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Coupled magneto-mechanical wrinkling has appeared in many scenarios of engineering and biology.
Hence, soft magneto-active (SMA) plates buckle when subject to critical uniform magnetic field normal
to their wide surface. Here, we provide a systematic analysis of the wrinkling of SMA plates subject to an
in-plane mechanical load and a transverse magnetic field. We consider two loading modes: plane-strain
loading and uni-axial loading, and two models of magneto-sensitive plates: the neo-Hookean ideal
magneto-elastic model and the neo-Hookean magnetization saturation Langevin model. Our analysis
relies on the theory of nonlinear magneto-elasticity and the associated linearized theory for superim-
posed perturbations. We derive the Stroh formulation of the governing equations of wrinkling, and com-
bine it with the surface impedance method to obtain explicitly the bifurcation equations identifying the
onset of symmetric and antisymmetric wrinkles. We also obtain analytical expressions of instability in
the thin- and thick-plate limits. For thin plates, we make the link with classical Euler buckling solutions.
We also perform an exhaustive numerical analysis to elucidate the effects of loading mode, load ampli-
tude, and saturation magnetization on the nonlinear static response and bifurcation diagrams. We find
that antisymmetric wrinkling modes always occur before symmetric modes. Increasing the pre-
compression or heightening the magnetic field has a destabilizing effect for SMA plates, while the satu-
ration magnetization enhances their stability. We show that the Euler buckling solutions are a good
approximation to the exact bifurcation curves for thin plates.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Soft magneto-active (SMA) materials, such as magneto-active
elastomers, are a particularly promising kind of smart materials
that can respond to magnetic field excitation. In general, these
SMA materials are prepared by mixing micron-sized magnetizable
particles (such as carbonyl iron and neodymium-iron-boron) into a
non-magnetic elastomeric matrix such as rubber or silicone (Rigbi
and Jilken, 1983; Ginder et al., 2002; Kim et al., 2018). They can
then deform significantly under the simple, remote, and reversible
actuation of magnetic fields. Moreover, their overall magneto-
mechanical properties can be altered actively by applying suitable
magnetic fields, thus resulting in tunable vibration and wave char-
acteristics. Owing to these superior magneto-mechanical coupling
behaviors, SMAmaterials have recently attracted considerable aca-
demic and industrial interests, prefiguring various potential appli-
cations which include remote actuators and sensors (Lanotte et al.,
2003; Tian et al., 2011; Kim et al., 2018), soft robotics and biomed-
ical devices (Makarova et al., 2016; Luo et al., 2019; Tang et al.,
2019), tunable vibration absorbers (Ginder et al., 2001; Hoang
et al., 2010), and tunable wave devices (Yu et al., 2018; Karami
Mohammadi et al., 2019).

A challenging problem that arises in the study of SMA materials
is how to model the strong nonlinearity and the magneto-
mechanical coupling. Thus, a lot of academic interest has been
devoted over the years to establish a general theoretical frame-
work of nonlinear magneto-(visco) elasticity in order to describe
appropriately the magneto-mechanical response of SMA materials
(Tiersten, 1964; Brown, 1966; Pao and Yeh, 1973; Maugin, 1988;
Brigadnov and Dorfmann, 2003; Dorfmann and Ogden, 2004;
Bustamante, 2010; Destrade and Ogden, 2011; Saxena et al.,
2013). Comprehensive reviews regarding the theoretical develop-
ment of nonlinear magneto-elasticity include those by Kankanala
and Triantafyllidis (2004) and Dorfmann and Ogden (2014). Fur-
thermore, homogenization techniques based on micromechanical
methods have also been developed to understand the connection
between the magneto-active microstructures and the macroscopic
physical or mechanical properties of SMAmaterials (Castañeda and
Galipeau, 2011; Galipeau et al., 2014).

In a large variety of practical applications, the mechanical and
magnetic loads (pre-stretch, magnetic field, etc.) influence the
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working performance of smart systems made of SMAmaterials and
may lead to instability and even failure. In fact, it has long been
observed that a magneto-elastic beam or plate in a uniform trans-
verse magnetic field will buckle once the field reaches a critical
value (Moon and Pao, 1968; Miya et al., 1978; Gerbal et al.,
2015). On the other hand, local buckling and other instability phe-
nomena can be exploited to realize active pattern switching
devices and reconfigurable metamaterials. Hence Psarra et al.
(2017) and Psarra et al. (2019) made use of wrinkling and crinkling
instabilities of a thin SMA film bonded on a soft non-magnetic sub-
strate to achieve surface pattern control through a combined
action of magnetic field and uni-axial pre-compression.
Goshkoderia et al. (2020) investigated experimentally instability-
induced pattern evolutions in SMA elastomer composites driven
by an applied magnetic field.

Thus, it is vital to theoretically study the stability of SMA struc-
tures and composites subject to coupled magneto-mechanical
loads, so that we can provide solid guidance for simulations and
experiments. From a theoretical point of view, the classical buck-
ling problem of a magneto-elastic beam-plate was first addressed
by Moon and Pao (1968), based on the thin-plate theory and the
assumption of a linear ferromagnetic material. Pao and Yeh
(1973) used a general theory of magneto-elasticity to re-examine
this problem and to yield an identical antisymmetric buckling
equation for thin plates. Following those works, many investiga-
tions looked at the same problem, trying to improve mathematical
models to explain the discrepancy between experimental results
and theoretical predictions (Wallerstein and Peach, 1972;
Popelar, 1972; Dalrymple et al., 1974; Miya et al., 1978; Gerbal
et al., 2015; Singh and Onck, 2018). Most of the above-
mentioned works employed classical structural models to eluci-
date the magneto-mechanical coupling problem. More recently,
using the theory of nonlinear magneto-elasticity, some researchers
have explored the onset of instabilities of different SMA structures,
including surface instabilities of isotropic SMA half-spaces (Otténio
et al., 2008), buckling modes of rectangular SMA blocks undergoing
plane-strain loading (Kankanala and Triantafyllidis, 2008), macro-
scopic instabilities of anisotropic SMA multilayered structures
(Rudykh and Bertoldi, 2013), instabilities of a thin SMA layer rest-
ing on a soft non-magnetic substrate (Danas and Triantafyllidis,
2014), and instabilities of a cylindrical membrane (Reddy and
Saxena, 2018).

The present work revisits the stability problem of SMA plates
subject to an in-plane mechanical load and a uniform transverse
magnetic field, and evaluates explicitly the onset of wrinkling
instabilities. This work differs from previous works (Pao and Yeh,
1973; Kankanala and Triantafyllidis, 2008) in the following
respects. (i) We adopt the nonlinear magneto-elasticity theory
and the associated linearized theory developed by Dorfmann and
Ogden (2004) and Otténio et al. (2008) to derive the governing
equations of nonlinear static response and the bifurcation equa-
tions of wrinkles. These theories introduce a total stress tensor
and a modified (or total) energy density function to express consti-
tutive relations in a simple and compact form. (ii) Two mechanical
loading modes are considered: plane-strain loading (Fig. 1(b)) and
uni-axial loading (Fig. 1(c)). (iii) To overcome the complexity of
conventional displacement-based method, we employ the Stroh
formulation and the surface impedance method (Su et al., 2018)
to obtain explicit expressions of the bifurcation equations of
antisymmetric and symmetric wrinkling modes (Fig. 1(d) and
(e)). (iv) We also manage to derive the explicit bifurcation equa-
tions corresponding to the thin- and thick-plate limits, and to
establish the thin-plate approximate formulas.

The paper is organized as follows. The equations of nonlinear
magneto-elasticity are derived in Section 2. The linearized stability
analysis is conducted in Section 3 to obtain the exact bifurcation
14
equations for symmetric and antisymmetric wrinkles. Section 4
specializes the analytical expressions to the neo-Hookean magne-
tization saturation material model, including the ideal magneto-
elastic model. Numerical calculations are carried out in Section 5
to illustrate the effects of loading mode, load amplitude, and satu-
ration magnetization on nonlinear static response and bifurcation
diagrams. Section 6 concludes the work with a summary. Some
mathematical expressions or derivations are provided in
Appendices A-C.

2. Equations of nonlinear magneto-elasticity

2.1. Finite magneto-elasticity theory

We first present the basic equations governing the finite
magneto-elastic deformations of an incompressible soft magneto-
elastic body, as developed by Dorfmann and Ogden (2004).

In the undeformed stress-free state, the body occupies in the
Euclidean space a region Br (the boundary being @Br , with the out-
ward normal N), which is taken to be a reference configuration. Any
material point inside the body is then identified with its position
vector X in Br . The application of both mechanical load and mag-
netic field deforms quasistatically the body from Br to the current
configuration B (the boundary being @B, with the outward normal
n). The particle located at X in Br now occupies the position
x ¼ v Xð Þ in B, where the vector function v is a one-to-one,
orientation-preserving mapping with a sufficiently regular prop-
erty. The associated deformation gradient tensor is
F ¼ Gradv ¼ @v=@X (Fia ¼ @xi=@Xa in Cartesian components) with
Grad being the gradient operator in Br . Note that Greek indices
are associated with Br and Roman indices with B.

The Jacobian of the deformation gradient is J ¼ det F, and it is
equal to 1 at all times for incompressible materials. The left and
right Cauchy-Green deformation tensors b ¼ FFT and C ¼ FTF are
used as the deformation measures, where the superscript T signi-
fies the transpose.

In the Eulerian description, the equilibrium equations in the
absence of mechanical body forces, and the Maxwell equations in
the absence of time dependence, free charges and electric currents,
are

divs ¼ 0; divB ¼ 0; curlH ¼ 0; ð1Þ
where s is the total Cauchy stress tensor including the contribution of
magnetic body forces, B is the Eulerian magnetic induction vector
and H is the Eulerian magnetic field vector; curl and div are the curl
and divergence operators in B, respectively. The conservation of
angular momentum implies that s is symmetric.

The Eulerian magnetization vector M is defined by the standard
relation

B ¼ l0 HþMð Þ; ð2Þ
where l0 ¼ 4p� 10�7 N � A�2 is the magnetic permeability in
vacuum.

In vacuum, there is no magnetization and Eq. (2) reduces to
BI ¼ l0H

I, where a star superscript identifies a quantity exterior
to the material. The Maxwell stress tensor sI in vacuum is

sI ¼ l�1
0 BI � BI � 1

2
BI � BI
� �

I
� �

; ð3Þ

where I is the identity tensor. The external fields BI and HI satisfy
divBI ¼ 0 and curlHI ¼ 0, which leads to divsI ¼ 0.

The traction and magnetic boundary conditions are written in
Eulerian form as

s� sI
� �

n ¼ ta; B� BI
� � � n ¼ 0; H�HI

� �� n ¼ 0; ð4Þ



Fig. 1. (a)–(e): Schematic diagram of a rectangular SMA plate with Cartesian coordinates and geometry. (a): Undeformed configuration before activation. (b): Deformed
configuration subject to plane-strain loading (k3 ¼ 1) with a transverse magnetic field B2 and (c): Deformed configuration subject to uni-axial loading with a transverse
magnetic field B2 (the magnetic poles are assumed to be very close to the plate, to ensure quasi-uniformity of the mechanical and magnetic fields). (d)–(e): Antisymmetric and
symmetric modes of wrinkling instability. (f): Antisymmetric wrinkling due to the application of an external transverse magnetic field to a pre-compressed SMA plate glued
onto an inert substrate (taken from Psarra et al., 2017).
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where ta is the applied mechanical traction vector per unit area of
@B. Note that the magnetic traction vector tm induced by the exter-
nal Maxwell stress sI is tm ¼ sIn. Using Nanson’s formula, we can
transform the governing Eqs. (1) and boundary conditions (4) into
the Lagrangian form.

Following the theory of nonlinear magneto-elasticity
(Dorfmann and Ogden, 2004), it is convenient to express the non-
linear constitutive relations for incompressible magneto-elastic
materials in terms of a total energy function, or modified free energy
function, X F;BLð Þ per unit reference volume as

T ¼ @X
@F

� pF�1; HL ¼ @X
@BL

; ð5Þ

where T ¼ F�1s is the total nominal stress tensor, the nominal mag-
netic field vector BL ¼ F�1B and the nominal magnetic induction
vector HL ¼ FTH are the Lagrangian counterparts of B and H, respec-
tively, and p is a Lagrange multiplier related to the incompressibility
constraint, which can be determined from the equilibrium equa-
tions and boundary conditions. The Eulerian counterparts of Eq.
(5) are

s ¼ F
@X
@F

� pI; H ¼ F�T @X
@BL

: ð6Þ

For an incompressible isotropic material, the energy function X can
be reduced to a function depending only on the following five
invariants:

I1 ¼ trC; I2 ¼ 1
2 trCð Þ2 � tr C2

� �h i
;

I4 ¼ BL � BL; I5 ¼ BL � CBLð Þ; I6 ¼ BL � C2BL

� �
:

ð7Þ

According to Eqs. (6) and (7), the total Cauchy stress tensor s and
the Eulerian magnetic field vector H are then derived as
15
s ¼ 2X1bþ 2X2 I1b� b2
� �

� pIþ 2X5B� Bþ 2X6 B� bBþ bB� Bð Þ;

H ¼ 2 X4b
�1BþX5BþX6bB

� �
; ð8Þ

where Xn ¼ @X=@In n ¼ 1;2;4;5;6ð Þ.

2.2. Pure homogeneous deformation of a plate

We now specialize the above equations of nonlinear magneto-
elasticity to the homogeneous deformation of an SMA plate subject
to an in-plane mechanical load and a uniform magnetic field along
its thickness direction. In this work, we consider two mechanical
loading modes: plane-strain loading (see Fig. 1(b)) and uni-axial
loading (see Fig. 1(c)).

We point out that to simplify the mathematical modelling and
obtain explicit analytical solutions to the nonlinear response and
the bifurcation criteria of SMA plates, we make the following
assumptions. (i) The plate is entirely immersed in the external
magnetic field and subjected to an applied uniform magnetic field
in the thickness direction. (ii) The plate is of infinite lateral extent,
i.e., the plate lateral dimensions are much larger than its thickness.
(iii) The magnetic poles are very close to the plate, see Fig. 1(b) and
(c) for sketches and Fig. 1(f) for the experimental apparatus of
Psarra et al. (2017). These assumptions ensure that the field
heterogeneity is only confined to the plate edges, while far away
from the edges, the induced stress and magnetic field distributions
can be envisioned as uniform, which is a good approximation in
the sense of Saint–Venant’s principle. A similar processing method
has been adopted by Su et al. (2020) to analyze the wrinkling of
soft electro-active plates immersed in external electric fields.

Let X1;X2;X3ð Þ and x1; x2; x3ð Þ be the Cartesian coordinates in the
reference and current configurations, respectively, along the
E1;E2;E3ð Þ and e1; e2; e3ð ) unit vectors. In the undeformed
configuration, the plate has uniform thickness 2H along the X2
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direction and lateral lengths L1; L3 in the (X1;X3) plane. The pure
homogeneous deformations corresponding to the two loading
modes are defined by x1 ¼ k1X1; x2 ¼ k2X2; x3 ¼ k3X3, where
ki i ¼ 1;2;3ð Þ is the principal stretch in the Xi direction and

k2 ¼ k1k3ð Þ�1 by incompressibility. The resulting deformation gra-

dient tensor is the diagonal matrix F ¼ diag k1; k1k3ð Þ�1
; k3

h i
in the

ei � Ej basis. The current thickness and lateral lengths of the
deformed plate are 2h; ‘1 and ‘3, respectively.

We take the underlying Eulerian magnetic induction vector B to

be in the x2 direction, that is, B ¼ 0;B2;0½ �T. The associated Lagran-
gian field BL ¼ F�1B is BL ¼ 0;BL2;0½ �T with BL2 ¼ k1k3B2. The five
independent invariants in Eq. (7) are written now as

I1 ¼ k21 þ k1k3ð Þ�2 þ k23; I2 ¼ k�2
1 þ k�2

3 þ k21k
2
3;

I4 ¼ k21k
2
3B

2
2; I5 ¼ k1k3ð Þ�2I4; I6 ¼ k1k3ð Þ�4I4:

ð9Þ

Thus, we can define a reduced energy function x as
x k1; k3; I4ð Þ ¼ X I1; I2; I4; I5; I6ð Þ. Based on Eq. (9) and the chain rule,
the constitutive relations (8) are written as

s11�s22 ¼ k1xk1 ; s33�s22 ¼ k3xk3 ; H2 ¼2 k1k3ð Þ2B2x4; ð10Þ
where xk1 ¼ @x=@k1;xk3 ¼ @x=@k3, and x4 ¼ @x=@I4. They satisfy

k1xk1 ¼ 2 X1 þX2k
2
3

� �
k21 � k�2

1 k�2
3

� �� X5 þ 2X6k
�2
1 k�2

3

� �
B2
2

h i
;

k3xk3 ¼ 2 X1 þX2k
2
1

� �
k23 � k�2

1 k�2
3

� �� X5 þ 2X6k
�2
1 k�2

3

� �
B2
2

h i
;

ð11Þ

k1k3ð Þ2x4 ¼ X4 k1k3ð Þ2 þX5 þX6 k1k3ð Þ�2
:

Note that H1 ¼ H3 ¼ 0 from Eq. (8)2. For constant k1; k3 and B2, all
the fields are uniform and hence satisfy the equilibrium equations
and the Maxwell equations automatically.

It follows from the magnetic boundary conditions (4)2,3 that the
non-zero components of BI and HI are BI

2 ¼ B2 and HI
2 ¼ l�1

0 B2,
respectively. Thus, the non-zero components of the Maxwell stress
(3) are

sI11 ¼ sI33 ¼ �sI22 ¼ �1
2
l�1

0 B2
2: ð12Þ

These Maxwell stress components generate the magnetic traction
vector tm ¼ sIn.

For uni-axial mechanical loading in the x1 direction (Fig. 1(c)),
there are no mechanical tractions applied on the faces x2 ¼ �h
and x3 ¼ �‘3=2, only magnetic tractions. The traction boundary
conditions (4)1 yield

s22 ¼ sI22; s33 ¼ sI33; s11 � sI11 ¼ ta1 ¼ k1s1; ð13Þ
where s1 is the nominal mechanical traction per unit area of @Br

applied on the faces x1 ¼ �‘1=2. Thus, we deduce from Eqs. (10)
and (13) that the governing equations of the nonlinear response
for uni-axial loading are

k1xk1 þ sI22 � sI11 ¼ k1s1; k3xk3 þ sI22 � sI33 ¼ 0;

H2 ¼ 2 k1k3ð Þ2B2x4; ð14Þ

Note that Eq. (14)2 determines the induced principal stretch k3 in
terms of the stretch k1 and magnetic field B2. Then s1 and H2 are cal-
culated from Eqs. (14)1,3, respectively.

For plane-strain mechanical loading in the x1 direction (Fig. 1(b)),
we have k3 ¼ 1 and k1 ¼ k�1

2 � k. There is no mechanical traction
applied on the faces x2 ¼ �h, but lateral mechanical tractions,
applied on the faces x1 ¼ �‘1=2 and x3 ¼ �‘3=2, are required to
maintain the plane-strain deformation. As a result, Eq. (9) becomes
16
I1 ¼ I2 ¼ k2 þ k�2 þ 1; I4 ¼ k2B2
2; I5 ¼ k�2I4; I6 ¼ k�4I4:

ð15Þ
By introducing the reduced energy function ~x as
~x k; I4ð Þ ¼ X I1; I2; I4; I5; I6ð Þ, it follows from the constitutive relations
(8) that

s11 � s22 ¼ k ~xk; H2 ¼ 2k2B2 ~x4;

s33 � s22 ¼ 2 k�2X1 þX2
� �

k2 � 1
� �� X5 þ 2k�2X6

� �
B2
2

h i
;

ð16Þ

where ~xk ¼ @ ~x=@k and ~x4 ¼ @ ~x=@I4. They are determined by

k ~xk ¼ 2 k2 � k�2� �
X1 þX2ð Þ � X5 þ 2X6k

�2� �
B2
2

h i
;

k2 ~x4 ¼ k2X4 þX5 þ k�2X6:
ð17Þ

For this loading mode, the traction boundary conditions (4)1 read

s22 ¼ sI22; s11 � sI11 ¼ ta1 ¼ ks1; s33 � sI33 ¼ ta3 ¼ s3; ð18Þ
where s1 and s3 are the nominal mechanical tractions applied on the
faces x1 ¼ �‘1=2 and x3 ¼ �‘3=2, respectively. In view of Eqs. (16)1,2
and (18), the nonlinear static response for plane-strain loading is
governed by

k ~xk þ sI22 � sI11 ¼ ks1; s33 � s22 þ sI22 � sI33 ¼ s3;

H2 ¼ 2k2B2 ~x4; ð19Þ
where s33 � s22 is given by Eq. (16)3. Thus, Eq. (19) is used to
calculate s1; s3 and H2 in terms of the applied stretch k and magnetic
field B2.

3. Linearized stability analysis

In this section we employ the linearized incremental theory of
magneto-elasticity (Otténio et al., 2008; Destrade and Ogden,
2011) and the Stroh formalism (Su et al., 2018) to investigate the
formation of small-amplitude wrinkles, signaling the onset of
wrinkling instability of the SMA plate, for the two loading modes
described in Section 2.2.

3.1. Incremental governing equations

Consider an infinitesimal incremental mechanical displacement
u ¼ _x along with an updated incremental magnetic induction vec-
tor _BL0, superimposed on the finitely deformed configuration
reached via x ¼ v Xð Þ. Here and henceforth, a superposed dot indi-
cates an increment.

The incremental balance laws and the incremental incompress-
ibility condition are formulated in Eulerian, or updated Lagrangian,
form as

div _T0 ¼ 0; div _BL0 ¼ 0; curl _HL0 ¼ 0; divu ¼ trL ¼ 0;

ð20Þ
where _T0 ¼ F _T; _BL0 ¼ F _BL and _HL0 ¼ F�T _HL are the push-forward ver-
sions of the corresponding Lagrangian increments _T; _BL and _HL,
respectively, and L ¼ gradu is the incremental displacement gradi-
ent. The resulting push-forward quantities are identified with a
subscript 0.

The linearized incremental constitutive equations for incom-
pressible SMA materials read

_T0 ¼ A0L þ C0
_BL0 þ pL � _pI; _HL0 ¼ CT

0L þ K0
_BL0; ð21Þ
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where A0;C0 and K0 are, respectively, fourth-, third- and second-
order tensors, which are referred to as instantaneous magneto-
elastic moduli tensors (see Otténio et al. (2008) and Destrade and
Ogden (2011) for their general expressions). In index notation, these
magneto-elastic moduli tensors are given by

A0piqj ¼ FpaFqbAaibj; C0piq ¼ FpaF
�1
bq Caib; K0ij ¼ F�1

ai F
�1
bj Kab;

ð22Þ
where A;C and K are the relevant referential magneto-elastic mod-
uli tensors, which are defined by A ¼ @2X= @F@Fð Þ;
C ¼ @2X= @F@BLð Þ, and K ¼ @2X= @BL@BLð Þ. Note that the instanta-
neous moduli tensors have the symmetries
A0piqj ¼ A0qjpi;C0piq ¼ C0ipq, and K0ij ¼ K0ji.

Using the incremental form of the rotational balance condition
FT ¼ FTð ÞT, we have the following relation betweenA0 and s for an
incompressible material

A0jisk �A0ijsk ¼ sjs þ pdjs
� �

dik � sis þ pdisð Þdjk: ð23Þ

The incremental fields exterior to the material read

_BI ¼ l0
_HI; _sI ¼ l�1

0
_BI � BI þ BI � _BI � BI � _BI

� �
I

h i
;

ð24Þ
where _BI and _HI are to satisfy div _BI ¼ 0 and curl _HI ¼ 0, respec-
tively, and hence _s	 is divergence-free, i.e., div _sI ¼ 0.

The mechanical and magnetic boundary conditions for the
incremental fields can be expressed, in updated Lagrangian form,
as

_TT
0 � _sI þ sILT � divuð ÞsI

h i
n ¼ _tA0 ;

_BL0 � _BI þ LBI � divuð ÞBI
h i

� n ¼ 0;

_HL0 � _H	 � LTH	
� �

� n ¼ 0; ð25Þ

where _tA0da ¼ _tAdA, with tA being the applied mechanical traction
vector per unit area of @Br (i.e., tAdA ¼ tada). Note that dA and da
are area elements of the reference and current configurations,
respectively.

In this work we focus on incremental two-dimensional solu-
tions independent of x3, such that u3 ¼ _BL03 ¼ _HL03 ¼ 0, and hence
ui ¼ ui x1; x2ð Þ; _BL0i ¼ _BL0i x1; x2ð Þ and _HL0i ¼ _HL0i x1; x2ð Þ for i ¼ 1;2
and _p ¼ _p x1; x2ð Þ.

From Eq. (20)3, the incremental magnetic field vector _HL0 is
curl-free and thus an incremental magnetic scalar potential _u
can be introduced such that _HL0 ¼ �grad _u, with components

_HL01 ¼ � _u;1; _HL02 ¼ � _u;2: ð26Þ
The incremental balance laws and incompressibility condition
(20)1,2,4 become

_T011;1 þ _T021;2 ¼ 0; _T012;1 þ _T022;2 ¼ 0; _BL01;1 þ _BL02;2 ¼ 0; u1;1 þ u2;2 ¼ 0:
ð27Þ

For pure homogeneous deformation of the SMA plate subject to the
transverse magnetic field, we have Fij ¼ 0 for i– j and B1 ¼ B3 ¼ 0.
The magneto-elastic moduli tensors A0;C0 and K0 satisfy (Otténio
et al., 2008)
17
A0iijk ¼ 0; K0jk ¼ 0; for j – k;

C0ii1 ¼ C01ii ¼ C0ii3 ¼ C03ii ¼ 0;
C0ijk ¼ 0; for i– j – k – i:

ð28Þ

Consequently, using Eqs. (26) and (28), the incremental constitutive
relations (21) are written in terms of ui i ¼ 1;2ð Þ and _u as

_T011 ¼ c11 þ pð Þu1;1 þ c12u2;2 þ e21 _u;2 � _p;
_T012 ¼ c69 þ pð Þu1;2 þ c66u2;1 þ e16 _u;1;

_T021 ¼ c69 þ pð Þu2;1 þ c99u1;2 þ e16 _u;1;

_T022 ¼ c22 þ pð Þu2;2 þ c12u1;1 þ e22 _u;2 � _p;

ð29Þ

and

_BL01 ¼ e16 u2;1 þ u1;2ð Þ � l11 _u;1;

_BL02 ¼ e21u1;1 þ e22u2;2 � l22 _u;2;
ð30Þ

where the effective material parameters cij; eij and lij are defined as

l11 ¼ K�1
011 ; l22 ¼ K�1

022; e16 ¼ �C0211K
�1
011; e21 ¼ �C0112K

�1
022 ; e22 ¼ �C0222K

�1
022 ;

c11 ¼ A01111 þ C0112e21; c12 ¼ A01122 þ C0112e22; c22 ¼ A02222 þ C0222e22;

c69 ¼ A01221 þ C0211e16; c66 ¼ A01212 þ C0211e16; c99 ¼ A02121 þ C0211e16:

ð31Þ
3.2. Stroh formulation and its resolution for plates

The two-dimensional incremental solutions, for the wrinkling
instability with sinusoidal shape along the x1 direction and ampli-
tude variations along the x2 direction (see Fig. 1(d) and (e)), are
sought in the form

u1 ;u2; _u; _T021; _T022; _BL02

n o
¼ R k�1U1 ; k

�1U2;
ffiffiffiffiffiffiffiffiffiffiffiffi
G=l0

q
k�1U; iGR21; iGR22 ; i

ffiffiffiffiffiffiffiffiffi
Gl0

q
D

� �
eikx1

	 

;

ð32Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
;U1;U2;U;R21;R22 and D are non-dimensional

functions of kx2 only, k ¼ 2p=L is the wrinkling wavenumber
with L being the wavelength of the wrinkles, and G is the initial
shear modulus (in Pa) of the SMA plate in the absence of magnetic
field.

Following a standard derivation procedure (Su et al., 2018; Su
et al., 2019), we can rewrite the incremental governing Eqs. (27),
(29) and (30) in the following non-dimensional Stroh form:

g0 ¼ iNg ¼ i
N1 N2

N3 Ny
1

" #
g; ð33Þ

where g ¼ U1 U2 U R21 R22 D
� �T is the Stroh vector, N is the

6� 6 Stroh matrix, the prime denotes differentiation with respect
to kx2, and y signifies the Hermitian operator. In what follows we
use the generalized displacement and traction vectors

U ¼ U1 U2 U
� �T and S ¼ R21 R22 D

� �T to express the Stroh

vector as g ¼ U S
� �T. For reference, the 3� 3 real sub-matrices

Ni i ¼ 1;2;3ð Þ are presented in Appendix A.
For the constant Stroh matrix N considered here, we seek solu-

tions to Eq. (33) in the form,

g kx2ð Þ ¼ g0eiqkx2 : ð34Þ
Substituting Eq. (34) into Eq. (33) yields an eigenvalue problem
N� qI
� �

g0 ¼ 0, with eigenvalue q and eigenvector g0.
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The requirement of non-trivial solutions results in det N� qI
� � ¼ 0,

which gives the following bi-cubic characteristic equation in q:

c g q6 þ 2bg þ cf þ d d� 2e
� �h i

q4

þ ag þ 2bf � 2�d d� e
� �

� e2f=g
h i

q2 þ af þ d2 ¼ 0; ð35Þ

It is clear that the characteristic equation and hence the eigenvalues
do not depend on s22 (appearing in the Stroh matrix (82)) for any
choice of energy density function, despite the presence of external
magnetic field.

Thus, the two-dimensional wrinkling solutions to Eq. (33) for an
SMA plate are found as

g kx2ð Þ ¼ U kx2ð Þ
S kx2ð Þ

" #
¼
X6
j¼1

Ajg
jð Þeiqjkx2 : ð36Þ

where Aj j ¼ 1; . . . ;6ð Þ are arbitrary constants to be determined,
qj j ¼ 1; . . . ;6ð Þ are the eigenvalues, and g jð Þ j ¼ 1; . . . ;6ð Þ are the
eigenvectors associated with qj. The eigenvalues are complex conju-
gate pairs because of the real coefficients of Eq. (35).

So far, there is no restriction on the specific form of energy den-
sity function X. To proceed further and demonstrate the possibility
of obtaining concise and analytical eigen-equation and eigenvec-
tors, we henceforth consider the magneto-elastic material to be
characterized by the following Mooney-Rivlin magneto-elastic
model,

X ¼ G 1� bð Þ
2

I1 � 3ð Þ þ Gb
2

I2 � 3ð Þ þ F I5ð Þ; ð37Þ

where F is an arbitrary function of I5 only and b 2 0;1½ � is a constant.
Note that Eq. (37) with b ¼ 0 reduces to the neo-Hookean magneto-
elastic model, including, for example, the ideal model with no sat-
uration and the magnetization saturation Langevin model, which
we consider in Section 4.

Using Eqs. (37) and (86), the dimensionless parameters a� g in
Eq. (83) are calculated as

a ¼ k21 1� bð Þ þ k21k
2
3b� 2B2

2F5; c ¼ k�2
1 k�2

3 1� bð Þ þ k�2
1 b;

b ¼ 1
2 k�2

1 k�2
3 þ k21

� �
1� bð Þ þ k23b

� �þ B2
2 3F5 þ 2B2

2F55
� �

;

d ¼ �B2; e ¼ �B2 1þ F5= F5 þ 2B2
2F55

� �� �
;

f ¼ 1= 2F5
� �

; g ¼ 1= 2 F5 þ 2B2
2F55

� �� �
;

ð38Þ

where B2 ¼ B2=
ffiffiffiffiffiffiffiffiffi
Gl0

p
is the dimensionless applied magnetic induc-

tion; F5 and F55 are defined as

F5 ¼ l0F5 ¼ l0@F=@I5; F55 ¼ Gl2
0F55 ¼ Gl2

0@
2F=@I25: ð39Þ

Then we find that the characteristic Eq. (35) factorizes as

q2 þ 1
� �

q2 þ k41k
2
3

� �
F5q2 þ F5 þ 2B2

2F55
� � ¼ 0; ð40Þ

which yields six pure imaginary eigenvalues as

q1 ¼ �q4 ¼ ip1; q2 ¼ �q5 ¼ ip2; q3 ¼ �q6 ¼ ip3; ð41Þ
where the real numbers p1;p2, and p3 are

p1 ¼ 1; p2 ¼ k21k3; p3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B2

2F55=F5

q
: ð42Þ

The associated eigenvectors are derived as
18
g 1ð Þ ¼ 1; i; id=f ; i 2c þ d2=f � s22
� �

; s22 � aþ c þ d2=f
� �

; �d
h iT

;

g 2ð Þ ¼ p2; i; id=f ; i aþ c þ 2d2=f � s22
� �

; s22 � 2cð Þp2; �dp2

h iT
;

g 3ð Þ ¼ 0; 0; ip3; ip3d; �d; f
h iT

;

g 4ð Þ ¼ g 1ð Þ� �	
; g 5ð Þ ¼ g 2ð Þ� �	

; g 6ð Þ ¼ g 3ð Þ� �	
;

ð43Þ

where the asterisk 	 denotes the complex conjugate. We observe
from Eq. (43) that

�g jþ3ð Þ
1 ¼ �g jð Þ

1 ; �g jþ3ð Þ
2 ¼ ��g jð Þ

2 ; �g jþ3ð Þ
3 ¼ ��g jð Þ

3 ;

�g jþ3ð Þ
4 ¼ ��g jð Þ

4 ; �g jþ3ð Þ
5 ¼ �g jð Þ

5 ; �g jþ3ð Þ
6 ¼ �g jð Þ

6 ; j ¼ 1;2;3ð Þ;
ð44Þ

where g jð Þ
i is the ith component of the eigenvector g jð Þ.

3.3. Incremental boundary conditions

We take the applied mechanical traction tA as a dead load (i.e.,
_tA0 ¼ _tA ¼ 0), so that the general incremental boundary conditions
(25) are specialized to the two-dimensional problem at x2 ¼ �h, as

_T021 ¼ �sI11u2;1 þ _sI21; _T022 ¼ �sI22u2;2 þ _sI22;
_BL02 ¼ _BI

2 � BI
2 u2;2; _HL01 ¼ _HI

1 þ HI
2 u2;1:

ð45Þ

From curl _HI ¼ 0, we deduce the existence of an incremental mag-
netic scalar potential _uI ¼ _uI x1; x2ð Þ in vacuum such that

_HI
1 ¼ � _uI

;1;
_HI
2 ¼ � _uI

;2;
_BI
1 ¼ �l0 _u

I
;1;

_BI
2 ¼ �l0 _u

I
;2:

ð46Þ

Substituting Eq. (46)3,4 into div _BI ¼ 0 results in the Laplace equa-
tion for _uI,

_uI
;11 þ _uI

;22 ¼ 0: ð47Þ
To satisfy the decay condition _uI ! 0 as x2 ! �1, we take the
solutions to Eq. (47) which are localized near the interfaces
x2 ¼ �h, as

_uI
þ ¼ k�1AI

þe
�kx2 eikx1 ; x2 > hð Þ;

_uI
� ¼ k�1AI

�e
kx2eikx1 ; x2 < �hð Þ;

ð48Þ

where AI

þ and AI

� are arbitrary constants. Thus, the associated incre-
mental Maxwell stress tensor (24)2 has non-zero components

_sI11 ¼ _sI33 ¼ � _sI22 ¼ BI
2 _uI

þ;2; _sI12 ¼ _sI21 ¼ �BI
2 _uI

þ;1 ð49Þ
and

_sI11 ¼ _sI33 ¼ � _sI22 ¼ BI
2 _uI

�;2; _sI12 ¼ _sI21 ¼ �BI
2 _uI

�;1 ð50Þ
for x2 > h and x2 < �h, respectively.

Inserting Eqs. (26)1, (32), (46)1 and (48)1 into the incremental
magnetic boundary condition (45)4 at the plate top surface
x2 ¼ þh leads to the relation

AI
þe

�kh ¼ U khð Þ þ B2U2 khð Þ; ð51Þ

where AI
þ ¼ AI

þ
ffiffiffiffiffiffiffiffiffiffiffi
l0=G

p
. Using Eqs. (12), (32), (46)4, (48)1, (49) and

(51), we write the incremental boundary conditions (45)1�3 at
x2 ¼ þh in an impedance form, as
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S khð Þ ¼ iZI
þU khð Þ; ð52Þ

where

ZI
þ ¼

0 iB2
2=2 iB2

�iB2
2=2 �B2

2 �B2

�iB2 �B2 �1

2
64

3
75 ð53Þ

is a surface impedance matrix connecting the vectors S khð Þ and
U khð Þ at the face x2 ¼ þh.

Similarly, at the plate bottom surface x2 ¼ �h, we obtain

AI
�e

�kh ¼ U �khð Þ þ B2U2 �khð Þ; AI
� ¼ AI

�

ffiffiffiffiffiffiffiffiffiffiffi
l0=G

q
; ð54Þ

and

S �khð Þ ¼ iZI
�U �khð Þ; ð55Þ

where the surface impedance matrix in the lower half-space is

ZI
� ¼

0 iB2
2=2 iB2

�iB2
2=2 B2

2 B2

�iB2 B2 1

2
64

3
75: ð56Þ
3.4. Bifurcation equations for wrinkling instabilities

Using Eq. (87), we rewrite Eqs. (52) and (55) as

S khð Þ
S �khð Þ

" #
¼ i

ZI
þ 0

0 ZI
�

" #
U khð Þ
U �khð Þ

" #
¼ i

ZI
þ 0

0 ZI
�

" #

g 1ð Þ
1 Eþ

1 g 2ð Þ
1 Eþ

2 g 3ð Þ
1 Eþ

3 g 4ð Þ
1 E�

1 g 5ð Þ
1 E�

2 g 6ð Þ
1 E�

3

g 1ð Þ
2 Eþ

1 g 2ð Þ
2 Eþ

2 g 3ð Þ
2 Eþ

3 g 4ð Þ
2 E�

1 g 5ð Þ
2 E�

2 g 6ð Þ
2 E�

3

g 1ð Þ
3 Eþ

1 g 2ð Þ
3 Eþ

2 g 3ð Þ
3 Eþ

3 g 4ð Þ
3 E�

1 g 5ð Þ
3 E�

2 g 6ð Þ
3 E�

3

g 1ð Þ
1 E�

1 g 2ð Þ
1 E�

2 g 3ð Þ
1 E�

3 g 4ð Þ
1 Eþ

1 g 5ð Þ
1 Eþ

2 g 6ð Þ
1 Eþ

3

g 1ð Þ
2 E�

1 g 2ð Þ
2 E�

2 g 3ð Þ
2 E�

3 g 4ð Þ
2 Eþ

1 g 5ð Þ
2 Eþ

2 g 6ð Þ
2 Eþ

3

g 1ð Þ
3 E�

1 g 2ð Þ
3 E�

2 g 3ð Þ
3 E�

3 g 4ð Þ
3 Eþ

1 g 5ð Þ
3 Eþ

2 g 6ð Þ
3 Eþ

3

2
66666666664

3
77777777775

A1

A2

A3

A4

A5

A6

2
666666664

3
777777775
:

ð57Þ

Substituting Eqs. (44) and (88) into Eq. (57) yields

D1E
þ
1 D2E

þ
2 D3E

þ
3 �D1E

�
1 �D2E

�
2 �D3E

�
3

Fþ
1 E

þ
1 Fþ

2 E
þ
2 Fþ

3 E
þ
3 F�

1 E
�
1 F�

2 E
�
2 F�

3 E
�
3

Gþ
1 E

þ
1 Gþ

2 E
þ
2 Gþ

3 E
þ
3 G�

1 E
�
1 G�

2 E
�
2 G�

3 E
�
3

D1E
�
1 D2E

�
2 D3E

�
3 �D1E

þ
1 �D2E

þ
2 �D3E

þ
3

F�
1 E

�
1 F�

2 E
�
2 F�

3 E
�
3 Fþ

1 E
þ
1 Fþ

2 E
þ
2 Fþ

3 E
þ
3

G�
1 E

�
1 G�

2 E
�
2 G�

3 E
�
3 Gþ

1 E
þ
1 Gþ

2 E
þ
2 Gþ

3 E
þ
3

2
666666664

3
777777775

A1

A2

A3

A4

A5

A6

2
666666664

3
777777775
¼ 0;

ð58Þ
where

Dj ¼ g jð Þ
4 þ B2 B2g jð Þ

2 þ 2g jð Þ
3

� �
=2;

F�
j ¼ g jð Þ

5 � B2
2g

jð Þ
1 =2� iB2 B2g jð Þ

2 þ g jð Þ
3

� �
;

G�
j ¼ g jð Þ

6 � B2g jð Þ
1 � i B2g jð Þ

2 þ g jð Þ
3

� �
; j ¼ 1;2;3ð Þ:

ð59Þ

By conducting some simple linear matrix manipulations of Eq. (58)
and using the relations Eþ

j þ E�
j ¼ 2 cosh pjkh

� �
and

Eþ
j � E�

j ¼ �2 sinh pjkh
� �

, we obtain two sets of independent linear
algebraic equations,

Psym

A1 þ A4

A2 þ A5

A3 þ A6

2
64

3
75 ¼ 0; Panti

A1 � A4

A2 � A5

A3 � A6

2
64

3
75 ¼ 0; ð60Þ
19
where the 3� 3 coefficient matrices Psym and Panti have non-zero
components

Psym
1j ¼ g jð Þ

4 þ B2 B2g jð Þ
2 þ 2g jð Þ

3

� �
=2

h i
tanh pjkh

� �
;

Psym
2j ¼ g jð Þ

5 � B2
2g

jð Þ
1 =2

� �
� iB2 B2g jð Þ

2 þ g jð Þ
3

� �
tanh pjkh

� �
;

Psym
3j ¼ g jð Þ

6 � B2g jð Þ
1

� �
� i B2g jð Þ

2 þ g jð Þ
3

� �
tanh pjkh

� �
;

ð61Þ

and

Panti
1j ¼ g jð Þ

4 þ B2 B2g jð Þ
2 þ 2g jð Þ

3

� �
=2;

Panti
2j ¼ g jð Þ

5 � B2
2g

jð Þ
1 =2

� �
tanh pjkh

� �� iB2 B2g jð Þ
2 þ g jð Þ

3

� �
;

Panti
3j ¼ g jð Þ

6 � B2g jð Þ
1

� �
tanh pjkh

� �� i B2g jð Þ
2 þ g jð Þ

3

� �
;

ð62Þ

for j ¼ 1;2;3. For non-trivial solutions of Eq. (60), the determinants
of coefficient matrices must vanish, i.e.,

det Psym� � ¼ 0; det Panti
� �

¼ 0; ð63Þ

which identify, respectively, possible symmetric and antisymmetric
wrinkling modes.

Substituting Eqs. (85), (38), (42)1,2 and (43)1,2,3 into Eqs. (61)–
(63) and with the help of Mathematica (Wolfram Research, Inc.,
2013), we are able to obtain the explicit bifurcation equation for
antisymmetric modes as

1þ b k23 � 1
� �� �

2F5p3 þ tanh p3khð Þ� �
� 1þ k41k

2
3

� �2
tanh khð Þ � 4k21k3 tanh k21k3kh

� �h i
¼ k21k

2
3 k41k

2
3 � 1

� �
B2
2 1� 2F5
� �2

tanh p3khð Þ; ð64Þ

where kh ¼ k�1
1 k�1

3 kH. The bifurcation equation for symmetric
modes is the same as Eq. (64) except that tanh is replaced by coth
everywhere. Note that Eq. (64) is applicable to both the uni-axial
and plane-strain loading considered in Section 2.2.

In the thick-plate or short-wave limit (kH ! 1), the tanh func-
tions in Eq. (64) are replaced by 1 and the bifurcation criteria for
both symmetric and antisymmetric modes reduce to

1þ b k23 � 1
� �� �

1þ 2F5p3

� �
k21k3
� �3 þ k21k3

� �2 þ 3k21k3 � 1
h i

¼ k21k
2
3 k21k3 þ 1
� �

B2
2 1� 2F5
� �2

: ð65Þ

Note that the bifurcation Eq. (65) identifies the surface wrinkling
instability for the magneto-elastic half-space, which can also be
derived based on the surface impedance method shown in

Appendix B. For B2 ¼ 0, Eq. (65) reduces to k21k3
� �3 þ k21k3

� �2þ
3k21k3 � 1 ¼ 0, corresponding to the surface instability of a purely
elastic half-space (Flavin, 1963).

In the thin-plate or long-wave limit (kH ! 0), we find that the
antisymmetric bifurcation Eq. (64) can be rearranged as

2F5 k21 � k�2
1 k�2

3

� �
1þ b k23 � 1

� �� � ¼ B2
2 1� 2F5
� �2

: ð66Þ

For B2 ¼ 0, Eq. (66) recovers the critical buckling condition k21k3 ¼ 1
for the purely elastic case, which results in kcr1 ¼ 1:0 for both the
uni-axial and plane-strain loading. This indicates that in the
absence of magnetic field, the infinite-long plate or thin-plate buck-
les immediately when subject to an extremely small in-plane
compression.
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4. Specialization to the neo-Hookean magneto-elastic solid

For definiteness, we now specialize the previous results to the
neo-Hookean (b ¼ 0) ideal magneto-elastic model and the neo-
Hookean magnetization saturation Langevin model, which are
characterized by the following energy functions, respectively,

X ¼ G
2

I1 � 3ð Þ þ 1� v
2l0

I5; ð67Þ

and

X ¼ G
2

I1 � 3ð Þ þ I5
2l0

þ l0 msð Þ2
3v ln

3v
ffiffiffiffi
I5

p

l0ms


 �
� ln sinh

3v
ffiffiffiffi
I5

p

l0ms


 �� �	 

; ð68Þ

wherems is the saturation magnetization and v is the magnetic sus-
ceptibility that is associated with the relative magnetic permeabil-
ity lr by lr ¼ 1= 1� vð Þ.

The neo-Hookean ideal model (67) has been used to study the
stability of anisotropic magnetorheological elastomers in finite
deformations (Rudykh and Bertoldi, 2013). The compressible coun-
terpart of the neo-Hookean magnetization saturation Langevin
model (68) has been adopted to investigate instability-induced
pattern evolutions of the heterogeneous materials and structures
(Psarra et al., 2017; Psarra et al., 2019; Goshkoderia et al., 2020).

Note that the magneto-elastic material models (67) and (68)
take no account of particle–particle interactions and thus neglect
magneto-mechanical coupling in terms of pure material magne-
tostriction. However, it is emphasized that the neo-Hookean mag-
netization saturation model (68) allows for a satisfactory
quantitative and very good qualitative agreement with the exper-
imental data presented in previous works (Psarra et al., 2017;
Psarra et al., 2019; Goshkoderia et al., 2020), although it is antici-
pated to be less accurate in the post-bifurcation regime, especially
when wrinkles develop substantially due to the large shear strains.
As a result, more elaborate magneto-mechanical models such as
the ones proposed recently by Mukherjee et al. (2020) are required
to explore the effects of the strain-stiffening and the constituent
phase properties (such as particle volume fraction, particle–parti-
cle interactions, etc) on the wrinkling instability of SMA structures,
but such models are out of the scope of this paper.

Using Eqs. (2), (8)2 and (67) or (68), we get the governing equa-
tions of the magnetization response

M ¼ l�1
0 vB ð69Þ

for the ideal model, and

M ¼ ms

Bj j coth
3v Bj j
l0ms


 �
� l0 msð Þ2

3v Bj j2
" #

B ð70Þ

for the saturation Langevin model. In the limit of small magnetic
field (B ! 0), one can verify that the saturation magnetization
response (70) is compatible with the linear magnetization response
(69).

Now introduce the following dimensionless quantities in terms
of the initial shear modulus G and the vacuum magnetic perme-
ability l0:

I5 ¼ I5
Gl0

¼ B2
2; M2 ¼ M2

ffiffiffiffi
l0
G

q
; ms ¼ ms

ffiffiffiffi
l0
G

q
;

s1 ¼ s1
G ; s3 ¼ s3

G ; s11 ¼ s11
G ; s33 ¼ s33

G :
ð71Þ

Inserting Eqs. (67) and (68) into Eq. (39) gives

F5 ¼ 1� vð Þ=2; F55 ¼ 0 ð72Þ
20
for the ideal model, and

F5 ¼ 1
2 1þ msð Þ2

3vI5
� msffiffiffi

I5
p coth 3v

ms

ffiffiffiffi
I5

p� �� �
;

F55 ¼ 1
2 � msð Þ2

3vI25
þ ms

2I3=25

coth 3v
ffiffiffi
I5

p
ms


 �
þ 3v

2I5
sinh�2 3v

ffiffiffi
I5

p
ms


 �� � ð73Þ

for the saturation Langevin model.
Thus, the magnetization responses (69) and (70) to the applied

transverse magnetic field are written in non-dimensional form, as

MI
2 ¼ 1� 2F5

� �
BI
2 ; ð74Þ

where BI
2 � B2= l0m

s
� � ¼ B2=ms and MI

2 � M2=ms ¼ M2=ms.
Substituting Eqs. (67) and (68) into Eqs. (11)1,2, (16)3 and (17)1,

we obtain the nonlinear mechanical response from Eqs. (14)1,2 and
(19)1,2 as

k21 � k�2
1 k�2

3 þ 1� 2F5
� �

B2
2 ¼ k1s1;

k23 � k�2
1 k�2

3 þ 1� 2F5
� �

B2
2 ¼ 0 ð75Þ

for uni-axial loading, and

k2 � k�2 þ 1� 2F5
� �

B2
2 ¼ ks1; s3 ¼ 1� k�2 þ 1� 2F5

� �
B2
2 ð76Þ

for plane-strain loading. Practically, we determine the response by
prescribing the pre-stretch k1 or k and solving (75) for s1 and k3
(uni-axial loading) or solving (76) for s1 and s3 (plane-strain
loading).

For the neo–Hookean saturation Langevin model, the bifurca-
tion or buckling Eqs. (64)–(66) are the same except that b ¼ 0
and F5 and F55 are given in Eq. (73).

For the neo-Hookean ideal model, we find from Eqs. (42)3 and
(72) that p3 ¼ 1. As a result, the bifurcation Eq. (64) reduces to

1� vþ tanh khð Þ½ � 1þ k41k
2
3

� �2
tanh khð Þ � 4k21k3 tanh k21k3kh

� �h i
¼ B2

2v
2k21k

2
3 k41k

2
3 � 1

� �
tanh khð Þ:

ð77Þ
Eqs. (65) and (66) become

2� vð Þ k21k3
� �3 þ k21k3

� �2 þ 3k21k3 � 1
h i

¼ B2
2v

2k21k
2
3 k21k3 þ 1
� � ð78Þ

for the thick-plate limit (kH ! 1), and

1� vð Þ k21 � k�2
1 k�2

3

� � ¼ B2
2v

2 ð79Þ
for the thin-plate limit (kH ! 0).

5. Results and discussion

We first conduct numerical calculations in Section 5.1 to inves-
tigate quantitatively the nonlinear static response of incompress-
ible SMA plates subject to mechanical and magnetic loads.
Section 5.2 then focuses on the bifurcation analysis to calculate
the critical mechanical and/or magnetic field generating the wrin-
kling instability.

We consider two different loading modes (plane-strain and uni-
axial loading) and two neo-Hookean magneto-elastic models ((67)
and (68)). The material properties used in the numerical computa-
tions are taken as G ¼ 10 kPa, v ¼ 0:4 and l0m

s ¼ 0:5 T, which are
obtained from experiments with a class of magnetorheological
elastomers (Psarra et al., 2017; Psarra et al., 2019) consisting of a
soft silicone mixed with iron particles at a volume fraction of
20%. More details about the fabrication technique can be found
in the paper by Psarra et al. (2017).



Fig. 2. Plane-strain loading: (a) magnetization response of the dimensionless magnetizationMI
2 ¼ M2=ms versus the dimensionless magnetic induction field BI

2 ¼ B2=ms from
Eq. (74); (b) response of the dimensionless nominal mechanical traction s1 versus the dimensionless magnetic induction field B2 from Eq. (76)1 for three different values of
pre-stretch k ¼ 0:75;1:0;2:0. Solid lines correspond to the ideal magneto-elastic model while dashed lines represent the saturation Langevin model.
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5.1. Nonlinear static response

The nonlinear static response of an SMA plate subject to
mechanical and magnetic loads is calculated from Eqs. (74)–(76).

For plane-strain loading, Fig. 2(a) shows the magnetization
response of the dimensionless magnetization MI

2 ¼ M2=ms versus
the dimensionless magnetic induction field BI

2 ¼ B2=ms (see Eq.
(74)) for the two material models (67) and (68). We see from
Fig. 2(a) that a neo-Hookean ideal magneto-elastic plate exhibits
a linear magnetization response, whereas the response of a plate
with magnetization saturation is nonlinear. The magnetization
responses of the two material models are essentially identical for
BI
2 6 1:0 (i.e., B2 6 4:46). The magnetization begins to saturate at

BI
2 ’ 6:0 (i.e., B2 ’ 26:76). We note from Eqs. (73)1 and (74) that

the magnetization response of each material model is independent
of the mechanical stretch ratio.

For plane-strain loading, the effect of the magnetic induction
field B2 on the nominal mechanical traction s1 applied to the
SMA plate is plotted in Fig. 2(b) for three different values of pre-
stretch k ¼ 0:75;1:0;2:0. Clearly, when B2 increases, the required
mechanical traction increases monotonically, which indicates that
the SMA plate has an in-plane contraction trend because of the
increasing external Maxwell stress. For the three pre-stretches
k ¼ 0:75;1:0;2:0, the mechanical tractions corresponding to the
two material models overlap up to B2 ’ 3:8;4:2;5:0, respectively.
However, the difference predicted by the two material models
becomes more evident with subsequent increases in B2. Specifi-
cally, at the same level of B2, the plate with saturation magnetiza-
tion effect requires a smaller mechanical traction as compared to
the ideal magneto-elastic plate. This is because the presence of sat-
uration magnetization will induce a smaller in-plane contraction
trend.

For uni-axial loading, the magnetization responses of the two
material models are essentially the same as those for plane-
strain loading, as shown in Fig. 2(a). For three different values of
pre-stretch k1 ¼ 0:75;1:0;2:0, Fig. 3(a) and (b) display the effect
of the magnetic induction field B2 on the stretch ratio k3 and the
nominal mechanical traction s1, respectively, for the two material
models. Again, we point out that the induced mechanical and mag-
netic field distributions are assumed to be uniform when solving
21
the nonlinear static response, as explained previously, and that
the material models (67) and (68) neglect pure material magne-
tostriction. We observe from Fig. 3(a) that the stretch ratio k3
decreases notably with increasing B2 only due to the magnetic trac-
tion induced by the external Maxwell stress. The stretch k3 for the
ideal model is slightly lower than that predicted by the saturation
Langevin model, because the saturation magnetization generates a
smaller stretch k2 in the thickness direction. It is clear from Fig. 3
(b) that the mechanical traction s1 increases gradually with B2.
After B2 reaches a certain value, s1 remains unchanged. This is
because the in-plane elongation trend due to the compression in
the x3 direction counteracts the in-plane contraction tendency
due to the external Maxwell stress in the x1 direction. Furthermore,
in the whole B2 range of interest, the mechanical tractions based on
the two material models are almost identical, because the satura-
tion magnetization does not alter the contraction trend in the x1
direction and just affects the compression amount in the x3
direction.
5.2. Bifurcation analysis

We now examine the critical values of stretch in the x1 direction
and of transverse magnetic induction field for which antisymmet-
ric (see Fig. 1(d)) and symmetric (see Fig. 1(e)) modes of wrinkling
instability appear.

For plane-strain loading, antisymmetric modes are identified by
bifurcation Eqs. (64) and (77) with k1 ¼ k; k3 ¼ 1 for the two mate-
rial models. The critical buckling fields of antisymmetric modes for
uni-axial loading are calculated by solving bifurcation Eqs. (64) and
(77) together with nonlinear static response (75)2. The correspond-
ing critical fields of symmetric modes are calculated by using coth
to replace tanh in Eqs. (64) and (77). The wrinkling criteria for thin-
and thick-plate limits are obtained by evaluating Eqs. (65) and (66)
or Eqs. (78) and (79) for the two material models.

For plane-strain loading and uni-axial loading, Fig. 4(a) and (b)
illustrate the critical combinations of stretch ratio k or k1 and
dimensionless magnetic induction field B2 of antisymmetric wrin-
kling modes for the two material models. Specifically, Fig. 4 shows
the results corresponding to the thin- and thick-plate limits and a
representative value of kH ¼ 1. Since it is found that antisymmetric



Fig. 3. Uni-axial loading for three different values of pre-stretch k1 ¼ 0:75;1:0;2:0: (a) response of the stretch ratio k3 versus the dimensionless magnetic induction field B2

from Eq. (75)2; (b) response of the dimensionless nominal mechanical traction s1 versus B2 from Eq. (75)1. Solid lines correspond to the ideal magneto-elastic model while
dashed lines represent the saturation Langevin model.

Fig. 4. Bifurcation curves (or critical combinations of stretch ratio and dimensionless magnetic induction field) of antisymmetric wrinkling modes for the thin- and thick-
plate limits and kH ¼ 1:0: (a) plane-strain loading (k versus B2); (b) uni-axial loading (k1 versus B2). Solid lines correspond to the ideal magneto-elastic model while dashed
lines represent the saturation Langevin model.
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modes always occur first, Fig. 4 does not display the results for
symmetric modes, which are addressed below.

We first focus on the results for the ideal magneto-elastic
model in Fig. 4. In the absence of magnetic field (B2 ¼ 0, purely
elastic case), a thin plate with kH ! 0 is unstable for k < 1
(k1 < 1) and is stable for any k > 1 (k1 > 1) for plane-strain
(uni-axial) loading. For both loading modes, a larger value of
the parameter kH requires an increasing compression to induce
instability. In the thick-plate limit kH ! 1, we recover the
well-known critical compression stretches for surface instability
in the purely elastic case, namely kcr ¼ 0:544 and kcr1 ¼ 0:444 for
plane-strain and uni-axial loading, respectively (Beatty and Pan,
1998). For a fixed non-zero B2, the variation trends of the critical
stretch kcr or kcr1 with increasing kH are qualitatively the same as
that for B2 ¼ 0. Besides, the critical magnetic field Bcr

2 , for a given
stretch k or k1, increases monotonically with kH, resulting in
enhanced stability.

Furthermore, for a given kH, Fig. 4(a) shows that the critical
stretch kcr exhibits a monotonous increase when B2 goes up, which
22
means that the plate become more and more unstable and the
magnetic field has a destabilizing effect. In particular, thin plates
with kH ! 0 are unstable in tension (kcr > 1) for non-zero B2, while
the plate with kH ¼ 1 has a wrinkling instability in tension for
B2J2:8. Similar phenomena are observed in Fig. 4(b) for uni-
axial loading.

We now evaluate the effect of saturation magnetization on the
stability. Fig. 4(a) shows that for plane-strain loading, the critical
stretch kcr predicted by the saturation Langevin model coincides
with that based on the ideal model for small and moderate values
of B2, the range of which depends on kH. For example, the results
based on the two material models are almost the same when
B2K3:0;3:5;4:0 for kH ¼ 0;1;1, respectively. However, the pres-
ence of saturation magnetization reduces remarkably the critical
stretch kcr for a large value of B2. These phenomena are also found
in Fig. 4(b) for uni-axial loading. Nevertheless, compared with
plane-strain loading, the effect of saturation magnetization on
the critical fields is weaker for uni-axial loading because there is
no constraint in the x3 direction.



Fig. 5. Plane-strain loading: (a) critical stretch kcr as a function of kH for antisymmetric (solid lines) and symmetric (dashed-dotted lines) modes of the neo-Hookean
saturation Langevin plates subject to three prescribed values of B2 ¼ 0:0;2:5;5:0; (b) kcr as a function of kH for antisymmetric modes of the neo-Hookean ideal (dashed lines)
and saturation Langevin (solid lines) magneto-elastic plates subject to four fixed values of B2 ¼ 0:0;2:5;4:0;5:0.

Fig. 6. Uni-axial loading: (a) critical stretch kcr1 as a function of kH for anti-symmetric (solid lines) and symmetric (dashed-dotted lines) modes of the neo-Hookean saturation
Langevin plates subject to three prescribed values of B2 ¼ 0:0;2:5;4:0; (b) kcr1 as a function of kH for anti-symmetric modes of the neo-Hookean ideal (dashed lines) and
saturation Langevin (solid lines) magneto-elastic plates subject to four fixed values of B2 ¼ 0:0;2:5;4:0;5:0.
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5.2.1. Critical stretch for a prescribed magnetic load
For a prescribed magnetic induction field, we first determine

the critical stretch of the underlying deformed configuration for
which antisymmetric and symmetric wrinklingmodes are induced.
Specifically, for plane-strain (uni-axial) loading, Fig. 5(a) (Fig. 6(a))
displays the variation of the critical stretch kcr (kcr1 ) with kH for the
neo–Hookean magnetization saturation SMA plates subject to
three representative values of B2 ¼ 0;2:5;5:0 (B2 ¼ 0;2:5;4:0),
wherein the antisymmetric and symmetric solutions are repre-
sented by the solid and dashed-dotted lines, respectively.

We find from Figs. 5(a) and 6(a) that antisymmetric modes
always occur before symmetric modes become possible for any
value of kH. Therefore, to realize a symmetric buckling mode we
must in principle suppress the appearance of the antisymmetric
mode.

For a fixed B2, the critical stretch kcr (or kcr1 ) required to initiate
the antisymmetric instability decreases monotonically with
increasing kH, asymptotically approaching the surface instability
of the thick-plate limit when kH ! 1. However, the symmetric
23
bifurcation curves exhibit an opposite trend. Thus, the stable range
of combinations of k (or k1) and kH is determined by the region
above the solid line for a fixed B2. Moreover, the critical stretch
kcr (or kcr1 ) for any value of kH is shifted upwards when raising B2,
thus indicating that the SMA plate is destabilized by the applica-
tion of an increasing magnetic field. In particular, for plane-strain
loading with B2 ¼ 0;2:5;5:0, the critical stretches kcr of a plate with
kH ! 0 are 1.000, 1.426, 2.282, while those with kH ! 1 are
0.544, 0.608, 0.961, respectively. For uni-axial loading with
B2 ¼ 0;2:5;4:0, the critical stretches kcr1 of the thin-plate limit are
equal to 1.000, 2.016, 3.080, while those of the thick-plate limit
are 0.444, 0.639, 0.918, respectively. The effect of small magnetic
field on the stability is more significant for uni-axial loading than
for plane-strain loading.

For antisymmetric modes, Figs. 5(b) and 6(b) illustrate how the
saturation magnetization affects the bifurcation curves (kcr versus
kH and kcr1 versus kH) for plane-strain and uni-axial loading, respec-
tively. We see that the bifurcation curves based on the two mate-
rial models overlap in the entire range of kH for B2 6 2:5. This



Fig. 7. Plane-strain loading for four fixed values of pre-stretch k ¼ 0:8;0:9;1:0;1:25: (a) critical magnetic induction field Bcr
2 as a function of kH for antisymmetric (solid lines)

and symmetric (dashed-dotted lines) modes of the neo-Hookean saturation Langevin plates; (b) Bcr
2 as a function of kH for antisymmetric modes of the neo-Hookean ideal

(dashed lines) and saturation Langevin (solid lines) magneto-elastic plates.
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means that the critical stretch is hardly affected by the saturation
magnetization for small to moderate values of the magnetic field.
However, the saturation magnetization plays an important role
in determining the critical stretch kcr or kcr1 for large values of B2:
the figures show that it then stabilizes the SMA plate, and that
its effect is much stronger for plane-strain loading than for uni-
axial loading.

5.2.2. Critical magnetic induction field for a fixed pre-stretch
We now evaluate the effect of pre-stretch on the bifurcation

curves (Bcr
2 versus kH) of antisymmetric and symmetric wrinkling

modes. For plane-strain (uni-axial) loading, Fig. 7(a) (Fig. 8(a))
shows the critical magnetic induction field Bcr

2 as a function of kH
for the neo-Hookean magnetization saturation SMA plates for four
different levels of pre-stretch k or k1 ¼ 0:8; 0:9;1:0;1:25. Note that
the solid and dashed-dotted lines denote the antisymmetric and
symmetric solutions, respectively.

We observe from Figs. 7(a) and 8(a) that antisymmetric wrin-
kling modes are always triggered before the symmetric modes in
Fig. 8. Uni-axial loading for four fixed values of pre-stretch k1 ¼ 0:8;0:9;1:0;1:25: (a) cr
and symmetric (dashed-dotted lines) modes of the neo-Hookean saturation Langevin pl
(dashed lines) and saturation Langevin (solid lines) magneto-elastic plates.
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the entire range of kH, which is analogous to what Figs. 5(a) and
6(a) show. As kH increases, the critical magnetic field Bcr

2 for a given
pre-stretch increases gradually for antisymmetric modes and
decreases monotonically for symmetric modes, both asymptoti-
cally tending to the surface instability of the thick-plate limit.
The stable region of B2 and kH for a fixed pre-stretch is enclosed
below the solid line for antisymmetric modes. Furthermore, an
increase in the pre-stretch results in a larger value of Bcr

2 for a given
kH. This means that increasing the pre-stretch enhances the stabil-
ity of SMA plates.

Besides, we see from Figs. 7(a) and 8(a) that in the absence of
pre-stretch (i.e., k ¼ 1 or k1 ¼ 1), a thin plate (kH ! 0) buckles
immediately when subject to an extremely small transverse mag-
netic field. By contrast, for a thin plate with a pre-stretch (say
k ¼ 1:25 or k1 ¼ 1:25), a non-zero magnetic induction field
Bcr
2 ’ 2:0 (plane-strain loading) or Bcr

2 ’ 1:25 (uni-axial loading) is
required to trigger the buckling instability. Interestingly, if an
SMA plate with small values of kH is subject to a pre-
compression (i.e., the pre-stretch is less than 1), the underlying
itical magnetic induction field Bcr
2 as a function of kH for antisymmetric (solid lines)

ates; (b) Bcr
2 as a function of kH for antisymmetric modes of the neo-Hookean ideal
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configuration is unstable for any applied B2. For example, a plate
with k ¼ 0:8 or k1 ¼ 0:8 is unstable for kHK0:97 under plane-
strain loading and for kHK0:85 under uni-axial loading. Physically,
this means that plates with small values of kH do not support pre-
compression even if there is no magnetic field.

For antisymmetric modes, the effect of saturation magnetiza-
tion on the bifurcation curves (Bcr

2 versus kH) is highlighted in
Figs. 7(b) and 8(b) for plane-strain and uni-axial loadings, respec-
tively. We observe that for a given pre-stretch, the two material
models predict an identical critical magnetic field Bcr

2 for small
and moderate values of kH. For example, the bifurcation curves
of a plate without pre-stretch (k ¼ 1 or k1 ¼ 1) overlap for
kHK1:0 and kHK1:4 under plane-strain and uni-axial loading,
respectively. For a large value of kH with a fixed pre-stretch, the
saturation Langevin model leads to a higher Bcr

2 compared with
the prediction of the ideal magneto-elastic model. On the other
hand, for a large value of kH, the predicted difference based on
the two material models become larger and larger when increasing
the pre-stretch.
Fig. 9. Critical stretch as a function of kH for antisymmetric modes of a neo-Hookean
loading (kcr versus kH) with B2 ¼ 0:0;2:5;3:0;4:0; (b) uni-axial loading (kcr1 versus kH)
represent, respectively, the exact solutions, the first-order and second-order Euler buck

Fig. 10. Critical magnetic induction field Bcr
2 as a function of kH for antisymmetric modes

(a) plane-strain loading with k ¼ 1:0;1:1;1:25;1:4; (b) uni-axial loading with k1 ¼ 1:0;1:2
the exact solutions, the first-order and second-order Euler buckling solutions.
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5.2.3. Euler’s buckling approximations
For the magneto-elastic coupling case, it is useful to establish

thin-plate approximate equations (i.e., the Euler buckling solu-
tions) of the antisymmetric wrinkling modes, as they always
occurs first. The derivation procedure is provided in Appendix C
in detail. We specialize the analysis to the neo-Hookean ideal
magneto-elastic model (67) because its predicted bifurcation
curves coincide with those based on the magnetization saturation
model for small and moderate values of kH, as shown in Figs. 5–8.

For plane-strain loading, we find that the critical stretch is
approximated as

kcr ¼ k0 þ 1� k40
2 1þ k40
� �

1� vð Þ

" #
kH

� 2k30
3 1þ k40
� �� k120 þ 11k80 � 9k40 � 3

8k0 1þ k40
� �3

1� vð Þ2

2
4

3
5 kHð Þ2; ð80Þ

where
ideal magneto-elastic plate subject to different fixed values of B2: (a) plane-strain
with B2 ¼ 0:0;1:5;2:5;4:0. The solid lines, dashed lines, and dashed-dotted lines

ling solutions.

of a neo-Hookean ideal magneto-elastic plate subject to different fixed pre-stretch:
5;1:5. The solid lines, dashed lines, and dashed-dotted lines represent, respectively,
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k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2B2

2

2 1� vð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4B4

2

4 1� vð Þ2
þ 1

svuut : ð81Þ

Note that if there is no magnetic field (B2 ¼ 0), then k0 ¼ 1, the cor-

rection of order one vanishes, and kcr ¼ 1� kHð Þ2=3, in agreement
with the classical Euler solution for the buckling of a slender plate
under plane-strain loading (Beatty and Pan, 1998). In Appendix C
we also establish the quadratic expansions of the critical magnetic
field and the corresponding expansions for the uni-axial loading
mode.

Fig. 9 compares the critical stretch kcr or kcr1 versus kH based on
the exact solutions to that calculated by the thin-plate buckling
approximations. Fig. 10 illustrates the bifurcation curves of the
critical magnetic induction field Bcr

2 versus kH obtained by the
exact solutions and the Euler buckling solutions. The results for
plane-strain loading are shown in Figs. 9(a) and 10(a) while those
for uni-axial loading are depicted in Figs. 9(b) and 10(b). The solid,
dashed, and dashed-dotted lines represent, respectively, the exact
solutions, the first-order and second-order Euler solutions.

We see from Fig. 9 that in the absence of magnetic field (B2 ¼ 0),
the kcr � kH curve and the kcr1 � kH curve for the thin plate should
be approximated quadratically, as in the purely elastic case (Beatty
and Pan, 1998). For B2 – 0, the earliest correction for the stretch is
of the first order in kH. For plane-strain loading, the first-order
Euler solutions provide enough accuracy to approximate the exact
solutions without having to resort to the second-order correction.
However, for uni-axial loading, the linear approximations are not
great and the quadratic corrections are required to approximate
the exact bifurcation curves.

Fig. 10 shows that in the absence of pre-stretch (k ¼ 1 or
k1 ¼ 1), the first-order Euler buckling solutions can approximate
well the Bcr

2 � kH curve for the thin plate under the two loading
modes, as described by Kankanala and Triantafyllidis (2008). But
for a pre-stretch larger than 1, the Bcr

2 � kH curve should be approx-
imated quadratically for small values of kH to enlarge the effective
range of Euler’s buckling solutions.

6. Conclusions

In the framework of nonlinear magneto-elasticity theory and its
associated incremental formulation, we presented a comprehen-
sive theoretical analysis of the wrinkling instability of SMA plates
under the combined action of transverse magnetic field and in-
plane mechanical loading. We discussed two loading modes
(plane-strain loading and uni-axial loading) and two types of
neo-Hookean magneto-elastic material models (ideal model and
magnetization saturation model). Employing the Stroh formulation
and the surface impedance method, we derived explicit bifurcation
equations of symmetric and antisymmetric modes and obtained
their corresponding thin- and thick-plate limits analytically.
Finally, we conducted detailed calculations to demonstrate the
dependence of the nonlinear static response and bifurcation dia-
grams on the loading mode, load amplitude, and saturation magne-
tization. Our main observations are summarized below:

1. In contrast to the ideal model, introducting saturation magneti-
zation results in a nonlinear magnetization response. Its effect
on nonlinear mechanical response and critical buckling fields
is more significant for plane-strain loading than for uni-axial
loading.

2. Antisymmetric wrinkling modes always appear before symmet-
ric modes are expressed.

3. Increasing the pre-compression and the magnetic field weakens
the stability of SMA plates. However, the saturation magnetiza-
26
tion effect strengthens their stability, especially for large pre-
stretch or high magnetic field.

4. The thin-plate approximate formulas agree well with the exact
bifurcation curves for thin plates.

Note that we made the assumption of uniform magneto-
mechanical biasing fields in this work to simplify the mathematical
modelling of infinite SMA plates and to derive explicit analytical
solutions. One factor that influences the uniformity of biasing
fields is the shape and geometrical size of the SMA specimen.
The mechanical and magnetic field distributions are usually non-
uniform for ellipsoidal and cylindrical SMA specimens (see, for
example, Martin et al. (2006), Rambausek and Keip (2018),
Lefèvre et al. (2017), Lefèvre et al. (2020)). In addition, the SMA
plate slenderness may affect the magneto-mechanical field distri-
butions. If the biasing fields are not uniform (i.e., they vary with
spatial coordinates), then the Stroh formulation for wrinkling
instabilities becomes a set of first-order differential equations with
variable coefficients, which are difficult to solve analytically.
Nonetheless, as shown by the work of Shuvalov et al. (2004) for
example, the Stroh formalism is still useful and forms the basis
of a robust numerical resolution with the surface impedance
matrix method. Non-uniform biasing fields are beyond the scope
of this preliminary paper and are worthy of further research.
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Appendix A. Magneto-elastic moduli components

The three 3� 3 real sub-matrices Ni i ¼ 1;2;3ð Þ of the Stroh
matrix N in the Stroh formulation (33) are

N1 ¼
0 �1þ s22=c �d=c

�1 0 0
�e=g 0 0

2
64

3
75; N2 ¼

1=c 0 0
0 0 0
0 0 �1=g

2
64

3
75;

N3 ¼
�2 bþ c � s22
� �

0 0

0 �aþ c � s22ð Þ2=c �ds22=c
0 �ds22=c f þ d2=c

2
664

3
775; ð82Þ

where the dimensionless parameters a� g and s22 are defined as

a ¼ a=G; b ¼ b=G; c ¼ c=G; s22 ¼ s22=G;

d ¼ d=
ffiffiffiffiffiffiffiffiffi
Gl0

q
; e ¼ e=

ffiffiffiffiffiffiffiffiffi
Gl0

q
; f ¼ f=l0; g ¼ g=l0; ð83Þ

with the magneto-elastic material parameters a� g being

a ¼ c66 ¼ A01212 � C2
0211
K011

; c ¼ c99 ¼ A02121 � C2
0211
K011

; d ¼ e16 ¼ � C0211
K011

;

e ¼ e22 � e21 ¼ C0112�C0222
K022

; f ¼ l11 ¼ 1
K011

; g ¼ l22 ¼ 1
K022

;

2b ¼ c11 þ c22 � 2c12 � 2c69 þ e22�e21ð Þ2
l22

¼ 2 b0 þ C2
0211
K011

� �
;

2b0 ¼ A01111 þA02222 � 2A01122 � 2A01221;

ð84Þ
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where A0;C0 and K0 are the magneto-elastic moduli tensors. Note
that we have used Eq. (31) and the relation A01221 þ p ¼ A02121 � s22
from Eq. (23) to derive the Stroh matrix (82).

The total Cauchy stress tensor used in the Stroh matrix (82) is
obtained from Eqs. (12) and (13)1 as

s22 ¼ sI22 ¼ B2
2=2; ð85Þ

where B2 ¼ B2=
ffiffiffiffiffiffiffiffiffi
Gl0

p
is the dimensionless applied magnetic

induction.
Using the incremental theory of magneto-elasticity (Otténio

et al., 2008; Destrade and Ogden, 2011), we compute the instanta-
neous magneto-elastic moduli appearing in Eq. (84) for the applied
bi-axial deformation k1; k3 and the transverse magnetic field B2, as
follows

A01212 ¼ 2k21 X1 þ k23X2 þ B2
2X6

� �
;

A02121 ¼ 2k�2
1 k�2

3 X1 þ k23X2
� �þ B2

2 k21k
2
3X5 þ 2þ k41k

2
3

� �
X6

� �n o
;

b0 ¼ k�2
1 k�2

3 þ k21
� �

X1 þ k23X2
� �þ 2 k21 � k�2

1 k�2
3

� �2
X11 þ 2k23X12 þ k43X22
� �

þ B2
2 4 k�2

1 k�2
3 � k21

� �
X15 þ k23X25
� �þ 2k�2

1 k�2
3 X16 þ k23X26
� �� �þX5 þ 2 3k�2

1 k�2
3 � k21

� �
X6

� �
þ 2B4

2 X55 þ 4k�2
1 k�2

3 X56 þ 4k�4
1 k�4

3 X66
� �

;C0211 ¼ 2B2 X5 þ k21 þ k�2
1 k�2

3

� �
X6

� �
;

C0112 � C0222 ¼ 4B2 k41k
2
3 � 1

� �
X14 þ k23X24
� �þ k�2

1 k�2
3 X15 þ k23X25
� �þ k�4

1 k�4
3 X16 þ k23X26
� �� ��

�X5 � 2k�2
1 k�2

3 X6 � B2
2 k21k

2
3X45 þ 2X46 þX55 þ 3k�2

1 k�2
3 X56 þ 2k�4

1 k�4
3 X66

� �o
;

K011 ¼ 2 k�2
1 X4 þX5 þ k21X6

� �
;K022 ¼ 2 k21k

2
3X4 þX5 þ k�2

1 k�2
3 X6

� �
þ 4B2

2 k41k
4
3X44 þ 2k21k

2
3X45 þ 2X46 þX55 þ 2k�2

1 k�2
3 X56 þ k�4

1 k�4
3 X66

� �
: ð86Þ

After obtaining the eigenvalues qj and eigenvectors g jð Þ, the gener-
alized displacement and traction vectors at the faces x2 ¼ �h are
expressed, according to Eq. (36), as

U khð Þ
U �khð Þ

" #
¼

g 1ð Þ
1 Eþ

1 g 2ð Þ
1 Eþ

2 g 3ð Þ
1 Eþ

3 g 4ð Þ
1 E�

1 g 5ð Þ
1 E�

2 g 6ð Þ
1 E�

3

g 1ð Þ
2 Eþ

1 g 2ð Þ
2 Eþ

2 g 3ð Þ
2 Eþ

3 g 4ð Þ
2 E�

1 g 5ð Þ
2 E�

2 g 6ð Þ
2 E�

3

g 1ð Þ
3 Eþ

1 g 2ð Þ
3 Eþ

2 g 3ð Þ
3 Eþ

3 g 4ð Þ
3 E�

1 g 5ð Þ
3 E�

2 g 6ð Þ
3 E�

3

g 1ð Þ
1 E�

1 g 2ð Þ
1 E�

2 g 3ð Þ
1 E�

3 g 4ð Þ
1 Eþ

1 g 5ð Þ
1 Eþ

2 g 6ð Þ
1 Eþ

3

g 1ð Þ
2 E�

1 g 2ð Þ
2 E�

2 g 3ð Þ
2 E�

3 g 4ð Þ
2 Eþ

1 g 5ð Þ
2 Eþ

2 g 6ð Þ
2 Eþ

3

g 1ð Þ
3 E�

1 g 2ð Þ
3 E�

2 g 3ð Þ
3 E�

3 g 4ð Þ
3 Eþ

1 g 5ð Þ
3 Eþ

2 g 6ð Þ
3 Eþ

3

2
66666666664

3
77777777775

A1

A2

A3

A4

A5

A6

2
666666664

3
777777775
;

ð87Þ
and

S khð Þ
S �khð Þ

" #
¼

g 1ð Þ
4 Eþ

1 g 2ð Þ
4 Eþ

2 g 3ð Þ
4 Eþ

3 g 4ð Þ
4 E�

1 g 5ð Þ
4 E�

2 g 6ð Þ
4 E�

3

g 1ð Þ
5 Eþ

1 g 2ð Þ
5 Eþ

2 g 3ð Þ
5 Eþ

3 g 4ð Þ
5 E�

1 g 5ð Þ
5 E�

2 g 6ð Þ
5 E�

3

g 1ð Þ
6 Eþ

1 g 2ð Þ
6 Eþ

2 g 3ð Þ
6 Eþ

3 g 4ð Þ
6 E�

1 g 5ð Þ
6 E�

2 g 6ð Þ
6 E�

3

g 1ð Þ
4 E�

1 g 2ð Þ
4 E�

2 g 3ð Þ
4 E�

3 g 4ð Þ
4 Eþ

1 g 5ð Þ
4 Eþ

2 g 6ð Þ
4 Eþ

3

g 1ð Þ
5 E�

1 g 2ð Þ
5 E�

2 g 3ð Þ
5 E�

3 g 4ð Þ
5 Eþ

1 g 5ð Þ
5 Eþ

2 g 6ð Þ
5 Eþ

3

g 1ð Þ
6 E�

1 g 2ð Þ
6 E�

2 g 3ð Þ
6 E�

3 g 4ð Þ
6 Eþ

1 g 5ð Þ
6 Eþ

2 g 6ð Þ
6 Eþ

3

2
66666666664

3
77777777775

A1

A2

A3

A4

A5

A6

2
666666664

3
777777775
;

ð88Þ
where E�

j ¼ e�iqjkh j ¼ 1; . . . ;6ð Þ. Thus, we note from Eq. (41) that

E�
j ¼ e
pjkh for j ¼ 1;2;3 since qj ¼ ipj j ¼ 1;2;3ð Þ, and that

E�
jþ3 ¼ E


j for j ¼ 1;2;3 since qjþ3 ¼ �qj j ¼ 1;2;3ð Þ.

Appendix B. Bifurcation equation of surface instability based on
the surface impedance method

Assume that the SMA half-space in the reference and current
configurations occupies the region X2 P 0 and x2 P 0, respectively.
To satisfy the decay condition at x2 ! þ1 in the half-space, we
only keep the eigenvalues in Eq. (36) with positive imaginary parts.
Thus, we take the three eigenvalues q1; q2; q3 according to Eqs. (41)
and (42). The general solution to the Stroh formulation (33) is writ-
ten as
27
g kx2ð Þ ¼ U kx2ð Þ
S kx2ð Þ

" #
¼
X3
j¼1

Ajg
jð Þeiqjkx2 ¼

X3
j¼1

Ajg
jð Þe�pjkx2 ; ð89Þ

where qj ¼ ipj j ¼ 1;2;3ð Þ with pj > 0. In matrix form, Eq. (89) is
expressed as

g kx2ð Þ ¼ P1

P2

� � e�p1kx2 0 0
0 e�p2kx2 0
0 0 e�p3kx2

2
64

3
75

A1

A2

A3

2
64

3
75; ð90Þ

where

P1 ¼
g 1ð Þ
1 g 2ð Þ

1 g 3ð Þ
1

g 1ð Þ
2 g 2ð Þ

2 g 3ð Þ
2

g 1ð Þ
3 g 2ð Þ

3 g 3ð Þ
3

2
664

3
775; P2 ¼

g 1ð Þ
4 g 2ð Þ

4 g 3ð Þ
4

g 1ð Þ
5 g 2ð Þ

5 g 3ð Þ
5

g 1ð Þ
6 g 2ð Þ

6 g 3ð Þ
6

2
664

3
775; ð91Þ

Setting x2 ¼ 0, we obtain from Eqs. (89) and (90) that

S 0ð Þ ¼ iZU 0ð Þ; ð92Þ

where Z ¼ �iP2P
�1
1 is the surface impedance matrix of the half-

space, through which the generalized traction and displacement
vectors at the face x2 ¼ 0 are connected.

In view of Eqs. (55) and (56), the surface impedance matrix
exterior to the material is

ZI ¼
0 iB2

2=2 iB2

�iB2
2=2 B2

2 B2

�iB2 B2 1

2
64

3
75; ð93Þ

which, at the face x2 ¼ 0, satisfies

S 0ð Þ ¼ iZIU 0ð Þ: ð94Þ
From Eqs. (92) and (94), we get the bifurcation equation governing
the surface wrinkling instability, as

det Z� ZI
� � ¼ 0: ð95Þ

Substituting Eqs. (85), (38), (42)1,2, (43)1,2,3 and (93) into Eq. (95)
and with the help of Mathematica, we obtain the explicit bifurca-
tion equation for the surface wrinkles as

1þ b k23 � 1
� �� �

1þ 2F5p3

� �
k21k3
� �3 þ k21k3

� �2 þ 3k21k3 � 1
h i

¼ B2
2 1� 2F5
� �2

k21k
2
3 k21k3 þ 1
� �

; ð96Þ
which is the same as Eq. (65).

Appendix C. Thin-plate buckling approximations

For the neo-Hookean ideal magneto-elastic model (67), this
appendix makes use of the exact bifurcation Eq. (77) to establish
thin-plate approximations to antisymmetric wrinkling modes,
which always occur first.

C.1. Plane-strain loading

For plane-strain loading, the exact bifurcation Eq. (77) becomes

1� vþ tanh khð Þ½ � 1þ k4
� �2

tanh khð Þ � 4k2 tanh k2kh
� �h i

¼ B2
2v2k2 k4 � 1

� �
tanh khð Þ; ð97Þ

where kh ¼ k�1kH. At the zero-th order in kH, the thin-plate Eq. (79)
gives

B2
2 ¼ v�2 1� vð Þ k2 � k�2� �

: ð98Þ
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C.1.1. Critical stretch
For a fixed magnetic induction field B2, we first derive the

approximations of the critical stretch kcr. In this case, we denote
the root of Eq. (98) as k0. In the thin-plate limit (kH ! 0), we
may expand the tanh functions in Eq. (97) in power series as
follows:

tanh khð Þ � k�1kH � k�1kH
� �3

=3;

tanh k2kh
� � � kkH � kkHð Þ3=3: ð99Þ

Inserting Eq. (99) into Eq. (97) and retaining only terms of first order
in kH, we obtain

1� k2
� �

1þ k2
� �

kH þ k 1� vð Þ 1� k2
� �

1þ k2
� �þ B2

2v
2k2

� � ¼ 0:

ð100Þ
As expected, when kH ¼ 0; k is equal to k0. Hence, substituting the
first-order expansion kcr ¼ k0 þ e1kH in Eq. (100) and retaining
terms to the first order in kH, we find the equation governing e1 as

1� k40 þ e1 1� vð Þ 5� 9k40
� �þ 7B2

2v
2k20

� � ¼ 0: ð101Þ
Using Eq. (98) in Eq. (101), we thus obtain the first-order correction
of the critical stretch

kcr ¼ k0 þ 1� k40
2 1þ k40
� �

1� vð Þ kH: ð102Þ

Similarly, we insert the power series expansion (99) into Eq. (97)
and retain only terms of second order in kH. Then, we introduce

the second-order expansion of stretch kcr ¼ k0 þ e1kH þ e2 kHð Þ2 in
the resultant equation, keep terms to the second order in kH, and
thereby get the second-order correction of the critical stretch

kcr ¼ k0 þ 1� k40
2 1þ k40
� �

1� vð Þ kH þ e2 kHð Þ2; ð103Þ

where

e2 ¼ � 2k30
3 1þ k40
� �þ k120 þ 11k80 � 9k40 � 3

8k0 1þ k40
� �3

1� vð Þ2
: ð104Þ

When B2 ¼ 0, we have k0 ¼ 1 and from Eq. (103) the first correction

for stretch is of order two: kcr ¼ 1� kHð Þ2=3. This is equivalent to
the classical Euler solution for the buckling of a slender or a thin
plate under plane-strain loading in the purely elastic case (Beatty
and Pan, 1998).

C.1.2. Critical magnetic induction field
Next, we derive the approximations of the critical magnetic

field Bcr
2 for a given pre-stretch k. In this case, the root of Eq. (98)

is represented by B20. Analogous to the derivations of the critical
stretch described in Appendix C.1.1, we obtain

Bcr
2 ¼ B20 1þ 1

2k 1� vð Þ kH
� �

ð105Þ

for the first-order correction, and

Bcr
2 ¼ B20 1þ 1

2k 1� vð Þ kH þ c2 kHð Þ2
� �

;

c2 ¼ 3þ k4 13þ 16v v� 2ð Þ½ �
24k2 k4 � 1

� �
1� vð Þ2

ð106Þ

for the second-order correction.
However, in the special case where there is no pre-stretch

(k ¼ 1), we see that B20 ¼ 0 from Eq. (98). In that case, Eqs. (105)
and (106) give Bcr

2 � 0, which is independent of kH and unphysical.
That case thus requires a separate treatment. Expanding the bifur-
28
cation Eq. (97) in power series in kH, keeping terms up to the third
order in kH, and setting k ¼ 1, we have

� 4 kHð Þ3 þ 4 v� 1ð Þ � B2
2v

2� �
kHð Þ2 þ 3B2

2v
2 ¼ 0: ð107Þ

Then, we introduce the first-order expansion of the critical mag-
netic field Bcr

2 ¼ c10kH in Eq. (107), keep terms to the second order
in kH, and obtain the first-order correction as

Bcr
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p
ffiffiffi
3

p
v

kH: ð108Þ

Further, the second-order correction of the critical magnetic field is
found as

Bcr
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p
ffiffiffi
3

p
v

kH þ 1
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� vð Þp kHð Þ2: ð109Þ

Note that the thin-plate buckling approximation (109) of Bcr
2 agrees

with the classical asymptotic formula obtained by Pao and Yeh
(1973) (see their Eq. (8.13) and let the Poisson ratio in their formula
tend to 1/2 for incompressible materials).

C.2. Uni-axial loading

For uni-axial loading, the exact bifurcation equation for
antisymmetric wrinkles is governed by Eq. (77), which is repro-
duced here, as

1� vþ tanh khð Þ½ � 1þ k41k
2
3

� �2
tanh khð Þ � 4k21k3 tanh k21k3kh

� �h i
¼ B2

2v
2k21k

2
3 k41k

2
3 � 1

� �
tanh khð Þ;

ð110Þ
where kh ¼ k�1

1 k�1
3 kH, and from Eq. (75)2 we obtain the nonlinear

mechanical response (determining k3) for the ideal magneto-
elastic model as

k23 � k�2
1 k�2

3 þ vB2
2 ¼ 0: ð111Þ

At the zero-th order in kH, the thin-plate Eq. (79) gives

B2
2 ¼ v�2 1� vð Þ k21 � k�2

1 k�2
3

� �
: ð112Þ
C.2.1. Critical stretch
First, the approximations of the critical stretches kcr1 and kcr3 are

derived according to Eqs. (110) and (111) for a fixed B2. The root of
the zero-order Eqs. (111) and (112) is denoted by k10 and k30. For
kH ! 0, we expand Eq. (110) up to the first order in kH, as

1� k41k
2
3

� �
kH þ k1k3 1� vð Þ 1� k41k

2
3

� �þ B2
2v2k21k

2
3

� � ¼ 0: ð113Þ
We then introduce the first-order corrections kcr1 ¼ k10 þ e1kH and
kcr3 ¼ k30 þ e2kH into Eqs. (111) and (113), and retain terms to the
first order in kH. The resultant zero-order terms satisfy the zero-
order thin-plate Eqs. (111) and (112), while the first-order terms
constitute a set of two linear algebraic equations for e1 and e2,
which are solved as

e1 ¼ 1� k410k
2
30

� �
1þ k210k

4
30

� �
2k210k

3
30 k210 þ k230 þ k410k

4
30

� �
1� vð Þ ;

e2 ¼ � k30
k10 1þ k210k

4
30

� � e1: ð114Þ

The next order in kH is order two. With similar manipulations of
Eqs. (110) and (111), we find the second-order correction of the crit-
ical stretches, as

kcr1 ¼ k10 þ e1kH þ e3 kHð Þ2; kcr3 ¼ k30 þ e2kH þ e4 kHð Þ2; ð115Þ
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where e1 and e2 are determined by Eq. (114), and

e3; e4½ �T ¼ 2Q�1
1 t1; t2½ �T; ð116Þ

in which we have

Q 1 ¼ 9k410k
5
30 1þ k410k

2
30

� �
v� 1ð Þ 9k510k

4
30 v� 1ð Þ

k�1
10 k�1

30 1þ k210k
4
30

� �
 !

;

t1 ¼ 12k710k
5
30 1� vð Þ þ 9k1 1�k410k

2
30ð Þ

4k10k30 k210þk230þk410k
4
30ð Þ2 1�vð Þ

;

t2 ¼ 1�k410k
2
30ð Þ2 2þk210k

4
30þ3k410k

8
30ð Þ

4k610k
6
30 k210þk230þk410k

4
30ð Þ2 1�vð Þ2

;

k1 ¼ k410k
2
30 k210k

4
30 14þ k610k

6
30

� �þ 4k410k
6
30 k210 þ 3k230
� ��

þ3 1þ k630 þ k410k
2
30

� ��� 2 1þ k210k
4
30

� �
:

ð117Þ

Again we verify that for B2 ¼ 0, we have k10 ¼ k30 ¼ 1 and from Eqs.

(114)–(117) we recover the purely elastic result: kcr1 ¼ 1� 4 kHð Þ2=9
and kcr3 ¼ 1þ 2 kHð Þ2=9. This is the classical Euler solution for the
buckling of a slender or a thin plate under uni-axial loading
(Beatty and Pan, 1998).

C.2.2. Critical magnetic induction field
We now derive the approximations of the critical magnetic field

Bcr
2 for a given pre-stretch k1. We call the root of Eqs. (111) and

(112) as B20 and k30. The derivation is essentially the same as the
one of the critical stretch given in Appendix C.2.1. Hence, we get
the first-order corrections

Bcr
2 ¼ B20 þ c1kH; kcr3 ¼ k30 þ c2kH; ð118Þ

with

c1 ¼ 1�k41k
2
30ð Þ 2k230þvB220ð Þ

vB20k1k30 5 1�vð Þþk21k
2
30 7k21 v�1ð Þþv 5vB220�4k230ð Þ½ �f g ;

c2 ¼ k41k
2
30�1

k1 5 1�vð Þþk21k
2
30 7k21 v�1ð Þþv 5vB220�4k230ð Þ½ �f g ;

ð119Þ

and the second-order corrections

Bcr
2 ¼ B20 þ c1kH þ c3 kHð Þ2; kcr3 ¼ k30 þ c2kH þ c4 kHð Þ2; ð120Þ

with

c3; c4½ �T ¼ �Q�1
2 t3; t4½ �T; ð121Þ

where

Q 2 ¼
6k41k

4
30v2B20 3k21k30 5 1� vð Þ þ 7k21k

2
30 k21 v� 1ð Þ þ v2B2

20

h in o
2k230vB20 2 2k330 þ k30vB2

20

� �
0
B@

1
CA;

t3 ¼ 1þ 3k41k
2
30

� �
v� 1ð Þ þ k21k

2
30v

2 3k21k
2
30c

2
1 � B2

20

� �
þ 3k21c

2
2 10 1� vð Þ þ 21k21k

2
30 k21 v� 1ð Þ þ B2

20v
2

h in o
þ 6k1c2 2þ k31k

2
30 7k30v2B20c1 � 3k1
� �h i

;

t4 ¼ 4k30vB20c1c2 þ k230vc
2
1 þ 6k230 þ vB2

20

� �
c22: ð122Þ

Again, when there is no pre-stretch (k1 ¼ 1), the zero-order thin-
plate Eqs. (111) and (112) yield one root B20 ¼ 0 and k30 ¼ 1. Hence,
the corrections (118) and (120) give Bcr

2 � 0 independent of kH, are
not applicable in this case and we need to re-do the expansion.
Specifically, expanding the bifurcation Eq. (110) to the third order
in kH, and setting k1 ¼ 1, we obtain

� 2 1þ k23
� �

kHð Þ3 þ k3 v� 1ð Þ 1þ 3k23
� �� B2

2v
2k23

� �
kHð Þ2

þ 3k23 1� k23
� �

kH þ 3k33 1� vð Þ 1� k23
� �þ B2

2v
2k23

� � ¼ 0: ð123Þ
29
Conducting the same operations of Eqs. (111) and (123) as those in
Appendix C.1.2, we finally get

Bcr
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� vð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v 1þ vð Þp kH; kcr3 ¼ 1þ 2 v� 1ð Þ

3 1þ vð Þ kHð Þ2 ð124Þ

for the first-order correction of Bcr
2 , and

Bcr
2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2 1�vð Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffi
3v 1þvð Þ

p kH þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v 1þvð Þ

p
1þvð Þ2

ffiffiffiffiffiffiffiffiffiffiffi
3 1�vð Þ

p kHð Þ2;

kcr3 ¼ 1þ 2 v�1ð Þ
3 1þvð Þ kHð Þ2 � 4v

3 1þvð Þ2 kHð Þ3
ð125Þ

for the second-order correction of Bcr
2 .
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