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Abstract

An isotropic elastic half-space is prestrained so that two of the principal axes of strain lie in the bounding plane, which itself
remains free of traction. The material is subject to an isotropic constraint of arbitrary nature. A surface wave is propagated
sinusoidally along the bounding surface in the direction of a principal axis of strain and decays away from the surface. The
exact secular equation is derived by a direct method for such a principal surface wave; it is cubic in a quantity whose square
is linearly related to the squared wave speed. For the prestrained material, replacing the squared wave speed by zero gives
an explicit bifurcation, or stability, criterion. Conditions on the existence and uniqueness of surface waves are given. The
bifurcation criterion is derived for specific strain energies in the case of four isotropic constraints: those of incompressibility,
Bell, constant area, and Ericksen. In each case investigated, the bifurcation criterion is found to be of a universal nature in
that it depends only on the principal stretches, not on the material constants. Some results related to the surface stability of
arterial wall mechanics are also presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There has been a large body of literature on surface waves propagating sinusoidally along the bounding planar
surface of an elastic half-space with attenuation of the wave amplitude in the direction normal to the bounding
plane. The earliest paper is that of Raylejgh who investigated surface waves propagating across the surface of
an isotropic earth in the context of seismology. The modern theory of surface waves derives in large measure from
the sextic formalism of Strof2]. This approach has been employed by many different authors to address many
different problems of linear anisotropic elasticity and the results have been comprehensively reviewed8} Ting
In parallel, tremendous progress has been made in the theory of small-amplitude surface waves propagating on
finitely deformed, nonlinearly elastic half-spaces, from the seminal works of Hayes and RMtompressible
materials) to those of Dowaikh and Ogd&h and many others.
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In the present paper we consider an isotropic elastic half-space prestrained so that two of the principal axes
of strain lie in the bounding plane which itself remains free of traction. Additionally, the material is subject to an
isotropic constraint of aarbitrary nature. One example of such a constraint is incompressibility, which has received
much attention in the literature, and another is the Bell constraint, whose experimental and theoretical properties
have been thoroughly reviewed by Bedtly Chapter 2] A wave is propagated sinusoidally in the direction of one
of the principal axes lying in the bounding plane, has no in-plane displacement component in the direction of the
second principal axis lying in this plane, but has attenuating amplitude in the direction of the third principal axis,
orthogonal to this plane (principal surface wave). The theoretical framework for the study of these waves is setup
in Section 2including a discussion of four examples of isotropic constraints, the incremental equations of motion
and of constraint, and the strong ellipticity condition.

In Section 3we derive an explicit secular equation for these principal surface waves that is cubic in a quantity
whose square is linearly related to the squared wave speed. On restricting attention to an unstrained isotropic materie
we find that the secular equation reduces to that found by RayflEjgmthe incompressible case. We show that for
the unstrained material all isotropic constraints are the same, that is all reduce to incompre§§itRiyurning to
the general secular equation of the prestrained material and replacing the squared wave speed by zero we obtain ¢
explicit bifurcation, or stability, criterion for the material. Some results on the existence and uniqueness of surface
waves are given.

Finally, in Section 4we examine the bifurcation criterion for each of four examples of isotropic constraint and
obtain explicit results by choosing special forms of the strain energy function. In all cases considered we find that
the bifurcation criterion is of a universal nature in that it depends only on the principal stretches, not on the material
constants.

2. Preliminaries
2.1. Deformed constrained half-space with a free plane surface

We consider a semi-infinite body made of homogeneous isotropic hyperelastic material at rest in a configuration
B, with strain energy density per unit volume of3, and mass densiy. Let (0, X1, X2, X3) be afixed rectangular
Cartesian coordinate system such that the body occupies the pégiorD. The orthonormal set of vectofis j, k}
is aligned with the coordinate axes.

Loads Py, P2, P53 are applied at infinity to deform and maintain the half-space in a static Statéfinite pure
homogeneous deformation, with corresponding stretch ratips,, A3 in thei, j, k directions. Thus, the position
of a particle ai{ X1, X2, X3) in B, is at(x1, X2, x3) in 5,, wherex; = A1X1, X2 = 12X2, X3 = A3X3. The constant
deformation gradient associated with the deformation is

F=Mi®i+1j®)+ ik k. (2.2)

In anisotropic hyperelastic material the strain energy is a symmetric furi€iibn X2, A3) of the principal stretches,
i.e. its value is left unchanged by any permutation of the stretthes, A3. The material is subject to an isotropic
internal constraint, written as

I'(A1, A2, A3) =0, (2.2)

in which I' is a symmetric function of the principal stretchigsWe restrict attention to constraints such that:
or
I >0, wherel;:=—. (2.3)
oA
Four examples of such constraints are treated explicitly in this paper and they are henceforward denoted by romar
numerals: the incompressibility (1), Bell (1), areal (1), and Ericksen (IV) constraints,
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I'" = riorz —1=0, ":=x1+xrx+ir3—3=0, ' = Ao 4+ Aohg + Ak — 3=0,
V:.=3x24)34+22-3=0. (2.4)

The incompressibility constraint is often used for the modelling of finite deformations of rubber-like materials and
shows good correlation with experiment (see for instgB¢c&€hapter 7). The Bell constraint was found to hold
experimentally over countless trials on polycrystalline annealed solids, including aluminum, brass, copper, and mild
steel, seg¢6, Chapter 2] The areal (or constant area) constraint has the interpretation that a material cube in the
reference configuration with edges parallel to the principal axes of strain retains the same total surface area after
deformation; it was studied from a purely mathematical point of view by Bosi and Sal{@itdFinally, the fourth
constraint was proposed by Ericksg®] to model the behaviour of certain twinned elastic crystals. Although
Ericksen proposed a multi-constrained model, pursued by $thittin the context of wave propagation, some
authorg12,13]refer to the single constraif2.4), in nonlinear elasticity theory as ‘Ericksen’s constraint’.

The general constrairf2.2) generates the workless reaction teriNpsee[14], given byN = J~1F(3179F)T,
whereJ = 111213. Explicitly, the non-zero components Wfare

Ni = J7 I (nosum. (2.5)
Thus for the four examples of constrairi®s4) we find the following constraint tensors:

N' =1, N' = J-1v, N = s trv)v — Vv, NV =2/71v2 (2.6)
in terms of the left stretch tensdr = diag(i1, A2, A3).

Associated with the deformatids), — B, is the Cauchy stress tensowhich takes diagonal form with non-zero
components

giji = J_l)»,-W,- + PN (nosum, (2.7)

whereW, := dW/dr; andP is a scalar to be determined from the equations of equilibrium and boundary conditions
as follows. First, we note that fat constant, the equations of equilibriud®;; /0x; = 0 are automatically satisfied.
Next, we assume that the surfage= 0 is free of tractions; it follows that;, = 0 (andP, = 0) and so

- W W

P=—J 2t =_"2 (2.8)

N2z I

Consequently, the constant loats, P3 needed at infinity in order to maintain the half-space in the deformed
configuration3, are ¢ = 1, 3, no sum),

_ Wo\ - _ Iy
Py =~k = (?2) Nk — J ™YWy = (Waly — Wil2) 7. (2.9)

Note that when the boundary surface is not free of tractiéps # 0) thenP in (2.8) must be replaced by =

(Jo22 — A2 W2) /A21%. However, the primary interest of this paper is in studying the influence of internal constraints
upon the propagation of surface waves rather than the influence of pre-loading, and we assume henceforward that
(2.8)holds.

2.2. Superposed infinitesimal motion and strong ellipticity condition

We now consider the propagation of an incremental motion in the deformed half8paeeB;, described by
X =X+ eu(X, 1), (2.10)

wherex is the position inB3; of a particle which was & in 5, andu is referred to as the displacement vector.
The parametee is small, so that terms of order higher than one imay be neglected. The linear fourth-order
instantaneous elasticity tend®t associated with the motion j§4, (2.19)]
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. Wo\
Bjiy = Bil + PBij = Bij — (?2> Biju » (2.11)

where the non-zero componentsB&ndB are given by[8, (6.3.15)]

AW — LW v
JBijj = 1 Wi, JBjj = —5—2- )\;_;2‘ 122, JBjji = JIBjjj — AW, J Bijj = AiAjlij,
i J
v Ml — Al v .
J Bijij = —IAIZ _AJZ_ LA2, JByi = JBjj — M, (2.12)

i J

and there is no summation ovieor j. HereJBjj and JBijij are defined when # j, A; # 1, in the case where
i # j, A = Aj, they must be replaced BB;jj = (1/2)(JBjii — IBijj +A;W)), J Bijij = (1/2)(J Biiii — J Bijjj + A I7),
se€[8, (6.3.16)] Because of hyperelasticity the symmetr@ﬁ, = B;Iij hold so that in particular we have
The incremental nominal stress associated with this motieigiigen by[14, (3.10)]

sij = i + Bjurk + pNij, (2.14)
wherep represents the increment i

The equations of motion, together with the incremental constraint, read [f#bni3.13)]

PUjtt = Sij.i, N1u11 + Nogup 2 + Naguzz = 0. (2.15)
For future convenience, we assume tBéais strongly elliptic, that is,

Bjjyminjmgn; > 0 forallm, n such thatn; Nijnj = 0. (2.16)

The vectors

m = Ny3"/? costi + Ny singj = JY2[(h1 1) Y2 cosbi + (hal) Y2 sinGj],
n = —N;;/%sinéi + Ny /% costj = JY[—(.11) Y2 sinbi + (1212) Y2 cosj], (2.17)

0 < 6 < 2x, are two vectors satisfyin@.16). Introducing the quantitied, B, C, defined by

A= (A2l B, C = (aralile) By,

B = 3[(\I1) 2 Biy1;+ (h2l2) " ?Biyogd — (r2l1l2) (Bi1ps+ Bigoy). (2.18)
we obtain from(2.16)the inequality
A c0s*0 + 2B sin®0 cos?0 + C sin%0 > 0, (2.19)

holding for allé. In particular, the choice®= 0, /2, arctarn(A/C)Y4, give in turn
A>0, (>0  B++AC>O. (2.20)

Using different notations, similar inequalities are given by Knowles and Sterfidgrfpr unconstrained materials,
by Ogden8] for incompressible materials, and by Destrfiti] for Bell materials.

3. Surfacewaves

Here we specialize the equations of motion to the consideration of an inhomogeneous principal plane wave
traveling over the free surfage = 0 and derive the corresponding secular equation.
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3.1. Equations of motion and boundary conditions

A surface (Rayleigh) wave travels sinusoidally with timi@ a direction parallel to the plane = 0 (X2 = 0)
leaving it free of tractions and decaying away from this surfaceas> oco. For simplicity, we consider a wave
propagating with speedand wave numbek in the principal direction of prestrai@x; = Ox;. We refer to this as
a principal wave. For this wave, antiplane strain decouples from inplane strain, and the displacement components
are of the form:

i =Uiki) €™ (=12, uz=0,  p=kQkip) e 1™, (3.1)

in which Uy, U2 and Q are functions ofkx; to be determined. Similarly, the antiplane stress decouples from the
plane stress, and the equations of mot@115)reduce to

$111 + 5212 = pu, 5121+ $222 = puatt, N11u1,1 + Nooup 2 = 0. (3.2)

Because théjj terms in the componen(g.14)of sjj are constant, we write the relevant stress components in the
form

sij = Gij 4 kGj (kxp) X1 ( j=1,2), (3.3)
and the equations of motion reduce further to

iS11+ Shy = —pv?U1,  iSi2+ Shy = —pv?Up,  iralUs + A2l2Ub = 0. (3.4)
Explicitly, the Sjj are given from(2.14)and(3.3) by

S11 = iBj117U1 + Bi1o0U5 + ON11, S12 = BipU1 + 1Bl U2,

S22 = iBT150U1 + B3ppU5 + ON22, S21= B3151U1 + iBIop U2, (3.5

in which the symmetrie@.13)have been used.
Now we usg3.4) and (3.5)o formulate the problem as a system of four first-order differential equations for the
unknown functiond/1, Ua, S21, S22:

Bj Al
Uy = —zBi—zlez + B 821, U, = _lk 7 Uy,
2121 2121 202
2
rl il _ 5 A1l
Shy = g —2——Bf o+ | —=) Bi,po—pv°- U1 —i S22,
21 |: 1111 aol 1122 ol 2222 P 1 rol 22
B*...B* _ B*Z B .B*
S}y = 2121 12*12 1221 pvz Up—i 1221521_ (3.6)
B3121 B3121

Egs. (3.6) and(3.6), are obtained froni3.5), and(3.4);, respectively, an(®.5)is employed in the latteEq. (3.6}
is obtained by eliminating) between(3.5) and(3.5) using(2.5), and then eliminating11 between this equation
and(3.4). Finally, (3.6} is obtained by eliminating, between(3.4) and(3.5) and then using3.5) to eliminate
U} in favor of Sz;.

Eq. (3.6)are subject to the boundary conditions of decayzas> co and of vanishing traction okp = 0:

521(0) = S22(0) = 0. (3.7
Furthermore, each unknown may be written in terms of a single unknown functibthe variable
Al
= —k
Z 2ol X2

with prime now denoting differentiation with respectzo
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. Al .
U= l‘PI(Z), Uz = ¢(2), So1 = 1F33121¢//(Z) + |51221§0(Z),
Al Aol klfl Al _
S22=————B519¢" (2) + T | Blai1— (31221+ 2B129) + B§222— pv? | ¢'2). (3.8)
A2l A1l 2ol

Here, the expressions fék, S»1, andS»22 were obtained fronf3.6) 1 3, respectively. The last equation of this set,
namely(3.6), then yields a differential equation fe«(z):

Yo" = 2B = )" + (@ — pv)p =0, (3.9)
where
2 2
Ol* = B>I< y* = _AlF]_ * = i *
1212 ol P21 T
/\ 1
2p" = Bij11— (31221+ Blip)) + (A P > B3o2n (3.10)

We have used the propeﬁtﬁB* /\fBi*i- (i # j, nosum derived from(2.12) By comparison with the quantities

A, B, C, defined in(2.18) and use of the consequeng2<20)of the strong ellipticity (S—E) conditio(2.16), we
find that these coefficients satisfy the inequalities

a® >0, y* >0, B* + Jary* > 0. (3.11)
3.2. Secular equation and bifurcation criterion

We now derive the exact form of the secular equation for a surface wave traveling in a principal direction of a
deformed isotropic material subject to a single isotropic constraint. Because the wave amplitude deeaysas
away from the free plane= 0, we seek a solution fas in the form

0(z) = A1 4+ Ape 2 R(s;) > 0, 51 2. (3.12)
From(3.9), thes; are roots of the biquadratic

vt — (2B% — pv?)s® + (aF — pv?) = 0. (3.13)
The I‘OOtSSiZ of this real quadratic are either both real (and, if so, both positive because we mustigve 0) or
they are a complex conjugate pair. In either ca%é > 0 and so, by3.13)

0<p® <o (3.14)

Although necessary, this inequality on the squared wave speed is not sufficient to ensure the decay of the wave
amplitude, as is seen in the next subsection.
The boundary condition@.7)yield, using(3.8).4, (3.10) and (3.13)

Al Al
2
(V*Sl + 2l T221> A1+ <V Ry 2ol 31221> A2 =0,
Al Ml
<V s+ — 2ol 1221) A1+ 52 <V ST+ —+ 3ol 1221> Az =0. (3.15)

The vanishing of the determinant of this homogeneous system givesdtéar equationthat is, the equation for
the wave speed. Introducing the quantities

ot — ,51)2 )\'lrl * )\'21-'2 *

s (TP ML 202 3.16
1 y* rolz AT Y (3.16)
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and using(3.13)we obtain from the vanishing of the determinan{®fL5)
w0 2/3* 428 — o . 8*2

14 14
after removing the; — s» factor.Eq. (3.17)is the required secular equation.

In the special case where the biquadréid 3)has double roots, so thét = sf, the above derivation is no longer
valid. The form(3.12)of solution must be replaced by

9(z) = (A1 + Axz) e

o) ="+ =0, (3.17)

but it can still be shown that the secular equation is givei34/7) Thus(3.17)furnishes the secular equation in
all cases.

The cubicequation (3.17)n n* has remarkable features: the coefficients of the two highest powers are each
always equal to unity, irrespective of the pre-deformation, constraint, and strain energy functi@1®y, the
termindependent of* depends only o1, A2, and the constraint, bubton the strain energy function. For instance,
for the -1V constraint$2.4), we find that

Yoy ke Mtk B
AN A A2+ Az’ A2’

(3.18)

respectively, whatevé¥ may be. Fron{3.10} itis clear also thak* /y* is independent of and it follows that the
secularequation (3.17fepends orW only through the terng*/y* appearing in the coefficient of the term linear
in np*.

In an undeformed material{ = A = A3 = 1), we havex™ = 8* = y* = §* = u, whereu is the infinitesimal
shear modulus, and the secutguation (3.17jeduces to

2
_v
fm =n*+n*+3n-1=0, n=,/1—p;. (3.19)

The unique positive real root of this equation correspond@sfpu ~ 0.9126, in accordance with Rayleigh’s result
[1] for incompressible linear isotropic elastic materials.

Eqg. (3.19)is valid for all isotropic constraints provided that the isotropic elastic material is undeformed. In
fact, in the undeformed state we can show that all isotropic constraints are equivalent by arguing as follows (see
Podio-Guidugli and Vianell§r] for an alternative treatment). The constraintis, 12, A3) = 0 where the function
I' is symmetric in its arguments, i.e. its value is left unchanged by any permutation of the stiatchges.s. For
small strains write.; = 1 + ¢; whereg; is the extension ratio. The constraint holdsfpe= 1 and ford; = 1 + ¢;

(for eachi) so an application of Taylor’s theorem gives

ar ar’ ar 0

aTlel + 87232 + 87363 =0,
where terms quadratic ie; are neglected. The partial derivatives are evaluated at 1 and, because of the
symmetry condition or”, are all equal. Thus, in the undeformed state, each isotropic constraint takes the form

e1+ex+e3=0 (3.20)

of the constraint of incompressibility for infinitesimal deformations.
The bifurcation criterionis obtained by writingy = 0 in the seculaequation (3.17and indicates when the
half-space might become unstafl#]:

% 1\ 3/2 * 28%* 28% — o* % 8*2
Y Y Y v veorr
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which becomes

L p+sn 82

r? v Iy

(3.22)

on using(3.10) to eliminatex™/y*. Using(2.11)p, (2.12) (3.10)and(3.16), we may rewritg(3.22)in terms of
the derivatives with respect #g of the strain energy functioW and the constrainf':

NpWi— W) (Tuly — 2Nl + Dl PWe

[§Wag — 2 Wag + TP Wao + 0, (3.23)
A I;
an explicit form of the bifurcation criterion.
3.3. Existence and uniqueness of a surface wave
Following Chadwicl{18] we recast our seculaquation (3.17as
n*r* ﬁ . 2
k * k
fv) = det| g vt —0, wherer* = \/ (i + 1)2 — u (3.24)
2 o Y
k

14

Chadwick used this “matrix reformulation” of the secular equation in the case of incompressible (I) materials (where
8*/y* = 1) to derive, in a rigorous manner, essential results about the existence and uniqueness of a surface wave
For a general isotropic constraif®.2), 5*/y* is not necessarily equal to 1, but his method, together with the S-E
inequalities(3.11) can nevertheless be directly transposed to our problem. In summary, we obtain the following
results.

The limiting speedv, which is the upper bound of the subsonic intervak= [0, v] for v where the decay
requiremenfi(s;) > 0 is satisfied, is defined by

a2 o* when 8* > a*,

= 3.25
& 2[B* — v* + /Y (oF — 2B+ y¥)] <a* whenPB* < o (3.25)

A necessary and sufficient condition of existence for a vgah I is
f(0) >0, f(v) <O0. (3.26)

Finally, when a root exists, it is unique.

4. Thebifurcation criterion in special cases

We specialize the bifurcation criterigB.23)to each of the four examples of isotropic constraints considered in
this paper and pick special forms of the strain energy in order to obtain explicit results. In each case we find that
the bifurcation criterion is of a (relative) universal nature in that it depends only on the principal stretches, not on
the material constants.

4.1. Incompressibility (1)

For incompressibility, the bifurcation criteriqB.23)reduces tg5]:

X%W]_l — 201 A2 W12 + K%Wgz + Ao[W1 + (2 — )»l_l)»z) W] = 0. (4.1)
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We consider the strain energy function for “generalized Varga materials”,
W =di(A 4+ A2+ A3 — 3) + do(A1r2 + Aod3z + A3r1 — 3), 4.2)

in whichd; andd, are material constants. The S—E conditi@41)lead tod; + 2doA3 > 0, and sal; > 0,d» > 0
ordy > 0,d> > 0. The bifurcation criteriori4.1) leads to

(d1 4+ A3d2)(Bh1 — A2) =0, or Az =3Aq1, (4.3)

independently of the choice of material constants.
4.2. Bell's constraint (ll)

For a Bell constrained materigh.1) reduces to the bifurcation criterigh9]:
A1(Wi1 — 2W1p + Wo2) + W1 — W2 = 0. (4.4)

For the specific example of the “simple hyperelastic Bell matef@live take
W = da(A1h2 4+ A2A3 + A3r1 — 3) + da(A1iorz — 1). (4.5)

Here the S—E condition@.11)lead to—(d2 + 2d3A3) > 0, and sad2 < 0,d3 < 0 ordz < 0, ds < 0, while the
bifurcation criterion(4.1) reduces to

(d2 + A3d3) (A2 — 3r1) =0, (4.6)

leading again t¢4.3).
4.3. Areal constraint (llI)

The bifurcation criterior{4.1) reduces to
(k1 + 43)° W11 — 2(A1 + A3) (k2 + A3) Wiz + (A2 + A3)?Wap + /\Il(?»l +2A3)(A2 + A3)W1
+ (2 +23)[2 = A7 (2 + 23)] W2 = 0. 4.7)
For the following material, which we term “simple hyperelastic areal material”,
W =di(A1 + A2 + A3 — 3) + d3(A1h2rz — 1), (4.8)

the S—E condition§3.11)lead tod1 — d3iz > 0, and sal; > 0,d3 < 0 ord; > 0,d3 < 0. The bifurcation criterion
(4.7)reduces to

(d1 — 23d3)(3h1 — A2) =0, (4.9)

leading once more t(41.3).
4.4, Ericksen’s constraint (1V)

For Ericksen materials the bifurcation criteri@hl) reduces to
A3W11 — 20A2 W12 + A3 Waz + Ao W1 — A5 2(A2 + A1d2 4+ A3) W] = O. (4.10)
For the following “simple hyperelastic Ericksen material”,

W = Da(3235 4+ 2203 + 2332 — 3) + D3(A2A323 — 1), (4.11)



356 M. Destrade, N.H. Scott/ Wave Motion 40 (2004) 347-357

Table 1
Critical stretch ratiogi1)cr for surface stability

Ao = A3 Az = Al =A3
Simple Bell 0.429 0.500 0.600
Simple areal 0.447 0.535 0.655
Generalized Varga 0.481 0.577 0.693
Simple Ericksen 0.603 0.658 0.730

the S—E condition§3.11)lead to— (D2 + D3)»%) > 0,and saD2 < 0,D3 <0o0rDy <0, D3 < 0. The bifurcation
criterion(4.10)simplifies to

2345020, —mrs — A3 =0. (4.12)
4.5. Summary

For the four specific constraints and strain-energy functions above, we found relative universal bifurcation criteria,
even though two independent material constants were involved. Moreover, the bifurcation criterion for each of the
first three forms oW turns out to be the same, although the constraints are different; of course, the corresponding
critical stretch ratios differ in each case because they are obtained by solving the bifurcation criterion in conjunction
with the constraint condition. These differences are highlightethbiie 1 where the critical stretch ratiq.1)cr
for surface stability in compression of the four constrained materials presented in this section have been computec
in the case of plane straky = 1, and of equibiaxial strains, = A3 andi; = A3. All in all, it seems that simple
hyperelastic Bell materials can be compressed the most before the bifurcation criterion is reached, whilst Ericksen
materials of typg4.11)can be compressed the least.

As kindly pointed out by a referee, some questions worth investigating are raised by the previous results: whatis the
largest class of energy function for which the result is universal for any given constraint? for what energy functions
is the bifurcation criterion the same for two (or more) different constraints (separately or together)? for a material
whose energy function is linear in the invariants of the stretch tensor su@h2394.5), (4.8), which constraints
lead to the same bifurcation criteri¢h.3)? and so on. Unfortunately we must, because of space limitations, leave
these problems open.

4.6. Concluding remark: an incompressible model for human thoracic aorta

We conclude with an example of a non-universal bifurcation criterion using a model taken from the biome-
chanics literature. Horgan and Saccomd@@i] recently discussed the merits of the “limiting chain extensibility
model” proposed by Gerfi21] and its applicability to the modelling of strain-stiffening biological tissues. For this
incompressible (1) material, the strain energy is

M +A5+A3-3

1
W=-u,In|1
Lo A2

), A2 4 A% 423 <34 Ja, (4.13)

whereu is the shear modulus ank), is a constant. The smallgy, is, the stiffer the material becomes; conversely
the body becomes more deformable/gsincreases, with the neo-Hookean model as a limitfpr— oo, where
there are no restrictions on the values that the stretch ratios may take.

For the Gent moddl.13)the S—E conditioné3.11)lead towJ,, > 0 so thatu andJ,, are of the same sign. The
bifurcation criterion(4.1)yields

O, A2) (I + 3= 23) — fh2, M) (A3 4 2h1h2 — 23) = 0, (4.14)
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where f(x, y) := x% + x%y + 3xy? — y°. Note that ag/,, — oo this equality tends tgf(r1, A2) = 0, which is the
universal bifurcation criterion for neo-Hookean (and Mooney—Rivlin) matefialk Using experimental data for
the thoracic aorta of a 21-year-old male and of a 70-year-old male, Horgan and Sacc{fafalind that for
these sampley,, = 2.289, 0.422, respectively. For these valuesf and for the three special prestrains where
A3 = 1,0rko = A3, OrA1 = A3, we find that there exists no valueof such that the bifurcation criterion is satisfied,
indicating that the aorta of the two malesalsvays stableear the surface with respect to finite compressions of
these types. Keep in mind however that the range of possible ratios is limited by the ine@ua8)y. For example,

in plane strairh3 = 1 (no extension in th& g direction), we find that

In (1 =1+ 4J,Y In(L+/1+ 47,5

1+ <M2< .1+ >

2
For the younger aorta, this range is [0.497, 2.010]; for the older, stiffer, aorta, the range is [0.727, 1.376].

(4.15)
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