zr = 𝑐 58 

𝜕𝑢 𝑧 

𝜕𝑟 
+ 𝑐 88 

𝜕𝑢 𝑟 

𝜕𝑧 
+ 𝑒 35 

𝜕 �̇�

𝜕𝑧 
, 

�̇� 0 𝑟𝜃 = 𝑐 66 
𝜕𝑢 𝜃

𝜕𝑟 
+ 𝑐 69 

1 
𝑟 

( 

𝜕𝑢 𝑟 

𝜕𝜃
− 𝑢 𝜃

) 

+ 𝑒 26 
1 
𝑟 

𝜕 �̇�

𝜕𝜃
, 

�̇� 0 𝜃𝑟 = 𝑐 69 
𝜕𝑢 𝜃

𝜕𝑟 
+ 𝑐 99 

1 
𝑟 

( 

𝜕𝑢 𝑟 

𝜕𝜃
− 𝑢 𝜃

) 

+ 𝑒 26 
1 
𝑟 

𝜕 �̇�

𝜕𝜃
, 

̇ 0 𝑟 = 𝑒 11 
𝜕𝑢 𝑟 

𝜕𝑟 
+ 𝑒 12 

1 
𝑟 

( 

𝜕𝑢 𝜃

𝜕𝜃
+ 𝑢 𝑟 

) 

+ 𝑒 13 
𝜕𝑢 𝑧 

𝜕𝑧 
− 𝜀 11 

𝜕 �̇�

𝜕𝑟 
, 
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̇ 0 𝜃 = 𝑒 26 

[ 
1 
𝑟 

( 

𝜕𝑢 𝑟 

𝜕𝜃
− 𝑢 𝜃

) 

+ 

𝜕𝑢 𝜃

𝜕𝑟 

] 
− 𝜀 22 

1 
𝑟 

𝜕 �̇�

𝜕𝜃
, 

̇ 0 𝑧 = 𝑒 35 

( 

𝜕𝑢 𝑧 

𝜕𝑟 
+ 

𝜕𝑢 𝑟 

𝜕𝑧 

) 

− 𝜀 33 
𝜕 �̇�

𝜕𝑧 
. (49) 

Note that �̇� 0 𝑖𝑗 ≠ �̇� 0 𝑗𝑖 ( 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 𝑟, 𝜃, 𝑧 ) . Also, c ij , e ij and 𝜀 ij in

q. (49) are the effective material parameters associated with the in-

tantaneous electro-elastic moduli  0 𝑖𝑗𝑘𝑙 ,  0 𝑖𝑗𝑘 and  0 𝑖𝑗 and their ex-

ressions are given in Eq. (41) in the paper of Wu et al. [43] . In Eq. (49) ,

e specialized the incremental displacement gradient tensor H to the

ylindrical coordinates. We also introduced an incremental electric poten-

ial �̇�, defined by ̇ 0 = − grad �̇�, so that the incremental Faraday’s law

q. (8) 3 is identically satisfied. 

For the nonlinear axisymmetric deformation of the homogeneous

EA tube subject to a radial electric displacement, Wu et al. [43] derived

he nonzero components of the instantaneous electro-elastic moduli ten-

ors  0 ,  0 and  0 (see their Appendix B for specific expressions). We

mphasize that tailoring the material gradient and tuning the electro-

echanical biasing fields alters greatly the instantaneous material prop-

rties of the tube, with notable knock-on effects on the dynamic behavior

f the incremental motions, as we show below. 

First we write the basic incremental governing Eqs. (47) –(49) as a

rst-order system of differential equations with respect to the deformed

adial coordinate, in the form 

𝜕𝐘 

𝜕𝑟 
= 𝐌𝐘 , (50)

hich is called the state equation, where the incremental state vector Y

s defined as 

 = 

[
𝑢 𝑟 𝑢 𝜃 𝑢 𝑧 �̇� �̇� 0 rr �̇� 0 𝑟𝜃 �̇� 0 rz ̇ 0 𝑟 

]T 
, (51) 

ith the elements being the state variables. The specific expressions of

he 8 × 8 system matrix M are the same as those for a homogeneous SEA

ube presented in Appendix C in Wu et al. [43] ; they are omitted here

or brevity. 

Note that the state Eq. (50) is valid for any arbitrary energy density

unction of incompressible, isotropic, functionally graded SEA tubes. 

.2. Approximate laminate technique 

For axisymmetric wave propagation along the axial direction, 𝜕 ∕ 𝜕 𝜃 =
 , which splits the state Eq. (50) into two systems, 

𝜕 𝐘 1 
𝜕𝑟 

= 𝐌 1 𝐘 1 , 
𝜕 𝐘 2 
𝜕𝑟 

= 𝐌 2 𝐘 2 , (52)

here 𝐘 1 = 

[
𝑢 𝜃, �̇� 0 𝑟𝜃

]T 
, 𝐘 2 = [ 𝑢 𝑟 , 𝑢 𝑧 , �̇�, �̇� 0 rr , �̇� 0 rz , ̇ 0 𝑟 ] 

T 
and 

 1 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑐 69 
𝑐 66 

1 
𝑟 

1 
𝑐 66 

𝜌
𝜕 2 

𝜕 𝑡 2 
+ 

𝑞 7 

𝑟 2 
− 𝑐 77 

𝜕 2 

𝜕 𝑧 2 
− 

( 

𝑐 69 
𝑐 66 

+ 1 
) 

1 
𝑟 

⎤ ⎥ ⎥ ⎥ ⎦ , (53)

 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 
𝑟 

− 𝜕 
𝜕𝑧 

0 0 0 0 

− 
𝑐 58 

𝑐 55 

𝜕 

𝜕𝑧 
0 − 

𝑒 35 

𝑐 55 

𝜕 

𝜕𝑧 
0 1 

𝑐 55 
0 

𝑞 1 

𝑟 
𝑞 2 
𝜕 

𝜕𝑧 
0 0 0 − 1 

𝜀 11 

𝜌
𝜕 2 

𝜕 𝑡 2 
+ 
𝑞 3 

𝑟 2 
− 𝑞 9 

𝜕 2 

𝜕 𝑧 2 

𝑞 4 

𝑟 

𝜕 

𝜕𝑧 
− 𝑞 10 

𝜕 2 

𝜕 𝑧 2 
0 − 

𝑐 58 

𝑐 55 

𝜕 

𝜕𝑧 
− 
𝑞 1 

𝑟 

− 
𝑞 5 

𝑟 

𝜕 

𝜕𝑧 
𝜌
𝜕 2 

𝜕 𝑡 2 
− 𝑞 6 

𝜕 2 

𝜕 𝑧 2 
0 − 𝜕 

𝜕𝑧 
− 1 
𝑟 

𝑞 2 
𝜕 

𝜕𝑧 

− 𝑞 10 
𝜕 2 

𝜕 𝑧 2 
0 𝑞 12 

𝜕 2 

𝜕 𝑧 2 
0 − 

𝑒 35 

𝑐 55 

𝜕 

𝜕𝑧 
− 1 
𝑟 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

,

(54) 

the material parameters q i are given in Appendix C of Wu et al. [43] .) 

It is clear from Eqs. (52) –(54) that the two state variables u 𝜃 and
̇
 0 𝑟𝜃 are uncoupled from the other six physical variables u r , u z , �̇�, �̇� 0 𝑟𝑟 ,
̇
 0 𝑟𝑧 and ̇ 0 𝑟 , which indicates that there exist two classes of indepen-

ent axisymmetric waves superimposed on the underlying nonlinear
re-deformation: (i) purely torsional waves (T waves) described by Y 1 

nd M 1 , with the only mechanical displacement component u 𝜃 (see

ig. 1 (c)); (ii) torsionless longitudinal waves (L waves) associated with

 2 and M 2 , whose nonzero displacement components are u r and u z (see

ig. 1 (d)). 

For time-harmonic axisymmetric waves, the traveling wave solutions

re assumed in the form 

𝑢 𝑟 = 𝑎𝑈 𝑟 ( 𝜉) exp 
[
i 
(
kz − 𝜔𝑡 

)]
, 𝑢 𝜃 = 𝑎𝑈 𝜃( 𝜉) exp 

[
i 
(
kz − 𝜔𝑡 

)]
, 

𝑢 𝑧 = 𝑎𝑈 𝑧 ( 𝜉) exp 
[
i 
(
kz − 𝜔𝑡 

)]
, �̇� = 𝑎 

√
𝜇10 ∕ 𝜀 𝑎 0 Φ( 𝜉) exp 

[
i 
(
kz − 𝜔𝑡 

)]
, 

�̇� 0 rr = 𝜇10 Σ0 rr ( 𝜉) exp 
[
i 
(
kz − 𝜔𝑡 

)]
, �̇� 0 𝑟𝜃 = 𝜇10 Σ0 𝑟𝜃( 𝜉) exp 

[
i 
(
kz − 𝜔𝑡 

)]
, 

̇
 0 rz = 𝜇10 Σ0 rz ( 𝜉) exp 

[
i 
(
kz − 𝜔𝑡 

)]
, ̇ 0 𝑟 = 

√
𝜇10 𝜀 𝑎 0 Δ0 𝑟 ( 𝜉) exp 

[
i 
(
kz − 𝜔𝑡 

)]
, 

(55) 

here k is the axial wave number, 𝜔 is the circular frequency, i = 

√
−1

s the imaginary unit, and 𝜉 = 𝑟 ∕ 𝑎 is the dimensionless radial coordinate

n the deformed configuration. 

Substituting Eq. (55) into Eqs. (52) –(54) , we obtain 

d 

d 𝜉
𝐕 1 ( 𝜉) = 𝐌 1 ( 𝜉) 𝐕 1 ( 𝜉) , 

d 

d 𝜉
𝐕 2 ( 𝜉) = 𝐌 2 ( 𝜉) 𝐕 2 ( 𝜉) , (56) 

here 𝐕 1 = 

[
𝑈 𝜃, Σ0 𝑟𝜃

]T 
, 𝐕 2 = 

[
𝑈 𝑟 , i 𝑈 𝑧 , Φ, Σ0 𝑟𝑟 , i Σ0 𝑟𝑧 , Δ0 𝑟 

]T 
and the dimen-

ionless matrices 𝐌 1 and 𝐌 2 are 

 1 = 

⎡ ⎢ ⎢ ⎣ 
𝑐 69 
𝑐 66 

1 
𝜉

𝜇10 
𝑐 66 

− ̂𝜛 

2 + 

1 
𝜉2 

𝑞 7 
𝜇10 

+ 

𝑐 77 
𝜇10 
�̂�2 − 

(
𝑐 69 
𝑐 66 

+ 1 
)

1 
𝜉

⎤ ⎥ ⎥ ⎦ , (57) 

 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 
𝜉

− ̂𝜒 0 0 0 0 

𝜓 1 ̂𝜒 0 𝜓 2 ̂𝜒 0 
𝜇10 

𝑐 55 
0 

𝜓 3 

𝜉
𝜓 4 ̂𝜒 0 0 0 − 

𝜀 𝑎 0 

𝜀 11 
1 
𝜉2 

𝑞 3 

𝜇10 
+ 
𝑞 9 

𝜇10 
�̂�2 − �̂� 

2 �̂�

𝜉

𝑞 4 

𝜇10 
𝜓 5 ̂𝜒

2 0 − 𝜓 1 ̂𝜒 − 
𝜓 3 

𝜉
�̂�

𝜉

𝑞 5 

𝜇10 

𝑞 6 

𝜇10 
�̂�2 − �̂� 

2 0 �̂� − 1 
𝜉

− 𝜓 4 ̂𝜒

𝜓 5 ̂𝜒
2 0 − 

𝑞 12 

𝜀 𝑎 0 
�̂�2 0 − 𝜓 2 ̂𝜒 − 1 

𝜉

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(58) 

ere the following dimensionless quantities were introduced, 

 1 = 

𝑐 58 
𝑐 55 
, 𝜓 2 = 

𝑒 35 
𝑐 55 

√ 

𝜇10 
𝜀 𝑎 0 
, 𝜓 3 = 𝑞 1 

√ 

𝜀 𝑎 0 
𝜇10 
, 

 4 = 𝑞 2 

√ 

𝜀 𝑎 0 
𝜇10 
, 𝜓 5 = 

𝑞 10 √
𝜇10 𝜀 𝑎 0 

, (59) 

s well as 

�̂� = 𝜔𝑎 ∕ 
√
𝜇10 ∕ 𝜌 = 𝜛 𝜆𝑎 ∕( 𝜂 − 1) , 

�̂� = 𝑘𝑎 = 𝜒𝜆𝑎 ∕( 𝜂 − 1) , (60) 

here 𝜛 = 𝜔𝐻∕ 
√
𝜇10 ∕ 𝜌 and 𝜒 = 𝑘𝐻 are the dimensionless circular fre-

uency and axial wave number, respectively. Thus, the dimensionless

hase velocity is defined as 𝑣 𝑝 = 𝜛∕ 𝜒 = 𝑐∕ 
√
𝜇10 ∕ 𝜌, where 𝑐 = 𝜔 ∕ 𝑘 is the

ctual phase velocity. 

Eqs. (56) 1 and (56) 2 are differential systems with variable coeffi-

ients, which are intractable analytically and numerically stiff. To cir-

umvent this difficulty, we employ the approximate laminate model,

nd divide the tube into n equal thin sublayers with thickness h / n being

ufficiently small that the 𝐌 𝑘 within each sublayer may be approxi-

ately constant. To be specific, the material parameters and the dimen-

ionless deformed radial coordinate itself take the values at the mid-

lane of each sublayer. 
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Accordingly, the formal solutions in the j th sublayer can be written

s [43] 

 𝑘 ( 𝜉) = exp 
[
( 𝜉 − 𝜉𝑗0 ) 𝐌 𝑘𝑗 ( 𝜉𝑗𝑚 ) 

]
𝐕 𝑘 ( 𝜉𝑗0 ) , 

𝜉𝑗0 ≤ 𝜉 ≤ 𝜉𝑗1 ; 𝑘 = 1 , 2; 𝑗 = 1 , 2 , ⋯ 𝑛 
)
, (61)

here 𝐌 𝑘𝑗 ( 𝜉𝑗𝑚 ) are the approximated constant system matrices within

he j th sublayer by taking 𝜉 = 𝜉𝑗𝑚 . The dimensionless deformed radial

oordinates at the inner, outer and middle surfaces of the j th sublayer

re 

𝜉𝑗0 = 1 + ( 𝑗 − 1 ) 𝜂 − 1 
𝑛 
, 𝜉𝑗1 = 1 + 𝑗 

𝜂 − 1 
𝑛 
, 

jm 

= 1 + 

( 2 𝑗 − 1 ) 
(
𝜂 − 1 

)
2 𝑛 

, (62)

espectively, where 𝜂 = 𝑏 ∕ 𝑎 . From Eq. (61) , the following recurrence

ormulas between the state vectors at the inner and outer surfaces of

he j th sublayer are derived, 

 𝑘 

(
𝜉𝑗1 

)
= exp 

[(
𝜂 − 1 

)
𝐌 kj ∕ 𝑛 

]
𝐕 𝑘 

(
𝜉𝑗0 

)
, 𝑘 ∈ { 1 , 2 } , (63)

hich, combined with the continuity conditions of state variables at

ach fictitious interface, results in 

 

1 
𝑘 
= 𝐊 𝑘 𝐕 

0 
𝑘 
, 𝑘 ∈ { 1 , 2 } , (64)

here 𝐕 

1 
𝑘 

and 𝐕 

0 
𝑘 

are the incremental state vectors at the outer and inner

urfaces of the tube, respectively, and 𝐊 𝑘 = 

∏ 1 
𝑗= 𝑛 exp [( 𝜂 − 1) ̄𝐌 𝑘𝑗 ∕ 𝑛 ] is

he global transfer matrix of second-order ( 𝑘 = 1 ) or sixth-order ( 𝑘 =
 ) through which the boundary state variables at the inner and outer

urfaces are connected. 

. Dispersion relations for axisymmetric waves 

.1. Incremental boundary conditions 

Due to the electric voltage applied at the flexible electrodes, there

re no incremental electric fields outside the tube for the superimposed

otion. Furthermore, the internal and external pressures P inn and P out 

s well as the voltage V are kept fixed during the incremental motion,

o that the incremental mechanical and electric boundary condition

qs. (12) 1,2 and (13) in cylindrical coordinates read 

�̇� 0 rr = 𝑃 inn 

𝜕𝑢 𝑟 

𝜕𝑟 
, �̇� 0 𝑟𝜃 = 𝑃 inn 

1 
𝑟 

( 

𝜕𝑢 𝑟 

𝜕𝜃
− 𝑢 𝜃

) 

, 

̇
 0 rz = 𝑃 inn 

𝜕𝑢 𝑟 

𝜕𝑧 
, �̇� = 0 , ( 𝑟 = 𝑎 ) ; 

�̇� 0 rr = 𝑃 out 

𝜕𝑢 𝑟 

𝜕𝑟 
, �̇� 0 𝑟𝜃 = 𝑃 out 

1 
𝑟 

( 

𝜕𝑢 𝑟 

𝜕𝜃
− 𝑢 𝜃

) 

, 

̇
 0 rz = 𝑃 out 

𝜕𝑢 𝑟 

𝜕𝑧 
, �̇� = 0 , ( 𝑟 = 𝑏 ) . (65)

or axisymmetric waves ( 𝜕 ∕ 𝜕 𝜃 = 0 ), these equations, combined with the

ncremental incompressibility constraint Eq. (48) , reduce to 

�̇� 0 rr = − 𝑃 inn 

( 

𝑢 𝑟 

𝑟 
+ 

𝜕𝑢 𝑧 

𝜕𝑧 

) 

, �̇� 0 𝑟𝜃 = − 𝑃 inn 

𝑢 𝜃

𝑟 
, 

̇
 0 rz = 𝑃 inn 

𝜕𝑢 𝑟 

𝜕𝑧 
, �̇� = 0 , ( 𝑟 = 𝑎 ) ; 

�̇� 0 rr = − 𝑃 out 

( 

𝑢 𝑟 

𝑟 
+ 

𝜕𝑢 𝑧 

𝜕𝑧 

) 

, �̇� 0 𝑟𝜃 = − 𝑃 out 

𝑢 𝜃

𝑟 
, 

̇
 0 rz = 𝑃 out 

𝜕𝑢 𝑟 

𝜕𝑧 
, �̇� = 0 , ( 𝑟 = 𝑏 ) . (66)

hen, substituting Eq. (55) into Eq. (66) and using Eq. (60) 2 , we arrive

t the dimensionless form of incremental boundary conditions, 

Σ0 
0 𝑟𝑟 = − 𝑃 ∗ 

inn 

(
𝑈 0 
𝑟 
+ i 𝑈 0 

𝑧 
�̂�
)
, Σ0 

0 𝑟𝜃 = − 𝑃 ∗ 
inn 
𝑈 0 
𝜃
, 
 Σ0 
0 𝑟𝑧 = − 𝑃 ∗ 

inn ̂
𝜒𝑈 0 

𝑟 
, Φ0 = 0 , 

Σ1 
0 𝑟𝑟 = − 𝑃 ∗ out 

(
𝜂
−1 
𝑈 1 
𝑟 
+ i 𝑈 1 

𝑧 
�̂�

)
, Σ1 

0 𝑟𝜃 = − 𝑃 ∗ out 𝜂
−1 
𝑈 1 
𝜃
, 

 Σ1 
0 𝑟𝑧 = − 𝑃 ∗ out ̂𝜒𝑈 

1 
𝑟 
, Φ1 = 0 . (67) 

.2. Dispersion relations 

By combining the incremental boundary conditions Eq. (67) with

q. (64) , we obtain two sets of independent linear algebraic equa-

ions, 

�̂� 1 
[
𝑈 0 
𝜃
, 𝑈 1 
𝜃

]T = 0 , 

�̂� 2 
[
𝑈 0 
𝑟 
, i 𝑈 0 

𝑧 
, Δ0 

0 𝑟 , 𝑈 
1 
𝑟 
, i 𝑈 1 

𝑧 
, Δ1 

0 𝑟 
]T = 0 , (68) 

here �̂� 1 and �̂� 2 are the coefficient matrices of second-order and sixth-

rder, respectively, with nonzero components 

 �̂� 1 ) 𝑘 1 = ( 𝐾 1 ) 𝑘 1 − 𝑃 ∗ 
inn 

( 𝐾 1 ) 𝑘 2 , ( �̂� 1 ) 12 = −1 , 

( �̂� 1 ) 22 = 𝑃 ∗ out 𝜂
−1 
, ( 𝑘 = 1 , 2) , (69) 

nd 

 �̂� 2 ) 𝑘 1 = ( 𝐾 2 ) 𝑘 1 − 𝑃 ∗ 
inn 

[
( 𝐾 2 ) 𝑘 4 + �̂�( 𝐾 2 ) 𝑘 5 

]
, 

 �̂� 2 ) 𝑘 2 = ( 𝐾 2 ) 𝑘 2 − 𝑃 ∗ 
inn ̂
𝜒( 𝐾 2 ) 𝑘 4 , 

 �̂� 2 ) 𝑘 3 = ( 𝐾 2 ) 𝑘 6 , ( 𝑘 = 1 , … , 6) , 

( �̂� 2 ) 14 = ( �̂� 2 ) 25 = ( �̂� 2 ) 66 = −1 , 

( �̂� 2 ) 44 = 𝑃 ∗ out 𝜂
−1 
, ( �̂� 2 ) 45 = ( �̂� 2 ) 54 = �̂�𝑃 ∗ out . (70) 

n which ( K k ) ij are the elements of the global transfer matrix K k . 

For non-trivial solutions of Eq. (68) , the determinants of the coeffi-

ient matrices must vanish, i.e., 

et 
(
�̂� 1 

)
= 0 , det 

(
�̂� 2 

)
= 0 , (71)

hich are the dispersion relations of the two independent classes of ax-

symmetric waves (T and L waves) propagating in the deformed func-

ionally graded SEA tube under radially inhomogeneous biasing fields. 

When there is no external pressure 𝑃 out = 0 , Eqs. (68) and (71) sim-

lify to [
( 𝐾 1 ) 21 − 𝑃 ∗ 

inn 
( 𝐾 1 ) 22 

]
𝑈 0 
𝜃
= 0 , 

�̂� 

inn 
2 

[
𝑈 0 
𝑟 
, i 𝑈 0 

𝑧 
, Δ0 

0 𝑟 
]T = 0 , (72) 

nd 

 𝐾 1 ) 21 − 𝑃 ∗ 
inn 

( 𝐾 1 ) 22 = 0 , det 
(
�̂� 

inn 
2 

)
= 0 , (73)

espectively, where �̂� 

inn 
2 is the third-order matrix with components 

 �̂� 

inn 
2 ) 𝑗1 = ( 𝐾 2 ) 𝑘 1 − 𝑃 ∗ 

inn 

[
( 𝐾 2 ) 𝑘 4 + �̂�( 𝐾 2 ) 𝑘 5 

]
, 

 �̂� 

inn 
2 ) 𝑗2 = ( 𝐾 2 ) 𝑘 2 − �̂�𝑃 ∗ 

inn 
( 𝐾 2 ) 𝑘 4 , 

 �̂� 

inn 
2 ) 𝑗3 = ( 𝐾 2 ) 𝑘 6 ( 𝑗 = 𝑘 − 2; 𝑘 = 3 , 4 , 5) . (74) 

nalogous dispersion relations apply when the internal pressure P inn is

anishing. 

For the incompressible, functionally graded, Mooney-Rivlin ideal di-

lectric model Eq. (27) , the nonzero components of the instantaneous

lectro-elastic moduli tensors are evaluated from Appendix B in Wu et al.

43] as 

 01111 = 𝜆−2 
𝜃
𝜆−2 
𝑧 

[
𝜇1 − 𝜇2 

(
𝜆2 
𝜃
+ 𝜆2 

𝑧 

)]
+ 𝜀 −1 𝐷 

2 
𝑟 
,  01122 = −2 𝜇2 𝜆−2 𝑧 

, 

 01133 = −2 𝜇2 𝜆−2 𝜃
,  02222 = 𝜆2 

𝜃

[
𝜇1 − 𝜇2 

(
𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝑧 

)]
, 

 02233 = −2 𝜇2 𝜆2 𝜃𝜆
2 
𝑧 
,  03333 = 𝜆2 

𝑧 

[
𝜇1 − 𝜇2 

(
𝜆−2 
𝜃
𝜆−2 
𝑧 

+ 𝜆2 
𝜃

)]
, 

 01221 = 𝜇2 𝜆
−2 
𝑧 
,  01331 = 𝜇2 𝜆

−2 
𝜃
, 

 01212 = 𝜆−2 
(
𝜇1 𝜆

−2 − 𝜇2 
)
+ 𝜀 −1 𝐷 

2 ,  02121 = 𝜆2 
(
𝜇1 − 𝜇2 𝜆

2 ), 
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4 layers
5 layers
6 layers

4 layers
5 layers
6 layers

Fig. 9. Convergence analysis of frequency spectra of the first five wave modes obtained by the SSM for a functionally graded SEA tube with 𝛽1 = 𝛽2 = 5 . 0 , 𝛽3 = 𝛽4 = 1 . 0 , 
𝜆𝑧 = 1 . 0 and 𝑉 ∗ = 0 . 2 : (a) T waves; (b) L waves. Here 𝑛 = 4 , 5 , 6 is the number of the discretized thin layers. 
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 01313 = 𝜆−2 
𝑧 

(
𝜇1 𝜆

−2 
𝜃

− 𝜇2 
)
+ 𝜀 −1 𝐷 

2 
𝑟 
,  02323 = 𝜇1 𝜆

2 
𝜃
− 𝜇2 𝜆

−2 
𝑧 
, 

 02332 = 𝜇2 𝜆
2 
𝜃
𝜆2 
𝑧 
,  03131 = 𝜆2 

𝑧 

(
𝜇1 − 𝜇2 𝜆

2 
𝜃

)
,  03232 = 𝜇1 𝜆

2 
𝑧 
− 𝜇2 𝜆

−2 
𝜃
, 

 0111 = 2 𝜀 −1 𝐷 𝑟 ,  0122 =  0133 = 𝜀 −1 𝐷 𝑟 ,  011 =  022 =  033 = 𝜀 −1 , 

(75) 

hich determine the effective material parameters appearing in

qs. (57) and (58) . Note that for functionally graded SEA tubes, the

aterial parameters 𝜇1 , 𝜇2 and 𝜀 in Eq. (75) depend on the radial coor-

inate R and satisfy the affine variation Eq. (29) . 

. Numerical results for wave propagation analysis 

We now investigate the effects of material gradient parameters

nd electro-mechanical biasing fields on the characteristics of small-

mplitude axisymmetric wave propagation in a functionally graded SEA

ube. 

The ratio of 𝜇20 to 𝜇10 is again 𝜇20 ∕ 𝜇10 = −0 . 104 , as in Section 3.3 .

n addition to the elastic moduli gradients 𝛽1 , 𝛽2 and the permittivity

radient 𝛽3 , the dynamic behavior analysis now involves the functionally

raded mass density , which we take as an affine variation as well, in the

orm 𝜌( 𝑅 ) = 𝜌0 
(
1 + 𝛽4 𝑅 ∕ 𝐴 

)
with 𝛽4 being the density gradient. For wall

hickness such that 𝜂 = 𝐵∕ 𝐴 = 2 , we must have the restriction 𝛽4 > −0 . 5
or 𝜌( R ) to be positive. 

We set 𝑃 ∗ 
inn 

= 𝑃 ∗ out = 0 in the numerical calculations, because the ef-

ect of the pressure difference on axisymmetric wave propagation has

lready been discussed in detail by Wu et al. [43] , albeit in a purely

lastic functionally graded tube. 

.1. Validation of state-space method 

We first examine the effectiveness of the SSM in terms of accuracy

nd convergence. For a homogeneous pre-stretched tube without the ac-

ion of voltage and pressure difference, the accuracy of SSM to predict

he frequency and phase velocity spectra was validated by Wu et al.

13] , by making a comparison with the exact solutions based on the

isplacement method [42] , and thus that analysis is omitted here. 

Fig. 9 displays the frequency spectra of the T and L waves calculated

y the SSM for a functionally graded SEA tube subject to the voltage

 

∗ = 0 . 2 , and for different numbers of discretized thin layers. We see

rom Fig. 9 that the frequency spectra of both T and L waves for the

hin-layer number 𝑛 = 6 coincide with those corresponding to 𝑛 = 5 . We

lso calculate the frequency spectra for the thin-layer number 𝑛 = 20 ,
hich are almost the same as those for 𝑛 = 5 in Fig. 9 and omitted here

or brevity. Thus, an excellent convergence of the SSM to predict the

requencies is already achieved when the number of thin layers is 𝑛 = 5 .
hus, we take 5 layers from now on, which is assumed to have high accu-

acy. In addition, Fig. 9 shows that the first branch (i.e., the fundamental

ode) of the T waves is almost non-dispersive despite the presence of

aterial gradient and voltage. The fundamental mode of the L waves,

owever, is obviously dispersive and it is almost a straight line only at

 large wave number. In fact, the fundamental modes of the T and L

aves asymptotically tend to the surface shear wave and the Rayleigh-

ype surface wave, respectively, at a large wave number. 

.2. Torsional waves 

Fig. 10 displays the effect of the applied voltage on the frequency

pectra and the cut-off frequencies at 𝜒 = 0 of the T waves in a pre-

tretched, functionally graded SEA tube with 𝛽𝑖 = 2 . 0 ( 𝑖 = 1 , … , 4) and

𝑧 = 2 . 0 . To avoid the collapse of the tube, the applied voltage cannot

urpass the critical value 𝑉 ∗ 
𝑐 
≃ 0 . 59 found when 𝛽𝑖 = 2 . 0 (see Fig. 5 (c)). 

According to Fig. 10 , the frequency spectra, including the cut-off

requencies, are hardly changed by the application of a voltage in the

ntire wave number range, even as the voltage approaches the critical

alue 𝑉 ∗ 
𝑐 

. This is physically understandable, as the applied direction of

he electric field due to the voltage is perpendicular to both the particle

otion direction and the propagation direction of the T wave modes,

o that we expect the work done by the biasing electric field to be neg-

igible. Confirming numerically that the frequency is almost independent

f the voltage is a feature that could be exploited to design a torsional

aveguide which may work robustly, with a consistent working perfor-

ance. 

Fig. 11 depicts the frequency spectra of the first five modes of the

 waves in a pre-stretched functionally graded SEA tube with 𝜆𝑧 = 2 . 0
nd 𝑉 ∗ = 0 . 4 , for different material gradient values. To further demon-

trate the dependence of wave characteristics on the material gradient

arameters, Fig. 12 (a)–(c) show the variations of the first three cut-off

requencies at 𝜒 = 0 with the elastic moduli gradient 𝛽1 = 𝛽2 , permittiv-

ty gradient 𝛽3 , and density gradient 𝛽4 , respectively. 

We observe from Figs. 11 (a) and 12 (a) that the cut-off frequencies

nd the curve slopes of all T wave modes (i.e., the group velocities) have

 significant and monotonous rise with increasing elastic moduli gradi-

nt in the entire wave number range. Furthermore, the gap between two

eighboring branches becomes larger as 𝛽1 increases. In fact, increasing

he elastic moduli gradient stiffens the tube, resulting in a remarkable
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Fig. 10. (a) Frequency spectra of the first four modes of the T 

waves for different values of V ∗ , and (b) the first three nonzero 

cut-off frequencies at 𝜒 = 0 versus V ∗ in a functionally graded 

SEA tube with 𝛽𝑖 = 2 . 0 ( 𝑖 = 1 , … , 4) and 𝜆𝑧 = 2 . 0 . 

Fig. 11. Frequency spectra of the first five modes of the T waves in a functionally graded SEA tube with 𝜆𝑧 = 2 . 0 and 𝑉 ∗ = 0 . 4 : (a) for various elastic moduli gradients 

𝛽1 = 𝛽2 (with 𝛽3 = −0 . 25 and 𝛽4 = 1 . 0 ); (b) for various permittivity gradients 𝛽3 (with 𝛽1 = 𝛽2 = 2 . 0 and 𝛽4 = 1 . 0 ); (c) for various density gradients 𝛽4 (with 𝛽1 = 𝛽2 = 2 . 0 
and 𝛽3 = 0 ). 

Fig. 12. The first three nonzero cut-off frequencies at 𝜒 = 0 of the T waves versus the gradient parameter in a functionally graded SEA tube with 𝜆𝑧 = 2 . 0 and 

𝑉 ∗ = 0 . 4 : (a) for varying elastic moduli gradient 𝛽1 = 𝛽2 (with 𝛽3 = −0 . 25 and 𝛽4 = 1 . 0 ); (b) for varying permittivity gradient 𝛽3 (with 𝛽1 = 𝛽2 = 2 . 0 and 𝛽4 = 1 . 0 ); (c) for 

varying density gradient 𝛽4 (with 𝛽1 = 𝛽2 = 2 . 0 and 𝛽3 = 0 ). 
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Fig. 13. Frequency spectra (a-c) and phase velocity spectra (d-f) of the first three modes of the L waves in a functionally graded SEA tube with 𝜆𝑧 = 2 . 0 and 𝑉 ∗ = 0 . 4 : 
(a, d) for various elastic moduli gradients 𝛽1 = 𝛽2 (with 𝛽3 = −0 . 25 and 𝛽4 = 1 . 0 ); (b, e) for various permittivity gradients 𝛽3 (with 𝛽1 = 𝛽2 = 2 . 0 and 𝛽4 = 1 . 0 ); (c, f) for 

various density gradients 𝛽4 (with 𝛽1 = 𝛽2 = 2 . 0 and 𝛽3 = 0 ). 
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ncrease in the frequency. On the contrary, Figs. 11 (c) and 12 (c) reveal

hat the frequencies and the group velocities undergo a sharp drop with

n increase in the density gradient 𝛽4 . This is because the larger the

ensity gradient is, the lower the frequency is. Finally, it is clear from

igs. 11 (b) and 12 (b) that the frequency spectra, including the cut-off

requencies, are hardly influenced by the permittivity gradient 𝛽3 ; this

s essentially analogous to the minor effect that the voltage has on the

requency, as seen in Fig. 10 . 

.3. Longitudinal waves 

We now turn our attention to the investigation of the L waves. 

For fixed biasing fields ( 𝜆𝑧 = 2 . 0 and 𝑉 ∗ = 0 . 4 ), Fig. 13 presents the

requency spectra (Fig. (a)-(c)) and phase velocity spectra (Fig. (d)-(f))

f the first three L wave modes for different values of material gradient

arameter. We see that all the L wave modes are dispersive in all cases

i.e., the phase velocity v p varies with the wave number 𝜒) except for

he fundamental mode when 𝛽1 = 𝛽2 = 0 , which is almost non-dispersive

ith a constant phase velocity (see Fig. 13 (d)). 

It is clear from Fig. 13 that the material gradients affect significantly

he frequency spectra and phase velocity spectra. Hence, the frequencies

nd phase velocities of all L wave modes are lifted up with an increase

n the elastic moduli gradients 𝛽1 = 𝛽2 as a result of the enhanced stiff-

ning effect. Conversely, the frequencies and phase velocities exhibit a

onotonically decreasing trend in the whole wave number range when

he density gradient 𝛽4 increases, due to the increasing mass effect. Ad-

itionally, increasing 𝛽1 = 𝛽2 or decreasing 𝛽4 also raises remarkably

he curve slope (hence, the group velocity) of all L wave modes. These

henomena are qualitatively the same as those observed in Fig. 11 (a)

nd (c) for the T waves. Similar to the independence of the T wave fre-

uency spectra with respect to the permittivity gradient 𝛽3 shown in

ig. 11 (b), the frequency and phase velocity of the fundamental L wave

ode remain almost unchanged when varying 𝛽3 . For the higher-order
 wave modes, the cut-off frequencies are hardly affected by 𝛽3 , but the

requencies and phase velocities gradually increase with the increasing

3 , especially at a large wave number (see Fig. 13 (b) and (e)). Thus, tai-

oring the material gradient behavior can be used to adjust the characteristics

f elastic wave propagation in functionally graded SEA tubes . 

Fig. 13 also illustrates that the phase velocity of the higher-order L

ave modes originates from infinity with a finite cut-off frequency de-

ending on the gradient parameters as described above. Nevertheless,

he phase velocity of the fundamental mode in all cases emanates from

 finite value which is also associated with the material gradients. In-

erestingly, a cut-off wave number 𝜒anti 
co ≃ 0 . 64 exists in the fundamen-

al mode of the frequency/phase velocity spectra when 𝛽1 = 𝛽2 = −0 . 25 ,
hat is, the first branch emerges from 𝜒anti 

co . Through numerical calcula-

ions, the value of 𝜒anti 
co increases monotonically with a decrease in the

lastic moduli gradient to −0 . 5 . Thus, a critical wavelength is defined by
anti 
co , below which there is no stable propagation of the longer L waves.

his phenomenon is reminiscent of the first antisymmetric Rayleigh-

amb wave mode in SEA plates subject to biasing fields [24] . 

Fig. 14 demonstrates the effect of the applied voltage on the fre-

uency spectra and phase velocity spectra of the first three L wave

odes in a functionally graded SEA tube with 𝛽𝑖 = 2 . 0 ( 𝑖 = 1 , … , 4) and

𝑧 = 1 . 0 . All the applied voltages are in the allowable range (i.e., be-

ow the critical value for collapse). We observe that the frequencies and

hase velocities for the higher-order modes have a monotonically in-

reasing behavior with an increase in V 

∗ , except for the first nonzero

ut-off frequency which remains almost unchanged. 

Fig. 15 clearly illustrates the dependence of the first two nonzero cut-

ff frequencies on the applied voltage for different axial pre-stretches

nd material gradient parameters determining various critical voltages

see Fig. 5 ). We observe from Fig. 15 (a) that for the three axial pre-

tretches 𝜆𝑧 = 0 . 8 , 1 . 0 , 2 . 0 , the first cut-off frequency has a slight decrease

ith the voltage while the second cut-off frequency increases gradually

ith the voltage. Fig. 15 (b) reveals that varying the material gradient



B. Wu, M. Destrade and W. Chen International Journal of Mechanical Sciences 187 (2020) 106006 

Fig. 14. Frequency spectra (a) and phase velocity spectra (b) of the first three modes of the L waves in a functionally graded SEA tube with 𝛽𝑖 = 2 . 0 ( 𝑖 = 1 , … , 4) and 

𝜆𝑧 = 1 . 0 , for different values of V ∗ . 

Fig. 15. The first two nonzero cut-off frequencies at 𝜒 = 0 of the L waves versus V ∗ : (a) for different axial pre-stretches 𝜆z (with 𝛽𝑖 = 2 . 0 , 𝑖 = 1 , … , 4 ); (b) for different 

material gradients 𝛽 = 𝛽𝑖 ( 𝑖 = 1 , … , 4) (with 𝜆𝑧 = 1 . 0 ). 
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oes not alter the variation trend of the second cut-off frequency with

he voltage. The first cut-off frequency, however, declines continually

ith the voltage when the material gradient drops down. 

Furthermore, Fig. 14 indicates that the influence of the voltage on the

requency/phase velocity spectra of the fundamental mode is more com-

lex than for the higher-order modes. For 𝑉 ∗ = 0 , the frequency of the

undamental mode increases continuously with the wave number while

ts phase velocity declines monotonically. When the voltage increases to

 high value such as 𝑉 ∗ = 0 . 85 , the frequency and phase velocity exhibit

 non-monotonic variation with the wave number. Specifically, the neg-

tive slope of the frequency curve emerges within a certain wave num-

er range and then becomes positive once again. This is a peculiar phe-

omenon indicating that in response to the same excitation frequency,

here exist more than one wave with various wavelengths and veloci-

ies propagating in the fundamental branch. In addition, the phase ve-

ocity of the fundamental mode first decreases to a minimum value and

ubsequently increases gradually with the wave number, asymptotically

ending to the modified Rayleigh surface wave velocity [60] . This phe-

omenon results from the complex wave interaction with the geometric

oundaries in terms of the thickness and mean radius of the deformed

ube [40,43] . Further increase in V 

∗ leads to a finite cut-off wave num-

er of the fundamental frequency branch with negative slope, and a

ew branch emerges at another finite wave number. This phenomenon
s discussed in detail below. S  
For a homogeneous ( 𝛽𝑖 = 0 ) SEA tube with 𝜆𝑧 = 1 . 0 , Fig. 16 (a)

resents the evolution of the phase velocity spectra of the fundamen-

al branch for different values of voltage. The variation trend of v p with

in the voltage range below the critical value 𝑉 ∗ 
𝑐 
≃ 0 . 94 is qualitatively

imilar to that shown in Fig. 14 (b) for the functionally graded tube with

𝑖 = 2 . 0 . However, comparing Fig. 16 (a) with Fig. 14 (b), we find that

he phase velocity has a monotonous decrease with an increase in volt-

ge V 

∗ over the entire wave number range when 𝛽𝑖 = 0 (no gradient),

hile for the functionally graded tube with 𝛽𝑖 = 2 . 0 , the phase velocity

ncreases gradually with V 

∗ at the small wavenumber (i.e., long wave-

ength) range less than a certain wave number. These phenomena are

lso observed in Fig. 16 (b) for the variation of the lowest phase velocity

t 𝜒 = 0 with V 

∗ for different combinations of 𝜆z and 𝛽 i , where the axial

re-stretch does not change the variation trend. Thus, in principle, in-

itu ultrasonic nondestructive evaluation can be utilized to characterize the

aterial gradient behavior and the operating biasing fields state . 

Similar to the functionally graded case in Fig. 14 (b), Fig. 16 (a) shows

hat for a large enough value of voltage (for example, V 

∗ ≥ 0.84) and

s the wave number increases, the phase velocity first decreases grad-

ally to zero at a smaller finite wave number 𝑘 
sym 

1 and subsequently

he fundamental branch emerges again at another larger wave number

 

anti 
2 . This particular phenomenon also emerges in the study of symmet-

ic/antisymmetric Rayleigh-Lamb waves propagating in a homogeneous

EA plate [24] . In fact, the circumferential stretch 𝜆 of the tube in-
a 
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Fig. 16. (a) Phase velocity spectra of the lowest L wave mode in a homogeneous ( 𝛽𝑖 = 0 , 𝑖 = 1 , … , 4 ) SEA tube with 𝜆𝑧 = 1 . 0 for different values of V ∗ . (b) Variations 

of the lowest L wave phase velocity at 𝜒 = 0 with V ∗ for different combinations of the axial pre-stretch 𝜆z and material gradient 𝛽 = 𝛽𝑖 ( 𝑖 = 1 , … , 4) . 
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reases considerably for a high voltage as observed in Fig. 5 , leading to

 remarkable increase in the curvature radius. At this moment, there is

o difference between the tube and the flat plate for the L wave funda-

ental mode, and hence, the L wave propagation behaviors resemble

hose of the Rayleigh-Lamb wave in a SEA plate. As a result, this be-

avior provides a possibility to annihilate the L wave propagation in

he wavelength range corresponding to the interval ( 𝑘 sym 

1 , 𝑘 
anti 
2 ) . Fur-

hermore, Fig. 16 (a) also shows that raising the applied voltage results

n a decrease in 𝑘 
sym 

1 and a rapid increase in 𝑘 anti 
2 , and thus enlarges the

ange of the annihilated wavelength. When the value of 𝑘 anti 
2 tends to

nfinity due to the increasing voltage, the zero phase velocity represents

he surface instability of a SEA half-space subject to an electric field

37,61] . 

. Conclusions 

We presented a theoretical analysis of finite axisymmetric deforma-

ion and superimposed axisymmetric wave propagation in a functionally

raded SEA tube subject to electro-mechanical biasing fields. We derived

he explicit expressions governing the static finite deformation and the

adially inhomogeneous biasing fields in the tube for the generalized

ooney-Rivlin ideal dielectric model with a radial affine gradient vari-

tion. Employing the state-space method in cylindrical coordinates, we

btained analytically the dispersion relations for the small-amplitude T

nd L waves propagating in the deformed tube. Finally, we conducted

etailed calculations to elucidate the dependence of the static nonlinear

esponse as well as the T and L wave propagation behaviors on the bi-

sing fields and material gradient parameters. Our numerical findings

emonstrate that (i) tailoring properly the gradation of material prop-

rties may improve the actuation performance by a low voltage and

lleviate the stress inhomogeneity in SEA actuators; (ii) the axisymmet-

ic wave behaviors in SEA tubes may be readily tuned via adjusting

he biasing fields and material gradient properties; and (iii) the mate-

ial properties and working state of SEA tubes may be characterized by

eal-time ultrasonic nondestructive testing. 

We only considered the uncoupled T and L axisymmetric guided

aves. Other propagation modes include non-axisymmetric waves and

ircumferential guided waves, and are worthy of further research. 

The SEA tube studied in this work is characterized by the general-

zed functionally graded Mooney-Rivlin ideal dielectric model, which

oes not capture the strain-stiffening effect [62] . Provided the tube is

ot deformed excessively, the Mooney-Rivlin model provides a gen-

ral framework for this exploration, because it is equivalent to all

sotropic material models in the small-to-moderate regime of deforma-

ions [63,64] . The strain-stiffening effect of other nonlinear material
odels [62,65] on the wave propagation characteristics of functionally

raded SEA tubes remains to be explored. 

Finally, we point out that nonreciprocal transmission of acous-

ic/elastic waves can be achieved in principle based on structural asym-

etry or material nonlinearity [14,66,67] . Using functionally graded

EA materials to design actively tunable acoustic/elastic diodes is an

nteresting topic to address in the future. 
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