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a b s t r a c t

A rectangular plate of dielectric elastomer exhibiting gradients of material properties through its
thickness will deform inhomogeneously when a potential difference is applied to compliant electrodes
on its major surfaces, because each plane parallel to the major surfaces will expand or contract to
a different extent. Here we study the voltage-induced bending response of a functionally graded
dielectric plate on the basis of the nonlinear theory of electroelasticity, when both the elastic shear
modulus and the electric permittivity change with the thickness coordinate. The theory is illustrated
for a neo-Hookean electroelastic energy function with the shear modulus and permittivity varying
linearly across the thickness. In general the bending angle increases with the potential difference,
and this enables the material inhomogeneity to be tuned to control the bending shape. We derive
the Hessian criterion that ensures stability of the bent configurations in respect of a general form of
electroelastic constitutive law specialized for the considered geometry. This requires that the Hessian
remains positive. For the considered model we show that the bent configuration is stable until the
voltage reaches the value for which the cross section of the bent configuration forms a complete
circle.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Dielectric elastomers are soft active materials capable of un-
ergoing large deformations rapidly in response to an applied po-
ential difference (voltage) across their thickness, and have there-
ore attracted considerable academic and industrial attention in
ecent years [1–5]. Shape control, which is eagerly pursued in
ielectric elastomers, has considerable potential for applications
o, for example, soft robots, energy harvest systems, actuators and
ensors [6,7]. Hence, based on the concept of smart-bending actu-
tion [8,9], an intelligent self-controlled switch can be designed
o keep the working voltage in a desired range: as the voltage
ises or falls, the material bends toward or away from a contact
oint so as to moderate the voltage automatically.
One clever strategy for designing voltage-responsive bending

olids is to use dielectric elastomers with physical properties that
ary in the thickness direction. When subject to a voltage through
he thickness, a non-uniform deformation is generated in the
aterial, which can result in a global bending. Dielectric-based
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multilayers composed of pre-stretched dielectric and inactive
elastic layers have been proposed to realize shape control by tun-
ing the applied voltage only, without any mechanical input [8,9].
However, discontinuous shear stresses may arise at the interface
of the layers, which may result in slide, exfoliation or crack
formation during the bending deformation [9–11].

To overcome this potential problem, this paper proposes to
study functionally graded dielectric elastomers (FGDEs) with ma-
terial properties varying continuously through the thickness. Ex-
erimentally, bulk functionally graded materials (FGMs) can be
anufactured by methods such as Powder Metallurgy Tech-
ique, Centrifugal Casting and Solid Freeform Technology [12],
tc. To produce thin FGMs, techniques such as Physical or Chem-
cal Vapour Deposition (PVD/C-VD), Plasma Spraying and Self-
ropagating High-temperature Synthesis (SHS) are more appro-
riate [13]. Spatial inhomogeneous dielectric properties can be
ntroduced by embedding electroactive particles into a polymer
GM matrix unevenly through a well-established additive man-
facturing (3D printing) process [8]. The electric field can be
enerated by applying a voltage through the flexible electrodes
overed on the upper and lower faces of the resulting elastomers.
If the gradients of properties vary in a monotone manner

hough the plate thickness, we expect the expansion or contrac-

ion of each plane in the plate to also vary in the same way; hence,
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he plate will bend. Here we use the framework of nonlinear elec-
roelasticity [14,15] to investigate the nonlinear bending behavior
nd the stability of such plates.
For an FGDE plate the required analysis, summarized in Sec-

ion 2, is complicated by the inherent inhomogeneity, but we
onetheless manage to derive analytical formulas governing the
oltage-induced bending of a plate made of a neo-Hookean di-
lectric with linear gradients in its material properties. In Sec-
ion 3 we obtain numerical results showing the bent shape of
he plate and the associated stress distributions. The results vary
ignificantly with the selected values of the grading parameters.
For a plate with uniform properties, the onset of pull-in insta-

ility has been examined extensively, see for example the papers
y Zhao and Suo [16], Lu et al. [17], Zhao and Wang [18], Zurlo
t al. [19], or Su et al. [20,21]. In general, the pull-in instabil-
ty leads to a dramatic thinning of the plate, thus triggering a
iant deformation in the material. Here the corresponding phe-
omenon would be a sudden increase in the bending angle and,
n general, a sudden thinning of the bent plate. However, we
ind (at least for the geometrical and material parameters chosen
s examples) that this type of pull-in instability does not arise,
ecause the maximal configuration of a closed circular ring is
eached before the maximum in the voltage-stretch relation.

In Section 4, we examine the stability of the bent configuration
n the basis of the positive definiteness of the second variation
f the free energy. In particular, we derive the associated Hessian
riterion in respect of a general form of free energy for the
onsidered geometry. On this basis we find that the considered
ent configurations are stable for the full range of the applied
oltage up to the point where the in-plane section of the plate
orms a complete circle, the upper limit of the voltage being
ependent on the values of the grading parameters. These results,
hich we summarize in Section 5, have potential for informing
he design of high-performance actuators and sensors.

. Bending response of an FGDE plate

.1. Kinematics and electric field

Consider an FGDE plate of initial length L, thickness A and
idth H , the latter being assumed to be much longer than its
hickness and length. The solid occupies the region 0 ≤ X1 ≤ A,
−L/2 ≤ X2 ≤ L/2, 0 ≤ X3 ≤ H in the reference configuration,
and the faces X1 = 0, A are coated with flexible electrodes as
depicted in Fig. 1(a). The material properties are taken to be inho-
mogeneous with grading dependent on the thickness coordinate
X1.

On application of a potential difference V (voltage) across the
electrodes the plate is bent into the shape shown in Fig. 1(b),
and the resulting deformation is assumed to have a plane strain
character in the (X1, X2) plane, as in [8,9]. In Fig. 1(a) we have
indicated the dependence on X1 of the shear modulus µ and
permittivity ε, which will be specified in Section 2.2. The material
is assumed to be incompressible.

The deformation of the plate is described by the equations

r =

√
r2a + (r2b − r2a )

X1

A
, θ =

2A
r2b − r2a

X2, z = X3, (2.1)

s in [22,23], where (r, θ, z) are the cylindrical polar coordinates
n the deformed configuration, and ra, rb are the radii of the inner
nd outer bent surfaces, respectively. The associated deformation
radient, denoted F, has the diagonal form diag(λ−1, λ, 1) with
espect to the cylindrical polar axes, where

=
2Ar
2 2

(2.2)

rb − ra

2

is the circumferential stretch. It takes the values

λa =
2Ara

r2b − r2a
, λb =

2Arb
r2b − r2a

, (2.3)

n the inner and outer bent faces, respectively. It follows that the
ependence of λ on X1 is given by

2
= λ2

a + (λ2
b − λ2

a)
X1

A
. (2.4)

Note that, by taking X2 = L/2 and θ = ϕ/2 in (2.1)2, we obtain
an expression for the bending angle ϕ, namely

ϕ = (λ2
b − λ2

a)L/(2A), (2.5)

as given in [23]. Hence λ = ϕr/L.
On application of the voltage V a radial electric field compo-

nent, denoted E, is generated in the bent configuration of the
material, assuming that edge effects can be neglected, and the
corresponding electric displacement field component is denoted
D. Each of E and D depends on r and is independent of θ and
z. Maxwell’s equation div D = 0 then reduces to d(rD)/dr = 0,
so that rD is constant. The corresponding Lagrangian field, given
by DL = F−1D in general for an incompressible material, reduces
to the single component DL = λD, which by (2.2) is therefore a
constant.

2.2. Constitutive law

For an isotropic electroelastic material in general we take the
energy to be a function of F and DL, but for the considered geom-
etry, deformation and electric field, this reduces to dependence
on λ and DL. We denote the energy function by ω∗(λ,DL).

The relevant components of the total Cauchy stress tensor are
the radial and circumferential components, denoted τrr and τθθ ,
respectively. These satisfy the equilibrium equation
d
dr

(rτrr ) = τθθ . (2.6)

he stress difference τθθ − τrr and Lagrangian electric field EL =
−1E are obtained from the formulas

θθ − τrr = λ
∂ω∗

∂λ
, EL =

∂ω∗

∂DL
; (2.7)

see, for example, [14,15].
Since, from (2.2), λ is proportional to r , while DL is constant,

the combination of (2.6) and (2.7)1 followed by integration, leads
to

τrr = ω∗
+ K , τθθ = λ

∂ω∗

∂λ
+ ω∗

+ K , (2.8)

s derived in [23], where K is a constant to be determined from
he boundary conditions, in a similar way to the situation in the
urely elastic case [22].
Here we assume that the inner and outer surfaces of the bent

ector at ra and rb are free of mechanical traction, so that

rr (ra) = 0, τrr (rb) = 0, (2.9)

here being no Maxwell stress on these surfaces.
For definiteness, we consider an energy function which has the

orm

∗(λ,DL) = W (λ) +
D2
L

2ελ2 , (2.10)

where W is derived from any isotropic purely elastic strain–
energy function and we recall that D = λ−1DL.

The boundary conditions (2.9) provide two expressions for K ,

−K = W (λa) +
D2
L

2 = W (λb) +
D2
L

2 , (2.11)

2εaλa 2εbλb
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Fig. 1. A block of FGDE with continuously varying shear modulus µ(X1) and permittivity ε(X1) through the thickness, coated with two compliant electrodes. The
ayer bends when loaded with a voltage V across the electrodes, with the bending angle ϕ.
w

λ
λ

V

O
D
w

g

T

H
d

W

w
t

D

K

w

nd hence an expression for D2
L , namely

2
L = 2εaεbλ2

aλ
2
b
W (λb) − W (λa)

εbλ
2
b − εaλ2

a
, (2.12)

where εa and εb are the values of ε at r = ra and r = rb,
espectively, i.e. for X1 = 0, A. The form of the function ε(X1) will
be exemplified below. It follows that

K = −
εbλ

2
bW (λb) − εaλ

2
aW (λa)

εbλ
2
b − εaλ2

a
. (2.13)

Let φ(X1) denote the electrostatic potential through the thick-
ness. Then, from Maxwell’s equation Curl EL = 0 we have EL =

Gradφ, which specializes here to EL = −dφ/dX1. The potential
difference φ(0) − φ(X1) is the voltage V , which, on use of (2.7)2
is given by

V =

∫ A

0
ELdX1 =

2A
λ2
b − λ2

a

∫ λb

λa

λ
∂ω∗

∂DL
dλ, (2.14)

the latter change of variable making use of (2.4). For the model
(2.10), this yields

V =
2ADL

λ2
b − λ2

a

∫ λb

λa

dλ
λε

, (2.15)

and we recall that ε depends on X1 and hence on λ.
To complete the formulation of the problem, we first note that

the resultant force on the lateral end faces at θ = ±ϕ/2 vanishes
since, with the help of the boundary conditions (2.9) and Eq. (2.6),
it follows that∫ λb

λa

τθθdr = 0 (2.16)

is automatically satisfied [23]. We then assume that there is no
resultant moment on these faces so that the block is bent by the
application of a voltage alone. This requires∫ rb

ra
rτθθdr = 0, equivalently

∫ λb

λa

λτθθdλ = 0, (2.17)

hich, from (2.8)2, yields∫ λb

λ

(
λ

∂ω∗

+ ω∗
+ K

)
dλ = 0, (2.18)
λa ∂λ X

3

and for the model (2.10),∫ λb

λa

λ(λWλ+W )dλ−
1
2
D2
L

∫ λb

λa

(
1
λε

+
ελ

ε2

)
dλ+

1
2
K (λ2

b−λ2
a) = 0,

(2.19)

here the subscript λ signifies the derivative with respect to λ.
Eqs. (2.12) and (2.13), respectively, give DL and K in terms of

a and λb. Eq. (2.15) then determines V also in terms of λa and
b, which we write in the form

= f (λa, λb). (2.20)

nce the form of W is prescribed, Eq. (2.19), after substituting for
L and K , yields an implicit connection between λa and λb, which
e write as

(λa, λb) = 0. (2.21)

hen, in principle, V can be determined in terms of λa (or λb).
For further specialization we now take W to be the neo-

ookean strain–energy function, which, for the considered plane
eformation, has the form

(λ) =
µ

2
(λ2

+ λ−2
− 2), (2.22)

here the shear modulus µ is functionally graded through the
hickness, i.e. is a function of X1.

Then the formulas (2.12) and (2.13) specialize to

2
L = εaεb

µbλ
2
a(λ

2
b − 1)2 − µaλ

2
b(λ

2
a − 1)2

εbλ
2
b − εaλ2

a
, (2.23)

= −
1
2

µbεb(λ2
b − 1)2 − µaεa(λ2

a − 1)2

εbλ
2
b − εaλ2

a
, (2.24)

here µa and µb are the values of µ(X1) at X1 = 0, A (r = ra, rb),
and (2.19) becomes∫ λb

λa

µ(3λ3
− λ−1

− 2λ)dλ − D2
L

∫ λb

λa

(
1
λε

+
ελ

ε2

)
dλ

+ K (λ2
b − λ2

a) = 0. (2.25)

To take this further we need to specify how µ and ε depend on
, and through the connection (2.4), on λ. We assume a simple
1
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Fig. 2. (a) Undeformed rectangular plate cross section with aspect ratio L/A = 10. (b)–(e) plate bent by application of a dimensionless voltage V̄ = 0.2 with the
following values of (αε, αµ): (b) (0.3, 0.3); (c) (0.7, 0.3); (d) (1.1, 0.3); (e) (1.521, 0.3).
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linear dependence of µ and ε on X1, as in [24,25], here specified
by

µ(X1) = µa
(
1 − αµX1/A

)
, ε(X1) = εa (1 + αεX1/A) , (2.26)

with µb = µa(1 − αµ) and εb = εa(1 + αε), where αµ and αε

are two dimensionless constants characterizing the functionally
graded properties of the shear modulus and permittivity, respec-
tively, of the material. The expressions for D2

L and K in (2.23) and
(2.24) are then modified accordingly. The parameters αµ and αε

are subject to the restrictions αµ < 1 and αε > −1 since both
µ and ε are positive. Additionally, since the permittivity of all
materials is greater than the vacuum permittivity ε0, we must
have εa(1+αε) > ε0 for each αε > −1. Note that negative values
of αµ and αε reverse the direction of bending, as is illustrated in
Section 4.

The integral in (2.15) can now be evaluated to give

V =
ADL

εa[(1 + αε)λ2
a − λ2

b]
log

[
(1 + αε)

λ2
a

λ2
b

]
. (2.27)

Eq. (2.25) can also be evaluated to give

a
[λ2

b − (1 − αµ)λ2
a]

λ2
b − λ2

a

[
3
4
(λ4

b − λ4
a) − log

(
λb

λa

)
− (λ2

b − λ2
a)

]
−

1
2
µaαµ

[
λ4
b + λ2

aλ
2
b + λ4

a − (λ2
b + λ2

a) − 1
]
+ K (λ2

b − λ2
a)

−
1
2
D2
L

λ2
b − λ2

a

εa[λ2
a(1 + αε) − λ2

b]
log

[
(1 + αε)

λ2
a

λ2
b

]
−D2

L
αε

εa(1 + αε)
= 0. (2.28)

For a given applied voltage V , after DL is substituted into (2.27)
and D2

L and K into (2.28) from (2.23) and (2.24), the resulting
equations yield specific forms of the functions f and g in (2.20)
and (2.21), which can now in principle be solved simultaneously
for λa and λb. The dependence of the bending angle ϕ, given by
(2.5), on the applied voltage can then be determined. The corre-
sponding radial and circumferential stress components τrr and τθθ

can also be determined, from (2.8) with the specializations (2.10)
and (2.22). Numerical results for specific values of αµ and αε are
rovided in the following section.

. Numerical results

For numerical purposes we work in terms of the dimensionless
uantities:

¯ = K/µa, V̄ =
√

εa/µaV/A, (3.1)

nd Eqs. (2.20) and (2.21) take the dimensionless forms

¯ = f̄ (λ , λ ), ḡ(λ , λ ) = 0. (3.2)
a b a b

4

These are the dimensionless forms of (2.27) and (2.28) after
substitution for DL and K , where

f̄ =
√

εa/µaf /A, ḡ(λa, λb) = g(λa, λb)/µa. (3.3)

hus, f̄ and ḡ depend only on λa, λb and the parameters αµ and
ε , i.e. they are independent of µa and εa.
For an initially rectangular FGDE plate with aspect ratio L/A =

0, subject to a (dimensionless) voltage V̄ = 0.2, Fig. 2 depicts the
esulting bent shape of the plate for a fixed value of the elastic
arameter αµ = 0.3 and four values of electric parameter αε .
he plate is bent into a complete circle for αε = 1.521. Again for
µ = 0.3 and three values of αε , in Fig. 3 the distributions of the
adial and circumferential stress components through the plate
re shown in dimensionless forms τ̄rr = τrr/µa, τ̄θθ = τθθ/µa
ersus the radial coordinate in the form r̄ = (r − ra)/(rb − ra).
As expected intuitively, we find that increasing αε makes

he plate more susceptible to bending. The stress components
ary continuously through the thickness, with the circumferential
tress two orders of magnitude larger than that of the radial
tress. Interestingly, at least for examples considered here, the
ent sector has two neutral surfaces (where τθθ = 0). Addition-
lly we note that while on both its inner and outer faces the
ircumferential stress is compressive, these faces are nonetheless
n extension as the circumferential stretches are greater than
there. Similar phenomena were observed for the bending of
urely elastic layered plates [10] and swelling functionally graded
ydrogel plates [25].
For a fixed value of the electric parameter αε = 0.4 and three

values of the elastic parameter αµ, results analogous to those in
Figs. 2 and 3 are shown in Figs. 4 and 5, respectively (now with
V̄ = 0.25). In general, whether bending is enhanced or retarded
by a change in αµ depends on the value of αε .

As is clear from the larger value of V̄ in Fig. 4, as the mag-
itude of the voltage increases the circular sector becomes more
nd more bent. As the voltage increases further the sector will
ventually form a complete circular ring, which, for the values
ε = 0.4, αµ = 0.4, occurs when V̄ reaches the approximate

value 0.4385. At this point the voltage, however, has not reached
its maximum value. Fig. 6 shows plots of V̄ versus λb for different
values of αε and αµ, with the points at which a complete circular
ring is formed identified by circles, while the crosses mark the
(non-accessible) points at which V̄ reaches a maximum.

As noted above, it is also seen from Figs. 3 and 5 that the
inner and outer faces of the bent sector are subject to compressive
stress (τθθ < 0) during the bending deformation for the lower
values V̄ = 0.2, 0.25 before the complete ring forms.

It is of interest to examine at what point the voltage does in-

deed reach its maximum, and for this purpose V is considered to
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Fig. 3. Plots of (a) the radial stress τrr and (b) the circumferential stress τθθ in scaled dimensionless form versus the normalized radius r̄ for the dimensionless
voltage V̄ = 0.2 and the following values of (αε, αµ): red (0.1, 0.3); purple (0.4, 0.3); blue dashed (0.7, 0.3). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Fig. 4. (a) Undeformed rectangular plate cross section with aspect ratio L/A = 10. (b)–(d) plate bent by application of a dimensionless voltage V̄ = 0.25 with the
ollowing values of (αε, αµ): (b) (0.4, 0.2); (c) (0.4, 0.4); (d) (0.4, 0.6), and (e) with V̄ = 0.4 and αε = 0.4, αµ = 0.4.
Fig. 5. Plots of (a) the radial stress τrr and (b) the circumferential stress τθθ in scaled dimensionless form versus the normalized radius r̄ for the dimensionless
voltage V̄ = 0.25 and the following values of (αε, αµ): red (0.4, 0.2); purple (0.4, 0.4); blue dashed (0.4, 0.6). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
e a function of λb as the independent variable after elimination

f K and DL. Then,

dV
=

(
∂ f ∂g

−
∂ f ∂g

)/ ∂g
, (3.4)
dλb ∂λb ∂λa ∂λa ∂λb ∂λa

5

so that a maximum arises when

det

⎡⎢⎢⎣
∂ f
∂λa

∂ f
∂λb

∂g ∂g

⎤⎥⎥⎦ = 0 (3.5)
∂λa ∂λb
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Fig. 6. Plots of the voltage V̄ versus the outer side circumferential stretch λb . (a) Plates with elastic parameter αµ = 0.6 and increasing αε = 0.1, 0.4, 0.7, red, purple
nd blue, respectively; (b) plates with αε = 0.6 and increasing elastic parameter αµ = 0.4, 0.5, 0.8, red, purple and blue, respectively. The circles correspond to
oints at which a complete circular ring is formed. The maxima of V̄ , marked with crosses, are beyond these points and are thus never attained. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. (a) Undeformed rectangular plate cross section with aspect ratio L/A = 10 and V̄ = 0.3, with parameters (αε, αµ): (b) (−0.3, 0.3); (c) (−0.45, 0.3); (d)
−0.6, 0.3); (e) (−0.6511, 0.3).
Fig. 8. Plots of (a) the radial stress τrr and (b) the circumferential stress τθθ in scaled dimensionless form versus the normalized radius r̄ for the dimensionless
voltage V̄ = 0.3 and the following values of (αε, αµ): red (−0.3, 0.3); purple (−0.4, 0.3); blue dashed (−0.5, 0.3). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
d
W
n
b

as nontrivial solutions.
However, because the maximum of V does not occur before

he plate is bent into a full circle, it is necessary to examine when
nstability might arise, which, for example, might occur for given
alues of the parameters αµ and αε as the voltage increases. This
s examined in the next section, based on an energy approach.

As the maximum of V does not occur in the relevant range
f deformations we emphasize that, in contrast to what happens
hen a homogeneous dielectric plate, equi-biaxially deformed
nder an applied voltage, the phenomenon of pull-in instability
6

oes not appear for a functionally graded plate under plane strain.
e recall that in the homogeneous plane strain expansion of a
eo-Hookean dielectric plate, there is also no pull-in instability,
ecause then V̄ =

√
1 − λ−4, which is a monotone function of the

stretch [21]. Here our bending deformation (2.1) is also a plane
strain deformation, but the V̄ − λb relationship is not monotone.

Because of the dependence of µ and ε on X1 there is a lack
of symmetry with respect to X1 = 0 and X1 = A. Thus, bearing
in mind the limitations on the values of αµ and αε mentioned in
Section 2.2, it is possible to consider negative values of α and/or
µ
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Fig. 9. (a) Undeformed rectangular plate cross section with aspect ratio L/A = 10 and parameters αε = −0.3, αµ = 0.3 and the following values of V̄ : (b) 0.5; (c)
.6; (d) 0.7; (e) 0.756.
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Fig. 10. Plot of V̄ versus λb for the parameters αε = −0.3, αµ = 0.3 and
spect ratio L/A = 10. The red bullet points are associated with the values
.5, 0.6, 0.7, 0.756 of V̄ in Fig. 9(b)–(e), respectively.

ε . This is illustrated in Fig. 7 for the fixed value αµ = 0.3 and
our negative values of αε with V̄ = 0.3. The bent configurations
n this case are generally thinner and longer than those in Figs. 2
nd 4.
Fig. 8 illustrates the corresponding radial and circumferential

tress distributions, which are quite different from those for the
ituation with both αµ and αε positive in that the signs of the
tresses are the opposite of those in Figs. 3 and 5.
In Fig. 9, for fixed parameter values αε = −0.3, αµ = 0.3,

he deformation of a plate with increasing voltage is depicted.
he plate thins significantly as it bends further, and no maximum
f V̄ occurs; the voltage increases monotonically with increasing
alues of λa and λb, which are both larger than 1.
A plot of V̄ versus λb is shown in Fig. 10. When V̄ reaches the

pproximate value 0.756 the plate has deformed into a complete
ircle. The red bullet points identify the values 0.5, 0.6, 0.7, 0.756
f V̄ on the curve corresponding to the bent sectors in Fig. 9.
In Fig. 11, for fixed values αε = −0.3, αµ = −0.3, by contrast,

s the voltage increases the plate bends increasingly to the right
ntil the voltage reaches the approximate value 0.5353, at which
oint a complete circular ring is formed. Note that the shapes in
igs. 2, 4, 7, 9, 11 are not drawn exactly to the correct scale, as
he areas should all be the same.

Fig. 12 provides the corresponding plot of V̄ versus λb, with
he red bullet points identifying the values 0.3, 0.4, 0.5, 0.5353
f V̄ on the curve corresponding to the bent sectors in Fig. 11. In
his case the voltage has a maximum, but it is beyond the value
t which the complete ring is formed.
7

. Stability analysis

Consider the energy function ω∗(λ,DL) given by (2.10) with
he specialization (2.22) for the considered plane strain situation.
e denote by ω(λ, EL) the corresponding function with the in-
ependent variable EL, related to ω∗ by ω∗(λ,DL) = ω(λ, EL) +

LEL.
From the analysis of Conroy Broderick et al. [26], the second

ariation of the free energy density of a homogeneously deformed
late can be written in terms of either ω∗ or ω as

∗

λλ(δλ)
2
+ 2ω∗

λDL
δλδDL + ω∗

DLDL
(δDL)2 = ωλλ(δλ)2 − ωELEL (δEL)

2,

(4.1)

here δλ, δDL and δEL, respectively, are variations in λ, DL and
L, the corresponding subscripts representing partial derivatives.
or the inhomogeneous deformation considered here, this is also
he local form of the second variation, and its global counterpart,
hich requires integration over X1 ∈ [0, A] and X2 ∈ [−L/2, L/2],

s, in terms of ω,∫ A

0
[ωλλ(δλ)2 − ωELEL (δEL)

2
]dX1

=
2AL

λ2
b − λ2

a

∫ λb

λa

[ωλλ(δλ)2 − ωELEL (δEL)
2
]λdλ. (4.2)

We focus initially on the local form of the second variation
4.1). The Hessian matrix associated with the left-hand side of
4.1), denoted H∗, is given by

∗
=

[
ω∗

λλ ω∗

λDL
ω∗

λDL
ω∗

DLDL

]
. (4.3)

It has determinant

detH∗
= ω∗

λλω
∗

DLDL
− (ω∗

λDL
)2, (4.4)

which can also be written ωλλω
∗

DLDL
, as shown in Dorfmann and

Ogden [27] and Conroy Broderick et al. [26].
For the quadratic form in (4.1) to be strictly positive, H∗ must

be positive definite, so that

ω∗

λλ > 0, detH∗
≡ ωλλω

∗

DLDL
> 0. (4.5)

For the models

ω∗(λ,DL) = W (λ)+
1
2
ε−1λ−2D2

L , ω(λ, EL) = W (λ)−
1
2
ελ2E2

L ,

(4.6)

ith W given by (2.22), we have

ω∗

DLDL
= ε−1λ−2, ωELEL = −ελ2. (4.7)

Thus, for H∗ to be positive definite, we require

ω∗ > 0, ω > 0, (4.8)
λλ λλ
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Fig. 11. (a) Undeformed rectangular plate cross section with aspect ratio L/A = 10 and parameters αε = −0.3, αµ = −0.3 and the following values of V̄ : (b) 0.3;
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Fig. 12. Plot of V̄ versus λb for the parameters αε = −0.3, αµ = −0.3 and
spect ratio L/A = 10. The red bullet points are associated with the values
.3, 0.4, 0.5, 0.5353 of V̄ in Fig. 11(b)–(e), respectively.

nd, in view of (4.7)2, the global form of the second variation (4.2)
s positive if ωλλ > 0 for each point of the domain of the integral.

For the models (4.6) with (2.22) the inequalities (4.8) simplify
o

(1+ 3λ−4)+ 3λ−4ε−1D2
L > 0, µ(1+ 3λ−4)− εE2

L > 0. (4.9)

he first of these is always satisfied, while the second is

(1 + 3λ−4) − λ−4ε−1D2
L > 0, (4.10)

which can be written in terms of the voltage on use of (2.27).
When αµ = αε = 0 and the deformation is homogeneous, we

have
µ−1λ4ω∗

λλ = λ4
+ 3 + 3D̄2

L ,

µ−1ελ6 detH∗
= λ4

+ 3 − D̄2
L = µ−1λ4ωλλ,

(4.11)

where D̄L = DL/
√

µaεa, and we also note that D̄L = λ2ĒL, where
ĒL = EL

√
εa/µa. Then, it is clear that ω∗

λλ > 0, while detH∗

an become negative as DL increases from zero, in which case
stability according to the Hessian criterion is lost. Since there is
no applied load D̄2

L = λ4
−1 and Ē2

L = 1−λ−4 so that D̄L increases
ndefinitely with λ while ĒL increases up to an upper limit 1, i.e. a
omogeneous plate in plane strain can only support a maximum
on-dimensional voltage V̄ = ĒL = 1. This is different from the
qui-biaxial situation where Ē2

L exhibits a maximum and pull-in
nstability occurs; see, for example, [16,20,27].

By contrast with (4.11) the inhomogeneity of µ and ε must be
ccounted for in (4.10). Fig. 13 illustrates the results of calculation
f ωλλ in terms of dimensionless ω̄ = ω/µa with ω̄λλ plotted
gainst λ for the relevant range of values of λ and λ , which
a b

8

is different for each value of the dimensionless voltage V̄ . The
(black) right-most curve in each case corresponds to the value
of the voltage at which a complete circular ring is formed. Up to
this point in each case ωλλ > 0 for each λ ∈ [λa, λb], but its value
ecreases with the voltage. Thus, each configuration is stable
ccording to the Hessian criterion, and the second variation (4.2)
s therefore positive. These results apply for the two considered
airs of values of (αε, αµ), but we have found similar results for a
ange of other combinations of these parameters. In view of the
ocal result there is no need to consider the global counterpart
4.2) for the model in question.

. Concluding remarks

In summary, we have investigated the voltage-induced bend-
ng response of an FGDE plate, and formulated a method for
nalyzing its stability based on the positive definiteness of the
essian.
We found that the ‘bendability’ of the plate can be tuned

y carefully selecting the grading properties, as illustrated here
or linear gradients, by choosing appropriate values of the in-
omogeneity gradients αµ and αε . A bent sector is subject to
ompressive circumferential stresses at both its inner and outer
urfaces, with two neutral axes.
On analyzing the stability we found that the bent configura-

ions are always stable according to the Hessian criterion up to
he point that a complete circular ring is formed, the voltage at
his point depending on the inhomogeneity parameters αε and
µ.
In contrast with the situation for a homogeneous plate subject

o equi-biaxial deformations, where pull-in instability occurs, in
he present plane strain problem there in no such pull-in insta-
ility. In particular, even though the voltage-stretch curve may
xhibit a maximum, it cannot be associated with pull-in insta-
ility within the stable domain since a complete ring is formed
efore the maximum is reached. The analysis herein is based on
particular (neo-Hookean based) constitutive model and a simple
orm of the material grading properties. It can be expected that
he results will be somewhat different, at least quantitatively, for
ifferent model choices, but the framework presented here can
ccommodate more general models.
In this paper we have focused only on the possibility of insta-

ility arising from the loss of positive definiteness of the Hessian
ut we have found that such instability does not arise for the
onsidered model. However, this approach to the analysis of
nstability tells only part of the story since it does not allow for
rinkling types of instability in membranes [19] or inhomoge-
eous wrinkling deformations [23,27], which can be induced [28]
y the negative circumferential stress in the elastomer (Figs. 3, 5,
).
Applications where gradient properties could be beneficial are

n the design of sensors and actuators and complicated motions
f soft robots, for example.
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