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ABSTRACT:
Measuring stress levels in loaded structures is crucial to assess and monitor structure health and to predict the length

of remaining structural life. Many ultrasonic methods are able to accurately predict in-plane stresses inside a

controlled laboratory environment but struggle to be robust outside, in a real-world setting. That is because these

methods rely either on knowing beforehand the material constants (which are difficult to acquire) or require significant

calibration for each specimen. This paper presents an ultrasonic method to evaluate the in-plane stress in situ directly,

without knowing any material constants. The method is simple in principle, as it only requires measuring the speed of

two angled shear waves. It is based on a formula that is exact for incompressible solids, such as soft gels or tissues, and

is approximately true for compressible “hard” solids, such as steel and other metals. The formula is validated by finite

element simulations, showing that it displays excellent accuracy, with a small error on the order of 1%.
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I. BACKGROUND: THE NEED TO MONITOR STRESS

Railroad rails in the real world can degrade greatly

because of high levels of built-up mechanical stresses.

During cold winter nights, steel rails contract, and the result-

ing tensile stress then promotes fatigue cracks. On hot sum-

mer days, rails expand, and the resulting compressive stress

can trigger catastrophic buckling.

Rail steel is one of many examples where stress varia-

tions and/or high stresses lead to wear and failure.1 Other

examples include stress in steel pipes,2 pressure vessels, and

common machine components3 such as bearing raceways.

Accurately evaluating the stress within steel plates and bars

would substantially improve our estimates on structure life4

and help us to efficiently schedule maintenance and improve

safety. Figure 1 shows two examples of steel structures that

have failed due to a build-up of compressive stress: the left

shows a buckled steel column and the right a buckled track.

Other than buckling, stress also causes material fatigue and

crack growth.5

Stress measurement methods based on ultrasonic elastic

wave propagation have long been used as they are relatively

cheap, safe, quick, and non-destructive.1,8 The basic setup is

shown in Fig. 2. In this work, we focus on plates made of a

hard, initially isotropic, solid, like a steel rail web. The meth-

ods to measure stress with ultrasonic waves in other scenarios,

such as strands and cables,9 can be quite different.

One of the simplest methods to measure stress, in a

scenario similar to Fig. 2, is called ultrasonic birefringence.

It requires measuring the speed of two shear waves travel-

ling directly across the plate. Then, using the coordinate sys-

tem shown in Fig. 2, assuming only a uni-axial stress r1

along x1, we find that10–15

qðv2
21 � v2

23Þ ¼ 1þ n

4l

� �
r1 birefringence identityð Þ;

(1)

where v21 (v23, respectively) is the speed of a shear wave

propagating in the x2 direction and polarised in the x1 direc-

tion (x3 direction, respectively), and q is the current mass

density.

Although these two wave speeds are quite easy to

measure, the accuracy of the resulting measurement of r1 is

governed by the accuracy of the term in brackets on the

right-hand side, called the birefringence constant, which

involves l, a second-order Lam�e elastic constant, and n, a

third-order Murnaghan elastic constant. Birefringence

constants are very difficult to measure in situ and instead are

measured in the lab, often on pristine steel samples, which

obviously can be very different from their in-service and

worn counterparts (for instance, these constants change with

temperature and wear).16 In addition, whereas the mass den-

sity q and the second-order constants k, l can be measured

quite consistently from one steel sample to another, the mea-

surements of the third-order constants vary widely, as can be

checked in Table I. Even with a perfect measurement of the

shear wave speeds, we can expect this variation in the con-

stants to lead to an error of 40%, as shown in Fig. 3, where

the birefringence constant of ten samples of steel is reported.a)Electronic mail: arturgower@gmail.com, ORCID: 0000-0002-3229-5451.
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Another notable ultrasonic method that use changes in

ultrasonic speeds to measure stress below the material sur-

face is the “longitudinal critically refracted method.”4,17 It is

mostly used for plates, as its penetration depth is limited to

one wavelength. There are further alternative methods for

measuring stress along the surface of the material, including

using Rayleigh or Lamb waves.18 These usually require spe-

cific surface conditions and often require that the surface of

the material be the same as the bulk. Similar to birefrin-

gence, these methods require prior knowledge of the mate-

rial constants or significant calibration. Designing a method

to measure stress, without knowing the third-order con-

stants, has long been a goal worthy of investigation and

applications.19

In this paper, we propose a method to measure stress

directly based on the following approximate identity,

q0

v2
1 � v2

2

cos ð2h1Þ
¼ r1 � r2; when h1 6 h2 ¼ 90�

angled shear� wave identityð Þ; (2)

where q0 is the mass density before applying stress, r2 is the

stress in the x2 direction, and v1, v2 are the speeds of the quasi-

shear waves polarised in the (x1, x2) plane and traveling in the

directions along ðcos h1; sin h1; 0Þ and ðcos h2; sin h2; 0Þ,
respectively. Figure 2 shows examples of these angled shear

waves.

Note that the identity above requires no prior knowl-

edge of the material’s elastic constants, and, as we shall see,

it is accurate for a wide range of stresses in steel, with an

error typically around 1%. It gives direct access to the stress

difference r1 � r2 or, in the case of uni-axial stress

(r2 ¼ r3 ¼ 0), to the stress r1.

II. MODELLING: THE ANGLED SHEAR-WAVE
IDENTITY

A. Exact formula for incompressible solids

The problem of a small-amplitude body shear wave

travelling in a homogeneously stressed, initially isotropic,

incompressible solid is quite straightforward to solve (note

that here we refer to the notion of incompressibility as it is

defined in continuum mechanics, that is, solids that may

deform but always retain their volume, such as rubbers,

gels, or biological tissues).

Consider such a solid, subject to a static uniform Cauchy

stress r. Call (x1; x2; x3) the axes along the principal directions

of stress, r1, r2, r3 the corresponding principal stresses, and

k1, k2, k3 the principal stretch ratios, which occur along those

directions. Then consider wave propagation in the (x1, x2)

principal plane, along n ¼ ðcos h; sin h; 0Þ, say.

TABLE I. Material parameters for several samples of steel. The density q0

is in kg/m3, and the elastic constants are in GPa (k, l: second-order Lam�e
constants; l, m, n: third-order Murnaghan constants).

q0 k l l m n

Rail steel 1 (Ref. 44) 7800 115.8 79.9 �248 �623 �714

Rail steel 2 (Ref. 45) 7777 112.9 80.8 �88.9 �591.6 �903.8

Nickel steel (Ref. 46) 909 78.0 �46 �590 �730

Nickel steel (Ref. 47) 109.0 81.7 �56 �671 �785

Hecla 37 carbon steel

(Ref. 48)

7823 111 82.1 �461 �636 �708

Hecla 17 carbon steel

(Ref. 48)

7825 110.5 82.0 �328 �595 �668

Hecla 138 A steel

(Ref. 48)

7843 109 81.9 �426.5 �619 �708

REX 535 nickel steel

(Ref. 48)

7065 109 81.8 �327.5 �578 �676

FIG. 3. (Color online) Range of values for the birefringence constant of

eight samples of steel. Note that the constants were all measured in highly

controlled laboratory environments. Depending on the type of steel, this

constant varies between 10% (nickel steel) and 40% (rail steel). The refer-

ences and values of the constants are given in Table I.

FIG. 2. (Color online) To measure the uni-axial stress r1, we can send two

ultrasonic waves either directly across the steel plate or at an angle. In the

former method (birefringence), we need an a priori knowledge of the elastic

constants to deduce the stress; by contrast, the angled method (this paper)

gives instant access to the stress.

FIG. 1. (Color online) Examples of failure due to compressive stresses. On

the left: A steel column that has buckled (in the lab) due to applied com-

pressive stresses (Ref. 6). On the right: a rail track that has buckled due to

compressive stress following an earthquake (Ref. 7).

3964 J. Acoust. Soc. Am. 148 (6), December 2020 Li et al.

https://doi.org/10.1121/10.0002959

https://doi.org/10.1121/10.0002959


Because of incompressibility, only pure shear waves can

propagate: one (out-of-plane) pure shear wave polarised along

x3 and another (in-plane) pure shear wave polarised along

ð�sin h; cos h; 0Þ and travelling with speed v given by20,21

q0v
2 ¼ a cos4hþ d cos2h sin2hþ c sin4h: (3)

Here q0 is the (constant) mass density of the solid, d is a

complicated function of the derivatives of the strain energy

density W and the stretch ratios (but it is not needed), and

a ¼ r1 � r2

k2
1 � k2

2

k2
1; c ¼ r1 � r2

k2
1 � k2

2

k2
2: (4)

Then use Eq. (3) to compute in turn the squared wave speeds v2
1

and v2
2 of the waves travelling in the h1 ¼ h and in the h2 ¼ p=2

�h directions, respectively. Then, by subtraction, the d term dis-

appears, and we are left with the following exact formula:

q0ðv2
1 � v2

2Þ ¼ ðr1 � r2Þ cos 2h: (5)

Note that this formula is independent of W and gives direct

access to the stress difference r1 � r2 once the speeds and

the mass density are measured. It is valid irrespective of the

magnitude of the strains and stresses and can prove useful

for precise stress assessment in soft, isotropic, incompress-

ible matter, such as gels22,23 or some biological tissues.24,25

B. Approximate formula for compressible solids

The exact formula (5) does not translate exactly to a

stressed compressible solid—such as steel—for two reasons.

First, because the mass density now changes with the

stresses. The second reason is more subtle, but nonetheless

known:26 the in-plane shear wave is no longer a pure shear

wave, but instead is a quasi-shear wave. In fact, there are

now two in-plane body waves travelling in the n direction:

the quasi-shear wave and a quasi-longitudinal wave.

To find their characteristics, we write down and solve

the equations governing small-amplitude motion in a homo-

geneous solid subject to a uniform stress,27,28

q
@2uj

@t2
¼ A0ijkl

@2ul

@xk@xi
; (6)

where u ¼ uðx; tÞ is the mechanical displacement, and the

A0ijkl are the so-called instantaneous elastic moduli.29

Looking for in-plane quasi-shear waves of the form

u ¼ ðU1;U2; 0Þeikðx1 cos hþx2 sin h�vtÞ, where k is the wave num-

ber, the equation of motion (6) becomes

M
U1

U2

" #
¼ 0 with M ¼ A01111 cos h2 þA02121 sin h2 � qv2 ðA01122 þA01221Þ cos h sin h

ðA01122 þA01221Þ cos h sin h A01212 cos h2 þA02222 sin h2 � qv2

" #
: (7)

We then find the wave speeds by solving

det M ¼ 0; (8)

which is a bi-quadratic in v2.

The instantaneous moduli depend on the stresses ri and

on the elastic constants and can be calculated in a straight-

forward (albeit long-winded) manner; see details in the

Appendix. Because steel can only sustain infinitesimal

strains in the elastic regime, we adopt the so-called third-
order elasticity model for its strain-energy density.

As seen in the Appendix, the moduli can be computed

explicitly at the level of approximation afforded by third-

order elasticity, as

A01111 ¼ kþ 2lþð2cþ 2dþ 1Þr1þðaþ 2bÞðr1þr2Þ;
A02222 ¼ kþ 2lþð2cþ 2dþ 1Þr2þðaþ 2bÞðr1þr2Þ;

A01221 ¼ lþ 1

2
ð2bþ dÞðr1þr2Þ;

A01122 ¼ kþðaþ cÞðr1þr2Þ;
A02121 ¼A01221þr2;

A01212 ¼A01221þr1 (9)

where the non-dimensional coefficients a, b, c, d are defined

in the Appendix (they are constants of order 1, varying in

value from �3.6 toþ 0.7 for rail steel; see Table II). A fur-

ther justification for using the form of Eq. (9) is that there is

significant evidence30 that for steel, the moduli have a linear

dependence on the Cauchy stress, even beyond small levels

of stress.

Staying within the same level of approximation, we

may now solve Eq. (8) for v2, choose the solution corre-

sponding to a quasi-shear wave, and then expand the result.

We obtain

qv2 ¼ lþ ðbþ d=2Þðr1 þ r2Þ þ r1 cos2hþ r2 sin2h:

(10)

Having found the wave speed, we may return to Eq. (7) and

determine the direction of polarisation. Instead of being

TABLE II. k and l are reported in GPa; a, b, c, and d are non-dimensional

constants.

k l a b c d

Rail steel 1 (Ref. 44) 115.8 79.9 0.701 �0.118 �1.88 �2.47

Rail steel 2 (Ref. 45) 112.9 80.8 0.127 0.370 �0.332 �3.59

J. Acoust. Soc. Am. 148 (6), December 2020 Li et al. 3965

https://doi.org/10.1121/10.0002959

https://doi.org/10.1121/10.0002959


along the p=2þ h direction, as it would be for a pure shear

wave, it is along the p=2þ hþ h? direction for the quasi-shear

wave, where h? is the offset. Hence, calling U0 the amplitude

of the wave, we have ½U1;U2� ¼ U0½�sin ðhþ h?Þ; cos ðh
þh?Þ�. Substituting into the first line of the homogeneous

system (7), we conclude that tan ðhþ h?Þ ¼ M12=M11, or

tan ðhþ h?Þ ¼ 1� cþ d

kþ l
ðr1 � r2Þ

� �
tan h: (11)

Now we go back to Eq. (10), the equation giving the wave

speed. Calling v1 and v2 the speeds of the waves travelling in

the h1 ¼ h and h2 ¼ p=2� h directions, respectively, and

subtracting the corresponding equation (10), we obtain

qðv2
1 � v2

2Þ ¼ ðr1 � r2Þ cos ð2hÞ: (12)

Finally, we recall that the current mass density q, which is

usually not known, can be related to q0, the initial mass den-

sity (measured before applying stress). From Eq. (A3) in the

Appendix, we see that, within the context of third-order

elasticity, Eq. (12) is equivalent to Eq. (2), at the same order

of approximation.

Note that using Eq. (10) to compute the difference of the

squared wave speeds of any two shear waves travelling in dif-

ferent directions would also produce a formula giving direct

access to the stress without involving the material constants.

C. Wave direction and polarisation

Practically, there are a number of ways to generate the

angled shear waves travelling in the h1 and h2 directions.

For example, we could apply a shear force on the boundary

of a wedge with inclination h, as shown in Fig. 2. However,

because they are quasi-shear waves, their direction of propa-

gation is not exactly orthogonal to their polarisation, which

is to say it is not exactly orthogonal to the wedge face.

In Sec. II B, we saw that the quasi-shear wave propagating

in the h direction is polarised in the p=2þ hþ h? direction. It

follows that the quasi-shear wave polarised in the p=2þ h
direction (launched by a wedge with inclination h) is propa-

gating in the h� h? direction, where h? is computed from

Eq. (11). Calling v1 the speed of the wave in the h1 ¼ hþ h?

direction and v2 that of the wave in the h2 ¼ p=2� h1 direc-

tion, we find again that q0ðv2
1 � v2

2Þ ¼ ðr1 � r2Þ cos ð2hÞ,
because the correction due to the offset is of higher order and

negligible in third-order elasticity. Hence, we conclude that

the perturbation in the propagation direction due to the

quasi-shear wave character of the wave does not affect the

prediction of the stress based on Eq. (5).

This result is useful, for example, when using finite ele-

ment (FE) software to conduct a virtual experiment, where it

is easier to specify the polarisation than the wave direction.

D. Sensitivity to wedge angle errors

To use the angled shear wave identity (2) and measure

the stress robustly, we need to determine how sensitive it is

to experimental errors, including those coming from mis-

aligned wedges, imprecise wave speeds, and varying stress

levels, among others. After investigating a number of sce-

narios, we found that the largest source of imprecision

comes from errors in the direction of propagation, such as

those arising in the case of misaligned wedges.

Assume one of the angled shear waves has a slight error

in its direction of propagation, so that instead of travelling

in the h1 direction, it is travelling in the h1 þ dh1 direction.

Call v1 its speed and v2 the speed of the shear wave propa-

gating at the angle h2 ¼ p=2� h1. Then by perturbation of

Eq. (10), we find that the difference between the squared

wave speeds is given by

qðv2
1� v2

2Þ¼ ðr1�r2Þ cosð2h1Þ�dh1 sinð2h1Þ½ �: (13)

From this equation, we deduce that the relative error in the

predicted stress is equal to dh1 tan ð2h1Þ, which we evaluate

for various directions h1 in Fig. 4. We find that it is small

when the precision of the angle h1 is on the order of 1� and

h1 is close to 35�.
In Sec. III, we validate the identity (2) further by con-

ducting FE simulations.

III. FE SIMULATIONS

To validate the method, we use FE analysis (Abaqus

6.13, Dassault Systèmes) to conduct computer simulations.

We built a plane strain model and created a user-subroutine

UHYPER to implement a third-order elastic model, such as

Eq. (A2). An illustration of the FE simulation is shown in

Fig. 5(a).

For the material parameters, we choose the values for

the sample “rail steel 1” in Table I. We then apply a uni-

axial stress along the horizontal direction accompanied by

some out-of-plane strain. By prescribing the out-of-plane

strain, we can achieve different stress levels and keep the

FIG. 4. (Color online) Relative error in the predicted stress r1 � r2 due to

an error in the direction of propagation (dh1) of one of the shear waves. For

example, when one of the waves travels in the direction h1 ¼ 34�6dh1

(while the other wave travels in the direction h2 ¼ 56:0�), we expect a 4%

error in predicting the stress when dh1 ’ 1� and a 7% error in predicting

the stress when dh1 ’ 1:5�.
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displacement induced by shear wave motion at zero in this

direction. The top and bottom surfaces are stress free.

To describe our setup, let us introduce a local coordi-

nate system (x, y) as shown in Fig. 5(a), where the x axis is

oriented at a h angle from the horizontal. To imitate a real

experiment,31 we generate shear waves by applying an

impulse force in the y direction, which would be like apply-

ing a shearing force to the face of the wedges shown in

Fig. 2. We expect this impulse to generate a quasi-shear

wave polarised in the y direction and propagating in a direc-

tion that is not exactly along x. We will, however, assume

that the quasi-shear wave does approximately propagate in

the x direction. As discussed in Sec. II C, we expect this

assumption to introduce a very small error. In a real experi-

ment, assuming that the quasi-shear wave propagates in the

x direction would simplify the experimental setup. So the

success of these FE simulations gives confidence that this

experimental setup would successfully predict the stress.

The impulse we use is a body force Fðx; y; tÞ defined by

Fðx; y; tÞ ¼ F0 e
� x2

a2þ
y2

b2

� �
e
�ðt�t0Þ2

s2 sin ð2pftÞ; (14)

with F0 ¼ 0:1 N/mm3, a¼ 1 mm, b¼ 60 mm, t0 ¼ 6:25 ls,

s ¼ 2:83 ls, and f¼ 0.4 MHz. We point out that we choose

to use a rather low frequency f for convenience. We checked

that taking higher frequencies leads to the same results, but

they are much more time-consuming to simulate. The mesh

size is approximately 1/15 of the shear wavelength to ensure

the convergence of the simulation.

We use six points spaced with equal distance d along

the x axis, as shown in Fig. 5(b), to measure the shear wave

speed. Here d denotes the distance in the stressed configura-

tion, which is approximately equal to 10 mm in the initial

configuration. In Fig. 5(c), we plot the time profiles of the

particle velocities at these six points. The phase differences

between every two adjacent points were measured in the

Fourier domain. We then calculate the shear wave speed v
from the averaged phase difference D/ by32

v ¼ 2pfd

D/
: (15)

In Sec. III A, we use our FE model to investigate which

angle h leads the most accurate prediction of the stress,

when using our identity (2). We then validate our predic-

tions over a wider range of stress in Sec. III B.

A. Sensitivity to wedge angle

Here we study how the angle of propagation h influen-

ces the stress predicted by the identity (2) when using the

wave speeds v simulated by our FE model. For this section,

we take the uni-axial stress as r1 ¼ 300 MPa and no out-of-

plane strain: k3 ¼ 1.

As we can see in Fig. 6(a), the shear wave speed v
decreases with h. The wave speeds corresponding to h1 ¼ h
< 45� and h2 ¼ 90� � h are v1 and v2 in the identity (2),

which then yield the stress r1, as shown in Fig. 6(b). For the

four different cases h¼ 27�, 32.14�, 35�, and 40�, the stress

identified by Eq. (2) agrees well with the stress r1 used in

the FE model, with a very small difference (� 1%).

B. Sensitivity to stress levels

We now fix the angle shown in Fig. 5 by choosing

h1 ¼ 35�; h2 ¼ 55� and study the accuracy of the angled

shear wave identity (2) for different stress levels. The stress

levels we investigate are r1 ¼ 100–1500 MPa, which cover

all possible stress levels in rail, as standard rail has a maxi-

mum tensile strength between 700 and 1100 MPa.33,34

As shown in Fig. 7, we find that the predicted stresses

agree well with the stresses actually applied, with a relative

error less than 1.5% and an error less than 1% when below

the maximum tensile strength 1100 MPa.

One difference between the FE model and the identity

(2) is that our FE model imposes an out-of-plane stress r3,

whereas Eq. (2) has zero out-of-plane stress. To confirm that

this difference has no impact on our predictions, we conduct

a FE simulation with plane-stress (PS) and then another sim-

ulation under plane-strain (PE).

To achieve PS, we adapt the stretch ratio k3 so we can

maintain r3 ¼ 0 when applying a uni-axial stress. To achieve

PE, we fix k3 ¼ 1:0 and allow r3 to change. Figure 8(a)

shows the stress along the horizontal r1 against the wave

speeds v1 and v2. The wave speeds obtained from the PS

model are (slightly) smaller than those obtained from the PE

model, and this difference is significant when it comes to

predicting the stress. However, when using these wave

FIG. 5. (Color online) FE simulation

of the quasi-shear wave propagation.

(a) Schematic of the FE model. The

stress is determined by r1 and the out-

of-plane strain. The wave is induced

by a body force defined in the local

coordinate systems. (b) Snapshot of

the shear wave propagation. Six points

at equal distance d are used to measure

the wave speed. (c) Time profiles of

the particle velocities at these points

shown in (b).
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FIG. 6. (Color online) Shear wave speed obtained by the FE simulation and the stress predicted by Eq. (2). (a) shows the how the wave speed depends on

the angle h. (b) shows the stress predicted by using the FE results fed into Eq. (2). The horizontal line denotes the value of r1 actually applied to the FE

model.

FIG. 7. (Color online) Comparison between the stress applied in the FE simulation and the stress identified by the identity (2). Here the wedge angles, as

shown in Fig. 5, for the two waves are h1 ¼ 35�; h2 ¼ 55�. (a) Applied stress vs predicted stress. (b) The relative error of the predicted stress. Note that the

maximum tensile strength of standard rail steel is 1100 MPa.

FIG. 8. (Color online) Comparison between PS and PE simulations when the waves travel along h1 ¼ 35� and h2 ¼ 55�. (a) The speeds v1 and v2 vs the

applied stress r1. (b) Comparison of the identified stress obtained from the plane stress and plane strain simulations.
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speeds to predict the stress with Eq. (2) [see Fig. 8(b)], we

find that both the PS and PE models predict the same levels

of stress. This indicates that the identity (2) is in practice

independent from a small amount of out-of-plane stress,

which we then confirmed analytically. This independence is

highly convenient, because in practice the deformation state

may neither be PS nor PE.

IV. DISCUSSION

One significant drawback of most ultrasonic methods to

measure stress is that they need significant calibration for

each specimen. This requires either prior knowledge of the

material constants or complicated measurement systems.

In this paper, we propose a solution to these issues by

introducing a method that can be used to measure in-plane

stress without any calibration. The method requires two

angled shear wave speed measurements. At its heart is a

formula that is exact for incompressible solids and applies

to compressible solids within the context of initially isotro-

pic third-order elasticity.

The main advantage of our proposed method is that it

does not require prior knowledge of the material constants.

One challenge in using this method includes fabricating

wedges with a precisely chosen inclination: an error of 1%

in the inclination typically results in an error of 4% when

predicting the stress (see Fig. 4). Other aspects that still

need investigation include how errors in measuring the

wave speeds result in errors in predicting the stress, though

this will depend on the specific experimental realisation.

Another issue that needs to be considered is how texture

anisotropy affects the predictions of this method.19,35

We validated the method against FE simulations and

found its precision to be excellent and the predictions to be

robust in terms of out-of-plane stress. It remains to be dem-

onstrated whether this new method is able to accurately pre-

dict stresses in the lab and on the ground.
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APPENDIX: THE INSTANTANEOUS ELASTIC MODULI

The theory and practice of acousto-elasticity has a long

and distinguished history. Classic works on the topic include

contributions by Brillouin,36 Hughes and Kelly,37 Toupin

and Bernstein,10 Hayes and Rivlin,38 Thurston,39 and Biot.40

Later, Ogden29 formalised its equations in a compact and

elegant manner within the framework of exact non-linear

elasticity. Hence, they obtained the following expressions

for the instantaneous elastic moduli in Eq. (7):

A01111 ¼ k1

@r1

@k1

; A02222 ¼ k2

@r2

@k2

;

A01122 ¼ k2

@r1

@k1

þ r1; A01212 ¼
r1 � r2

k2
1 � k2

2

k2
1;

A02121 ¼
r1 � r2

k2
1 � k2

2

k2
2; A01221 ¼

r1k
2
2 � r2k

2
1

k2
1 � k2

2

: (A1)

Now to make progress, we must specify the strain energy

density W so that we can compute the Cauchy stress compo-

nents ri ¼ ki@W=@ki (i¼ 1, 2, 3, no sum) and their deriva-

tives with respect to the stretch ratios.

As we are focusing on steel, which deforms very little

elastically, it is sufficient to use the general strain energy of

third-order weakly nonlinear elasticity. We take it in its

Murnaghan41 form,

W¼ 1

2
ðkþ2lÞI2

1�2lI2þ
1

3
ðlþ2mÞI3

1�2mI1I2þnI3;

(A2)

where k; l are the Lam�e constants, l, m, n are the Murnaghan

constants, and I1; I2; I3 are the first three principal invariants

of the Green–Lagrange strain tensor E. We align the coordi-

nate axis so that E is diagonal in the ðx1; x2; x3Þ coordinate

system, with components Ei ¼ ðk2
i � 1Þ=2 (i¼ 1, 2, 3).

The current mass density q, which is usually not known,

is related to q0, the initial mass density (measured before

applying stress) through37

q ¼ q0=ð1þ 2I1 þ 4I2 þ 8I3Þ: (A3)

Another commonly used form is the Landau strain energy

that uses the (third-order) Landau constants A, B, C. They

are connected to the Murnaghan constants m, n, l through

l ¼ Bþ C; m ¼ A

2
þ B; n ¼ A: (A4)

Then the stress components and, eventually, the instanta-

neous moduli are straightforward to compute with a com-

puter algebra system.

By assuming small strains, the instantaneous moduli for

third-order elastic materials can be written explicitly in

terms of the stresses (see Gower et al.42 and Tanuma and

Man43), resulting in Eq. (9), where the non-dimensional

coefficients a, b, c, d are defined in terms of Murnaghan

constants as

a ¼ 2ll� k2 þ ðn� 2m� kÞðkþ lÞ
lð3kþ 2lÞ ;

c ¼ 2kþ 2m� n

2l
; (A5)

b¼�knþlð4kþ2l�2mþnÞ
2lð3kþ2lÞ ; d¼2þ n

2l
: (A6)

For Eq. (9) to be asymptotically equivalent to classical

third-order elastic models, such as Eq. (A2), the constants b,

c, and d need to be linked through42,43
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kð1þ 3bþ dÞ þ lð1þ 2b� cÞ ¼ 0; (A7)

as can be checked easily.

For the material parameters of steel, we use the data

collected in Table I, whereas Table II gives the values of the

constants a, b, c, d for the rail steel 1 and rail steel 2

specimens.
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