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a b s t r a c t

In soft elastic solids, directional shear waves are in general governed by coupled
nonlinear KZK-type equations for the two transverse velocity components, when both
quadratic nonlinearity and cubic nonlinearity are taken into account. Here we consider
spatially two-dimensional wave fields. We propose a change of variables to transform
the equations into a quasi-linear first-order system of partial differential equations. Its
numerical resolution is then tackled by using a path-conservative MUSCL-Osher finite
volume scheme, which is well-suited to the computation of shock waves. We validate
the method against analytical solutions (Green’s function, plane waves). The results
highlight the generation of odd harmonics and of second-order harmonics in a Gaussian
shear-wave beam.

© 2021 Published by Elsevier B.V.

1. Introduction

Understanding the propagation and diffraction of sound emitted by a directional source has been an important concern
f the nonlinear acoustics community since the late 1960s [1]. For this purpose, the celebrated Khokhlov–Zabolotskaya–
uznetsov (KZK) equation was derived from the equations of fluid dynamics by introducing an appropriate scaling. Valid
n the paraxial region of a directive acoustic source (e.g., a transducer), this nonlinear parabolic equation describes
ow sound beams spread with increasing propagation distance, incorporating harmonic generation and attenuation
ue to nonlinearity and dissipation effects. The same approach was used for the equations of nonlinear Lagrangian
lastodynamics, leading to similar partial differential equations (see the review by Norris [2]).
In soft incompressible solids, the experimental observation of nonlinear shear waves has been reported in the

iterature [3,4]. Along with these observations, the generation of mainly odd harmonics and shocks has also been
eported. To explain these features, Zabolotskaya et al. [5] showed that plane shear waves with a single transverse
isplacement component are governed by a Burgers-like equation when cubic nonlinearity is taken into account and
uadratic nonlinearity is ignored. In that case, the shear waves are linearly polarized and the motion is purely anti-plane.
However, incompressible solids with cubic nonlinearity only, and no quadratic nonlinearity, are modelled by a very

pecial constitutive law [6], not representative of real-world materials. This limitation is resolved by considering transverse
hear waves with an arbitrary polarization. Then, two coupled KZK-type equations are obtained [7]. If the corresponding
ave fields have variations in the transverse direction (that is, if the plane-wave assumption is relaxed), then the
overning equations of motion include both quadratic and cubic nonlinearity. Related works show that the second
armonic can be generated in this configuration [8], which is in agreement with more recent measurements [9].
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No analytical solution is known for this system of coupled nonlinear partial differential equations, and most of the
bove-mentioned studies rely on quasi-analytical approaches. Hence, Zabolotskaya et al. [5] estimate the generation of
armonics by using a space-dependent harmonic expansion, and by performing harmonic balance. Wochner et al. [7] use a
imilar harmonic expansion along with Green’s function expansions. Finally, Destrade et al. [8] implement a perturbation
ethod based on a small amplitude parameter.
While analytical results are of great interest, computational approaches may be more versatile. The numerical

esolution of KZK-type equations was addressed by Hamilton et al. [10], by matching near-field and far-field Fourier series
xpansions (Bergen code). Other frequency-domain approaches [11,12] were then followed by time-domain methods,
n particular by making use of operator splitting [13]. Pinton and Trahey [14] combined operator splitting with shock-
apturing Godunov-type methods to provide accurate shock-wave solutions. To the present authors’ knowledge, no
ethod has yet been successful in solving the quadratic–cubic nonlinear system [7] describing directional shear-wave
otion in soft elastic solids.
In this article, we consider spatially two-dimensional wave fields. After a brief presentation of the governing equations,

e introduce a change of unknowns and of dependent variables that transforms the system at hand into a quasi-linear
ystem of first-order partial differential equations (Section 2). In particular, the physical time variable is used instead
f the retarded time. Since the differential system so-obtained is non-conservative, particular care is required when
omputing shock-wave solutions. Indeed, a naive upwind scheme would lead to inaccurate wave speeds [15]. In this
tudy, we implement a finite volume method based on the path-conservative Osher Riemann solver and on MUSCL
econstruction [16,17] (Section 3). Although it does not involve operator splitting, the scheme accounts naturally for
onlinearity, coupled motion and beam diffraction. We validate the method by using dedicated analytical solutions which
re summarized in the Appendix C (Green’s function, plane waves). Numerical simulations of directional wave beams
llustrate the generation of odd and second-order harmonics (Section 4), as predicted by Destrade et al. [8].

One benefit of the first-order formulation introduced in this study is the potential to use advanced computational
ethods, including high-order adaptive schemes based on ADER or WENO approaches (see Refs. [18,19] and references

herein). Moreover, such differential systems of hydrodynamic type have been studied extensively, and dedicated
ntegrability criteria are known [20]. Prospective applications encompass the study of traumatic brain injury [9], as well
s related medical imaging techniques.

. Problem statement

.1. Governing equations

We introduce the deformation gradient tensor F = ∂x/∂X , where x represents the position of a particle in the deformed
configuration, and X represents its position in the undeformed configuration [2,21,22]. The Lagrangian specification of
motion is used throughout the present document, so that spatial differential operators are always computed with respect
to X . The components X = (X, Y , Z) of the position are expressed with respect to an orthonormal basis (e1, e2, e3) of the
uclidean space, and a Cartesian coordinate system is chosen. Introducing the displacement field u = x−X = (u1, u2, u3),
e write the deformation gradient as F = I + grad u, where I is the identity tensor. Consequently, we also have

∂tF = grad v , (1)

here v = ∂tu is the particle velocity.
In this paper we consider incompressible hyperelastic materials, for which the constraint of no volume dilatation

det F ≡ 1 (2)

s prescribed at all times, so that the mass density ρ is constant. The deformation is also governed by the equation of
otion [2,21,22]

ρ ∂tv = div P + f , (3)

where f is the density of body force per unit volume. The dependence of the first Piola–Kirchhoff stress tensor P with F
is specified by the constitutive law.

For incompressible solids, the constitutive law may be expressed as P = −pF−⊤
+ ∂W/∂F , where p is a Lagrange

multiplier due to incompressibility and W is the strain energy density. For instance, the strain energy of homogeneous
and isotropic incompressible solids may be expanded as [7,8]

W = µI2 +
1
3AI3 + DI22 (4)

in terms of the invariants Ik = tr Ek of the Green–Lagrange strain tensor

E =
1
2

[
grad u + grad⊤u + (grad⊤u)(grad u)

]
. (5)

his finite-strain tensor is linked to the right Cauchy–Green deformation tensor C = F⊤F through the relation E =
1
2 (C−I).

The material parameters of (4) are the initial shear modulus µ (second Lamé coefficient) and the higher-order elastic
constants A, D (Landau constants of quadratic and cubic nonlinear elasticity, respectively).
2
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Fig. 1. Typical directional wave fields of this study; Sketch of equal-phase surfaces issued from a line source located on the Z-axis.

The constitutive law may be rewritten as P = FS , where S = −pC−1
+ ∂W/∂E is the second Piola–Kirchhoff

tress tensor. Note that when computing the tensor derivative ∂W/∂E , we must keep in mind that the incompressibility
onstraint introduces a dependence of one invariant Ik with respect to the two others (see [23] and Appendix A). In the
ppendix, we derive the expression of the Cauchy stress tensor σ as

σ = −pI + 2
(

∂W
∂ IC

+ IC
∂W
∂ IIC

)
B − 2

∂W
∂ IIC

B2 (6)

in terms of B = FF⊤, the left Cauchy–Green deformation tensor, from which the expression of P = σF−⊤ is deduced. The
coefficients in Eq. (6) are detailed in the Appendix (Eq. (A.5)). Using the Cayley–Hamilton theorem, the previous stress–
strain relationship may be written in terms of I , B and B−1 up to a redefinition of the arbitrary Lagrange multiplier [8].
However, we keep the present form to avoid the computation of inverse matrices when working out the equations of
motion later on.

2.2. Scaling the equations of motion

Similarly to Wochner et al. [7], we introduce the following scaling

u1 = ϵ2U1, u2 = ϵU2, u3 = ϵU3, p = ϵ2p̃, f = ϵ3 f̃ ,

X̃ = ϵ2X, Ỹ = ϵY , t̃ = t − X/c,
(7)

where ϵ is a small dimensionless parameter and c =
√

µ/ρ is the shear wave speed of linear elasticity. No scaling
is assumed for the Z coordinate, as the field variables are assumed invariant with respect to Z (see Fig. 1). Here, the
ields u, p, f are functions of the coordinates X, t , while the new variables U , p̃, f̃ depend on X̃, t̃ . Note that the present
araxial approximation for directive sources differs significantly from the geometric acoustics/optics approximation (ray
heory) [24], even though formal similarities may be found.

Following the transformation rules (7), we rewrite the variables F , v and the equations of motion (1)–(3) as

F = I + ∂Uu ·
(
g̃radU · ∂X X̃ + ∂t̃U ⊗ ∂X t̃

)
∂t̃F = g̃rad v · ∂X X̃ + ∂t̃v ⊗ ∂X t̃

v = ∂Uu · ∂t̃U ρ ∂t̃v = g̃rad P : (∂X X̃)⊤+ ∂t̃P · ∂X t̃ + f
(8)

n terms of the new coordinates, where the Jacobian matrices have the following components:

∂Uu =

⎡⎣ϵ2 0 0
0 ϵ 0
0 0 ϵ

⎤⎦ , ∂X X̃ =

⎡⎣ϵ2 0 0
0 ϵ 0
0 0 1

⎤⎦ , and ∂X t̃ =

[
−1/c
0
0

]
. (9)

n terms of the displacement field U , we have

F = I +

⎡⎣ϵ2(ϵ2U1,1̃ −
1
c U1,t̃ ) ϵ3U1,2̃ 0

ϵ(ϵ2U2,1̃ −
1
c U2,t̃ ) ϵ2U2,2̃ 0

ϵ(ϵ2U3,1̃ −
1
c U3,t̃ ) ϵ2U3,2̃ 0

⎤⎦ and

ρϵ2 U1,t̃ t̃ = ϵ2P11,1̃ + ϵP12,2̃ −
1
c P11,t̃ + ϵ3 f̃1

ρϵ U2,t̃ t̃ = ϵ2P21,1̃ + ϵP22,2̃ −
1
c P21,t̃ + ϵ3 f̃2

ρϵ U3,t̃ t̃ = ϵ2P31,1̃ + ϵP32,2̃ −
1
c P31,t̃ + ϵ3 f̃3 ,

(10)

here the components of P are deduced from the scaled components of the deformation gradient tensor F . Here, partial
ifferentiation is specified using subscript notation (after the commas). Integer subscripts 1̃-3̃ denote partial differentiation
ith respect to the components of the position vector X̃ , while the subscript t̃ denotes differentiation in time. At leading
quadratic) order in ϵ, the incompressibility constraint (2) amounts to the substitution U = cU in the above equations.
1,t̃ 2,2̃

3
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By transforming back to the original spatial coordinates X and by making appropriate substitutions, the same equations
s Eqs. (10)-(11) of [7] are obtained at cubic order as

u2,1t̃ =
c
2
(α2u2,22 + f2/µ) +

β2

2c

(
u3,t̃ t̃u3,2 − u3,2t̃u3,t̃

)
+

β3

3c3
(
u2,t̃ (u2,t̃

2
+ u3,t̃

2)
)
,t̃

u3,1t̃ =
c
2
(α2u3,22 + f3/µ) +

β2

2c

(
u2,t̃ t̃u3,2 − u2,2t̃u3,t̃

)
+

β2

c

(
u2,t̃u3,2t̃ − u2,2u3,t̃ t̃

)
+

β3

3c3
(
u3,t̃ (u2,t̃

2
+ u3,t̃

2)
)
,t̃

(11)

but with additional spatial symmetries due to invariance along the Z-coordinate. Here, the displacement u depends on
the coordinates X, t̃ , which is standard but slightly abusive notation compared to the initial definitions (7). At leading
(quadratic) order, the equation giving the Lagrange multiplier in unbounded domain reads p = ρβ2

(
u2,t̃

2
+ u3,t̃

2
)
. In

Eq. (11), we introduced the quadratic terms coefficient β2 and the cubic terms coefficient β3 [7,8]

β2 = 1 +
A
4µ

, β3 =
3
2

(
1 +

A/2 + D
µ

)
. (12)

or later use, we introduced a parameter α ∈ {0, 1} in Eq. (11) that gives the possibility to discard the diffraction term.
ote that if the configuration is invariant along the transverse Y -axis, then the diffraction term vanishes as well as the

quadratic term [4,5].

2.3. First-order recast

Let us introduce the displacement’s partial derivatives vi = ui,t̃ , θi = ui,1, ε = u2,2 and ϑ = u3,2 with i = 2, 3. Thus,
he system (11) is rewritten as

θ2,t̃ =
c
2
(α2ε,2 + f2/µ) +

β2

2c

(
v3,t̃ϑ − ϑ,t̃v3

)
+

β3

3c3
(
v2(v2

2
+ v3

2)
)
,t̃

θ3,t̃ =
c
2
(α2ϑ,2 + f3/µ) +

β2

2c

(
v2,t̃ϑ − ε,t̃v3 + 2(v2ϑ,t̃ − εv3,t̃ )

)
+

β3

3c3
(
v3(v2

2
+ v3

2)
)
,t̃ .

(13)

By making use of the equality of mixed partial derivatives, four kinematic relationships between the strains ui,j and the
elocities ui,t̃ are derived. The equations form a first-order PDE system aq,1 + bq,2 + c(q)q,t̃ = s in terms of the vector of

unknowns q = (v2, θ2, ε, v3, θ3, ϑ)⊤. The matrix c(q) = cL + cNL(q) is decomposed as the sum of a constant part cL and of
non-constant part cNL(q), which vanishes if the parameters of nonlinearity β2, β3 are zero. The corresponding matrices

are detailed in the Appendix B. Note that the matrix cNL(q) does not depend on θ2, θ3, and that it vanishes if q → 0.
In Eqs. (11)–(13), the unknowns u, q are functions of X and t̃ (explicit dependence has been dropped for sake of

onciseness). Now, the transformation from the retarted time t̃ to the real time t is carried out. Thus, we introduce the
isplacement field u(X, t̃) = η(X, t). Using differentiation rules, one shows that q satisfies vi = ηi,t and θi = ηi,1 + vi/c ,
hile the differential definitions of ε, ϑ are the same whether u or η is used. Next, we introduce the vector p = T−1q =

v2, γ2, ε, v3, γ3, ϑ)⊤ such that γi = ηi,1. The transformation matrix T is defined in such a way that the variables q = T p
are modified according to γi = θi − vi/c.

The first-order PDE system reads a′p,1 + b′p,2 + c′(q)p,t = s in terms of the original time variable t , where the prime
denotes right-multiplication by T and where c′(q) = c′

L +
1
c a

′
+ c′

NL(q). For later use, we compute the determinant ∆ of
he matrix c′(q), and the expression

c2∆ = 1 + β2ε −
4
3β3

v2
2
+v3

2

c2
−

1
4β2

2ϑ2
−

1
3β2β3

(v22+v3
2)ε+2v2(v2ε+v3ϑ)

c2
+

1
3β3

2( v2
2
+v3

2

c2
)2 (14)

s obtained. In particular, we see that this expression is nonzero even if β2 and β3 are both equal to zero, or if (v2, ε, v3, ϑ)
is sufficiently close to zero. As long as the matrix c′(q) is not singular, we can left-multiply our system by c′(q)−1 to rewrite
the equations of motion as a quasi-linear first-order system of balance laws,

p,t + A(p) p,1 + B(p) p,2 = S(p) with
A(p) = c′(T p)−1a′,

B(p) = c′(T p)−1b′,

S(p) = c′(T p)−1s .

(15)

We give the expressions of the above matrices and vectors in Appendix B.

Hyperbolicity. Let us assume that β2 and β3 both equal zero, so that the system (11) becomes linear. In this case,
the displacement fields u2 and u3 decouple. Moreover, they satisfy the same linear partial differential equation u,1t̃ =
c
2 (α

2u,22+f /µ). According to the theory of second-order differential equations in three independent variables (see e.g. [25],
Sec. III.3.1), this equation is hyperbolic. If the real time variable t is used instead of the retarded time t̃ , then the previous
quation may be rewritten as (u,t +cu,1),t − 1

2α
2c2u,22 = g where g =

1
2 f /ρ. We then recognize a modified wave equation

n (Y , t) coordinates, where the classical term u,tt has been replaced by the time derivative of a transport term along X .
nalytical solutions to this equation are detailed in Appendix C.
Now we study the system of balance laws (15) where the coefficients β2, β3 are set to zero. The spectral properties of

he matrix A show that the characteristic speed along the X-axis is +c. Similarly, the spectral properties of B yield the
4
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characteristic speeds ±αc/
√
2 along the Y -axis. Moreover, the hyperbolicity property can be deduced from the spectrum

f the linear combination n1A+n2Bwhere n = (n1, n2) is a unit vector [15,26]. This property generalizes to the quasi-linear
ystem (15) with arbitrary β2, β3, as long as (v2, ε, v3, ϑ) stays in the vicinity of the origin. More detailed conditions can
be derived analytically in the particular case β2 = 0, β3 > 0, where the non-singularity of the determinant (14) implies
v2

2
+ v3

2 < c2/β3. If this condition is satisfied, then the eigenvalues of n1A(p) + n2B(p) are real for any unit vector n in
oth cases α ∈ {0, 1}, and hyperbolicity is ensured.
We note that the equations of motion have a structure similar to Lagrangian elastodynamics. Indeed, the full system of

onlinear elasticity reads as a conservative first-order system [27], where the conserved variables p are the displacement
radients and the velocities. Nevertheless, the number of state variables is smaller than in the case of two-dimensional
lastodynamics [28] due to assumed deformation and symmetries. An additional remarkable feature is the one-way nature
f the wave propagation, which results from the scaling procedure. In the present directional wave beam model, a non-
onservative system is naturally obtained. Specific theoretical and numerical difficulties arise with such quasi-linear
ystems of partial differential equations, due to the presence of the non-conservative products A(p) p,1 and B(p) p,2. A
edicated numerical method is presented in the next section.

. Numerical resolution

In the examples presented later on, the physical domain is assumed unbounded. We consider a finite numerical domain
or X = (X, Y ) in [−1, 1]×[−1, 1]/

√
2. It is discretized using a regular grid in space with mesh size ∆x in the X-direction,

and ∆y in the Y -direction. The coordinates of the nodes are (xi, yj) = (i∆x, j∆y), where 0 ⩽ i ⩽ Nx and 0 ⩽ j ⩽ Ny. The
total number of nodes is (Nx + 1) × (Ny + 1), where Nx = 2/∆x and Ny =

√
2/∆y denote the number of cells in each

irection. A variable time step ∆t = tn+1 − tn is introduced. Therefore, p(xi, yj, tn) denotes the solution to (15) at the grid
ode (i, j) and at the nth time step. Numerical approximations of the solution are denoted by pn

i,j ≃ p(xi, yj, tn).

.1. Finite volume method

The system of balance laws (15) is integrated explicitly according to the following updating formula:

pn+1
i,j = pn

i,j −
∆t
∆x

(
Df+

i− 1
2 ,j

+ Df−
i+ 1

2 ,j
+ δfi,j

)
−

∆t
∆y

(
Dg+

i,j− 1
2

+ Dg−

i,j+ 1
2

+ δgi,j

)
+ ∆t Sni,j, (16)

here the approximation Sni,j of the source term S(p) is specified later on. This formula is used for the interior cells, while
seudo-absorbing boundary conditions are implemented at the boundaries of the numerical domain (Sec. 21.8.5 p. 488
f [15]).
As described in the next paragraph, the jumps Df±i∓1/2,j, Dg±

i,j∓1/2 and the corrections δfi,j, δgi,j in (16) are computed
ccording to a path-conservative finite volume method with slope limiters [16–18]. The method avoids spurious oscilla-
ions and is nearly second-order accurate in space and time on smooth solutions. Moreover, it does not suffer the severe
imitations of the ‘‘naive’’ non-conservative upwind method regarding non-smooth solutions (see [15], p. 238). Note that
ue to the nonlinearity of the system, shocks might form even if loadings are smooth.
The numerical flux differences are computed by applying the MUSCL–Hancock procedure componentwise [17], in

ombination with a path-conservative Osher scheme [16]. The method consists of the following steps:

1. We construct the left (‘−’) and right (‘+’) linearly extrapolated values at the cell interfaces (xi+1/2, yj) and (xi, yj+1/2)
as follows (Sec. 14.4.2 and 16.5 of [17]):

p−

i+ 1
2 ,j

= pn
i,j +

1
2

(
I −

∆t
∆x

A(pn
i,j)
)
∆ip•,j −

1
2

∆t
∆y

B(pn
i,j)∆jpi,• ,

p+

i+ 1
2 ,j

= pn
i+1,j −

1
2

(
I +

∆t
∆x

A(pn
i+1,j)

)
∆i+1p•,j −

1
2

∆t
∆y

B(pn
i+1,j)∆jpi+1,• , (17)

p−

i,j+ 1
2

= pn
i,j −

1
2

∆t
∆x

A(pn
i,j)∆ip•,j +

1
2

(
I −

∆t
∆y

B(pn
i,j)
)
∆jpi,• ,

p+

i,j+ 1
2

= pn
i,j+1 −

1
2

∆t
∆x

A(pn
i,j+1)∆ip•,j+1 −

1
2

(
I +

∆t
∆y

B(pn
i,j+1)

)
∆j+1pi,• .

The coefficients of the matrices A(p) and B(p) are provided in Appendix B. The vectors

∆ip•,j = MC(pn
i,j − pn

i−1,j, p
n
i+1,j − pn

i,j) ,
∆jpi,• = MC(pn

i,j − pn
i,j−1, p

n
i,j+1 − pn

i,j) ,
(18)

are limited differences of p along the X- and Y -directions— in other words, they are limited slopes multiplied by
the mesh size. Here, the monotonized central-difference limiter defined by

MC(a, b) =
1
2 (sgn a + sgn b)min

(
2 |a|, 2 |b|, 1

2 |a + b|
)

(19)

is applied componentwise, where sgn denotes the sign function [15].
5
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Table 1
Mechanical parameters of a pig brain matter sample
[8,30].
ρ (kg/m3) µ (Pa) β2 β3

1.04 × 103 2.4 × 103
−0.43 1.41

2. The evaluation of the jumps is performed according to a path-conservative Osher scheme [16]

Df±
i+ 1

2 ,j
=

(∫ 1

0
A±
(
sp+

i+ 1
2 ,j

+ (1 − s)p−

i+ 1
2 ,j

)
ds
)
(p+

i+ 1
2 ,j

− p−

i+ 1
2 ,j

) ,

Dg±

i+ 1
2 ,j

=

(∫ 1

0
B±
(
sp+

i,j+ 1
2

+ (1 − s)p−

i,j+ 1
2

)
ds
)
(p+

i,j+ 1
2

− p−

i,j+ 1
2
) ,

(20)

where a linear integration path is used. A spectral decomposition of the matrix

A(p) = R(p)Λ(p)R(p)−1 (21)

is obtained numerically (as well as a spectral decomposition of B(p)), e.g. by using the eigen function of the Julia
Language [29]. Here, R(p), Λ(p) denote the matrices of right eigenvectors of A(p) and corresponding eigenvalues,
respectively. The matrices

A±(p) = R(p)Λ±(p)R(p)−1 (22)

and B±(p) are obtained by taking the positive part ‘+’ or the negative part ‘−’ of the eigenvalues to ensure correct
upwinding. The corrections

δfi,j =

(∫ 1

0
A
(
sp−

i+ 1
2 ,j

+ (1 − s)p+

i− 1
2 ,j

)
ds
)
(p−

i+ 1
2 ,j

− p+

i− 1
2 ,j

) ,

δgi,j =

(∫ 1

0
B
(
sp−

i,j+ 1
2

+ (1 − s)p+

i,j− 1
2

)
ds
)
(p−

i,j+ 1
2

− p+

i,j− 1
2
) ,

(23)

are designed to ensure consistency with conservative methods [18]. Note that these important terms are not
included in Ref. [16]. Similarly to (20), a linear integration path was used. The integrals (20)–(23) are computed
numerically by using the three-point Gauss–Legendre quadrature rule [16], which proved sufficient to reach
second-order accuracy.

romm-type methods are recovered by replacing the MC function (19) with the linear average (a, b) ↦→
1
2 (a + b),

hile the projections (a, b) ↦→ a or b yield either Beam–Warming or Lax–Wendroff-type methods [17]. The first-order
ath-conservative Osher scheme is recovered by replacing the limiter function (19) with the zero function. We note
hat the non-conservative upwind scheme is then recovered if we choose to evaluate the integrals of Eq. (20) by using
ownwind-biased Riemann sums.
Empirically, the method is observed to be stable under the Courant–Friedrichs–Lewy (CFL) condition

Co = max
0⩽i⩽Nx
0⩽j⩽Ny

max
{
ϱA(pn

i,j)
∆t
∆x

, ϱB(pn
i,j)

∆t
∆y

}
⩽

1
2

, (24)

here Co is the maximum Courant number in the X and Y directions. The spectral radii ϱA = max |Λ| and ϱB are deduced
from the spectral decomposition (21) of the system’s matrices. The stability of the scheme (16) is also restricted by the
spectral radius of the Jacobian matrix S′(p). For the examples presented hereinafter, a comparison of the stability limits
implies that the scheme (16) is stable under the classical CFL condition (24). Hence, given a spatial discretization and a
Courant number Co, the value of the time step ∆t is updated at each iteration according to Eq. (24).

3.2. Validation

The previous method is applied to a set of test cases whose analytical solutions are detailed in Appendix C. The first
two tests correspond to the two-dimensional linear case where α = 1, β2 = 0, β3 = 0, and ρ and µ are taken in Table 1.
The third test is performed in a one-dimensional nonlinear case where α = 0, β2 = 0 (cubic nonlinearity only), and the
other parameters are specified in Table 1. The values in Table 1 are representative of pig brain matter [8,30]. Unless stated
otherwise, the Courant number is Co = 0.45.
6
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i
d

Fig. 2. Linear initial-value problem with initial data consisting of a smooth sinusoidal bump and a rectangular bump. (a) Top: map of the velocity
v2 in m/s obtained numerically. Bottom: cut along the line Y = 0. (b) L2 error measurements restricted to the line segment between dashed lines.

Linear initial-value problem. The source term Sni,j is zero. The initial data p0
i,j with wavelength λ = 0.2 m is obtained by

computing the cell averages of

p◦(n · X) = v◦

(
X + Y

λ
√
2

)
⎡⎢⎢⎢⎢⎢⎣

1
(1 −

√
3)/c

(1 −
√
3)/c

0
0
0

⎤⎥⎥⎥⎥⎥⎦ with v◦(ξ ) =

⎧⎪⎨⎪⎩
cos2(2πξ ) if −

3
4 < ξ < −

1
4 ,

1 if 1
4 < ξ < 3

4 ,

0 elsewhere

(25)

n m/s. Thus, the initial data consists of a smooth sinusoidal bump and a rectangular bump, which propagate along the
irection of angle ϕ = π/4 (see Appendix C).
In theory, the initial data is translated diagonally with constant speed 1+

√
3

2
√
2
c . This is illustrated in Fig. 2, which displays

the numerical solution. It was obtained by iterating the time-stepping formula (16) up to t ≈ 0.1 s. Fig. 2a displays the
numerical solution obtained with Nx = Ny = 200. This figure shows that both parts of the wave are captured well. Fig. 2b
shows error measurements in L2-norm performed along the line Y = 0 for −0.05 < X < 0.2 (smooth bump), where
Nx = Ny varies from 25 to 800. The experimental order of accuracy is evidenced by the slope of the error curve. With the
present method, second-order accuracy is obtained.

Linear non-homogeneous problem. The initial data p0
i,j is zero. The only non-zero component of the body force f is f2 = 2ρg

(N/m3). The corresponding non-zero component of the source term S is of the form S1 = g (see Appendix B). Here, we
consider a sinusoidal point source g(X, t) = aδ(X)δ(Y )s(t) with s(t) = sin(ωt) for times t > 0. Computing the cell averages
of S, we have

Sni,j = a
δi,i0

∆x
δj,j0

∆y
s(tn)

⎡⎢⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦ . (26)
0
7
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i

Fig. 3. Linear non-homogeneous problem with initial data consisting of a sinusoidal point source. Top: map of the velocity v2 in m/s obtained
numerically at t ≈ 0.2 s (a) and t ≈ 0.4 s (b). Bottom: comparison of the numerical and analytical solutions along the line Y = 0.

Indeed, the cell average of Dirac deltas δ(X)δ(Y ) produces Kronecker symbols δi,i0δj,j0 divided by the cell’s surface area
∆x∆y. Here, the source is localized at the origin, i.e. xi0 = 0 and yj0 = 0 when the numbers of cells Nx, Ny are even
integers. The source has amplitude a = 0.2 m3/s2 and angular frequency ω = 20π rad/s.

Fig. 3 represents the solution obtained numerically for Nx = Ny = 400, where the time-stepping formula (16) was
iterated up to t ≈ 0.4 s. As time increases, a directional wave beam propagates along the X-direction.

Comparisons between the numerical solution and the analytical solution of Eq. (C.10) in Figs. 3a-3b show that the
numerical method produces consistent results. Due to diffraction, the long-time velocity amplitude decreases as X−1/2

with the distance of propagation X . The slight amplitude mismatch between numerical and analytical computations is
due to the numerical diffusion of the MUSCL scheme. The small phase mismatch is caused by the explicit integration of
the source. All these numerical artifacts vanish as the mesh is refined.

Nonlinear initial-value problem. This configuration is spatially one-dimensional, and the source term Sni,j is zero. The initial
data p0

i,j = p◦(xi, yj) with wavelength λ = 0.4 m reads

p◦(X) = v◦(X/λ)

⎡⎢⎢⎢⎢⎢⎣
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦ , with v◦(ξ ) =

{
1 if −

1
4 < ξ < 1

4 ,

1
2 elsewhere

(27)

n m/s. The time-stepping formula (16) is applied up to t ≈ 0.2 s, with a Courant number Co = 0.95. This value, larger
than 0.5, does not induce numerical instability due to the one-dimensional nature of the problem. The initial data (27)
consists of a rectangular bump, which is invariant along Y (see analytical developments in Appendix C).

Similarly to Burgers’ equation with rectangular data [31], the solution is made of a rarefaction and a shock, which
interact after a certain amount of time. This is illustrated in Fig. 4, where the solution obtained with Nx = 200 is displayed
at three different times. The number of cells in the Y -direction includes twice the schemes stencil, i.e. Ny = 5. The position
of the discontinuity in Fig. 4c is obtained quasi-analytically, by numerical integration of the Rankine–Hugoniot condition.
We note that the method captures both the rarefaction and the shock wave, and that the latter is well-located.

4. Harmonic generation in Gaussian beams

The main goal of this section is to investigate harmonic generation numerically by solving boundary-value problems.
This configuration is closely related to other studies in the literature, and it provides a natural way to control velocity
amplitudes. Similarly to Destrade et al. [8], we consider two-dimensional motions with Gaussian sound beams.
8
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t
c
t

4

o

Fig. 4. Nonlinear initial-value problem (27) which is invariant along the Y -direction. Numerical and analytical solution displayed at t = 0 s (a),
t = 0.1 s (b) and t = 0.2 s (c).

The computational domain is reduced to X = (X, Y ) in [0, 0.6] × [−0.6, 0.6]/
√
2. Therefore, the mesh size is now

deduced from Nx = 0.6/∆x and Ny = 1.2/(∆y
√
2). The initial data p0

i,j is zero, and the boundary data is specified at
he domain’s left boundary X = 0. Numerically, the boundary condition is imposed by implementing an incoming wave
ondition (Sec. 7.3.2 of [15]). The domain’s top, bottom and right boundaries have the same absorbing properties as in
he previous section. Receivers are placed every 0.05 m along the line Y = 0 to record the signal in time.

.1. Linear case

Here the nonlinearity coefficients β2, β3 are set to zero. The boundary data is that of a pure anti-plane shear beam, with
nly non-zero component v2(0, Y , t) = ah(Y )s(t), where the spatial evolution is a Gaussian function h(Y ) = exp(−(ω

c Y )
2).

In practice, the function h(Y ) is truncated at the distance 3 c
ω
from the origin, where the Gaussian has sufficiently vanished.

We take a causal sinusoidal signal s(t) = sin(ωt) with amplitude a = 0.7 m/s and angular frequency ω = 20π rad/s.
The solution is obtained numerically for Nx = 250 and Ny = 500, where the time-stepping formula (16) was iterated

up to t ≈ 0.6 s. With the present grid, we have 63 points per wavelength at the fundamental frequency, and 10 points
per wavelength at the sixth harmonic frequency. A snapshot of the final numerical solution is shown in Fig. 5a, and a
video of the simulation is provided in the supplementary material.

To estimate whether a given harmonic amplitude is significant or not, we measure the harmonic amplitudes along
the beam axis. Fig. 5b displays the evolution of the harmonic amplitudes with the propagation distance. The sine and
cosine Fourier coefficients an, bn at the angular frequency ω were computed over the last period of signal by numerical
integration (trapezoidal rule). Then, the harmonic amplitudes Hn = ∥(an, bn)∥2 were divided by the theoretical harmonic
amplitude H1 of the first harmonic, see analytical solution (C.16) in Appendix C. At each receiver, a small amount of
undesired harmonics—mainly odd ones— is spuriously generated by the numerical procedure. Therefore, in the nonlinear
cases below, only harmonic amplitudes larger than those in Fig. 5b will be considered to be physically significant.

4.2. Cubic nonlinearity only

The nonlinearity coefficient β2 is set to zero, while β3 is taken from Table 1. The other parameters are the same as in
the linear case. Without the quadratic nonlinearity coefficient β2, the system (11) governing displacement components
decouples and v3 remains equal to zero.

Fig. 6 illustrates the generation of odd harmonics with increasing propagation distances. In the farfield, numerical
results show that harmonic generation slows down as waves propagate, due to the combined effects of nonlinearity and
wave diffraction (diminution of wave amplitudes). In the absence of diffraction (α = 0), a shock would have formed at
the distance Xs ≈ 0.08 m [5] (see also Appendix C). By making amplitudes decrease as X−1/2, diffraction prevents wave
breaking, and the solution keeps smooth during the simulation.

4.3. Quadratic and cubic nonlinearity

Both nonlinearity coefficients β2, β3 are taken from Table 1. In the present configuration, the full system is solicited,
and the results are included in Fig. 6. We note that the picture is very similar to the purely cubic case, up to the fact
that the second harmonic is slightly more present. This observation confirms that such shear waves produce mainly odd
harmonics, and it is consistent with the analysis of Destrade et al. [8] when the initial data is a pure anti-plane shear
beam.
9



H. Berjamin and M. Destrade Communications in Nonlinear Science and Numerical Simulation 103 (2021) 106036
Fig. 5. Linear boundary-value problem. (a) Top: snapshot of the velocity v2 at t ≈ 0.6 s; Bottom: numerical and analytical solutions along the
line Y = 0. A video of the simulation is provided in the supplementary material. (b) Evolution of the normalized harmonic amplitudes with the
propagation distance X at Y = 0 (labels: order n).

Fig. 6. Nonlinear boundary-value problem with purely cubic nonlinearity (red), or with quadratic and cubic nonlinearity (blue). (a) Velocity signal
obtained numerically at t ≈ 0.6 s; (b) Normalized harmonic amplitudes with respect to the propagation distance if β2 = 0 (top) or if β2 ̸= 0
(bottom). The dashed curve marks the fifth harmonic obtained in the linear case (Fig. 5b).

5. Conclusion

We introduced a numerical method that solves the coupled nonlinear partial differential equations governing 2D
directional shear waves in elastic solids. We proposed a change of variables leading to a hyperbolic system of first-
order partial differential equations, where the time variable is the physical time t . The resulting system is in quasi-linear
form, which suggests that specific numerical methods can be implemented. We showed that a MUSCL–Osher path-
conservative Godunov-type method provides a second-order shock-capturing algorithm. The slope-limiting procedure
10
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prevents spurious oscillations from being produced around discontinuities. Numerical examples illustrate how the
algorithm can be used to study the propagation of nonlinear shear-wave beams.

The method has great potential. It could be used to investigate how various polarizations of v2 and v3 lead to different
harmonic generation features. As inferred by Destrade et al. [8], the second harmonic may be generated more substantially
if the velocity field v3 was not zero at the boundary. According to their calculations, by enhancing the coupling between
both components of the velocity field through the quadratic term, the second harmonic may reach magnitudes similar to
the fifth harmonic.

The method could also be extended to other KZK-type equations which include dissipation [6,14]. It could be
extended to nonlinear viscoelastic and anisotropic materials [32–34], and to slightly compressible materials. Moreover,
the modelling of directional wave beams in pre-stressed solids—a.k.a. materials submitted to conditioning [35]— is an
open problem [36].

The implementation of such a method in the full three-dimensional case remains a challenge. The development
of an efficient code using parallelization, higher-order methods and adaptive mesh refinement would be useful for
applications [18,19].
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Appendix A. Using the principal invariants

Let us express the principal invariants IC , IIC , IIIC of the right Cauchy–Green tensor C = F⊤F in terms of the invariants
Ik = tr Ek:

IC = tr C = 3 + 2I1
IIC =

1
2

(
IC 2

− tr C2)
= 3 + 4I1 + 2I12 − 2I2

IIIC = det C = 1 + 2I1 + 2I12 − 2I2 +
4
3 I1

3
− 4I1I2 +

8
3 I3,

(A.1)

r inversely,

I1 =
1
2 (−3 + IC )

I2 =
1
4 (3 − 2IC − 2IIC + IC 2)

I3 =
1
8 (−3 + 3IC + 6IIC − 3IC 2

+ 3IIIC − 3IC IIC + IC 3) .

(A.2)

The incompressibility constraint (2) imposes IIIC ≡ 1, which implies that one invariant Ik depends on the two others.
ubstituting the expressions (A.2) in the strain energy function (4) leads to a fourth-order Rivlin series [8]

W =

4∑
i+j=1

cij(IC − 3)i(IIC − 3)j (A.3)

hich coefficients are given in Table A.2. Using the chain rule along with the tensor derivatives of the principal invariants
IC/∂C = I and ∂ IIC/∂C = IC I − C , the constitutive law is written as

S = −pC−1
+ 2

(
∂W
∂ IC

+ IC
∂W
∂ IIC

)
I − 2

∂W
∂ IIC

C (A.4)

ith the coefficients

2
(

∂W
∂ IC

+ IC
∂W
∂ IIC

)
= −µ +

1
4A −

3
2D + DIC −

1
2DIC

2
− ( 14A − D)IIC

−2
∂W
∂ IIC

= µ −
1
2A +

3
2D + ( 14A − D)IC +

1
2DIC

2
− DIIC .

(A.5)

he above constitutive law is rewritten in terms of the Cauchy stress tensor σ = FSF⊤ in Eq. (6).
11
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Table A.2
Coefficients cij of the Rivlin series (A.3), where the index i increases— respectively,
the index j decreases— from the left (i = 0) to the right (j = 0).

i + j cij

1 −
1
2µ −

1
8A µ +

1
8A

2 1
4D −

1
8A − D 1

4µ +
1
4A + D

3 0 0 −
1
4D

1
24A +

1
2D

4 0 0 0 0 1
16D

Appendix B. System matrices

The matrices of the first-order system in retarded time t̃ are specified below:

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 −

α2

2 c
0 0 0
1 0 0
0 0 −

α2

2 c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, cL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0
0 0 −1
0 1 0

0 −1 0
0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

cNL(q) =
β2

2c

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0 −ϑ 0 v3

0 0 0
0 0 0

−ϑ 0 v3 2ε 0 −2v2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

β3

3c3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

3v2
2
+ v3

2 0 0 2v2v3 0 0
0 0 0
0 0 0

2v2v3 0 0 v2
2
+ 3v3

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (B.1)

he source term has components s =
1
2 c/µ (0, 0, f2, 0, 0, f3)⊤. The matrices A(p) = [Aij], B(p) = [Bij] and the vector

(p) = [Si] of the quasi-linear system of balance laws (15) in real time t are deduced from the above arrays. Non-zero
oefficients are detailed below:

A11 =
1
c∆

(
1 + β2ε −

1
3β3

v2
2
+3v32

c2
)

A14 =
1
c∆

( 1
2β2ϑ +

2
3β3

v2v3
c2
)

= A41

A21 = −1 = A54 A44 =
1
c∆

(
1 −

1
3β3

3v22+v3
2

c2
)

B11 = β2
v3
c2∆

( 1
4β2ϑ +

1
3β3

v2v3
c2
)

B31 = −1 = B64

B13 = −
1
2α

2 1
∆

(
1 + β2ε −

1
3β3

v2
2
+3v32

c2
)

B41 =
1
2β2

v3
c2∆

(
1 −

1
3β3

3v22+v3
2

c2
)

B14 =
1
2β2

v3
c2∆

(
1 + β2ε −

1
3β3

5v22+3v32

c2
)
−

1
2β2

2 v2
c2∆

ϑ B44 = −β2
v2
c2∆

(
1 −

1
3β3

3v22+2v32

c2
)
+

1
4β2

2 v3
c2∆

ϑ (B.2)

B16 = −α2 c2
β2v3

B11 = B43 B46 = −α2 c2
β2v3

B41

S1 =
1

2µ∆

(
f2 +

1
2β2(2f2ε + f3ϑ) +

1
3β3

2v2(f2v2+f3v3)−3f2(v22+v3
2)

c2
)

S4 =
1

2µ∆

(
f3 +

1
2β2f2ϑ +

1
3β3

2v3(f2v2+f3v3)−3f3(v22+v3
2)

c2
)

and the determinant ∆ = det c′(q) is expressed in Eq. (14).

Appendix C. Some analytical solutions

C.1. Linear waves

Here the coefficients β2, β3 are equal to zero. Therefore, the motion (11) is governed by the PDE (u,t + cu,1),t −
1
2α

2c2u,22 = g , where the right-hand side g =
1
2 f /ρ represents a density of force per unit mass (in m/s2). Introducing the

artial derivatives v = u,t , γ = u,1 and ε = u,2 in a similar manner to Section 2.3, the first-order system of conservation
laws ⎡⎣v

γ

⎤⎦ +

⎡⎣ c 0 0
−1 0 0

⎤⎦⎡⎣v

γ

⎤⎦ +

⎡⎣ 0 0 −
1
2α

2c2

0 0 0

⎤⎦⎡⎣v

γ

⎤⎦ =

⎡⎣g
0

⎤⎦ (C.1)

ε

,t 0 0 0 ε
,1 −1 0 0 ε

,2 0

12
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is obtained. It is of the form p,t + Ap,1 + Bp,2 = S with p = (v, γ , ε)⊤. In what follows, we present some particular
solutions to homogeneous initial- and boundary-value problems (g ≡ 0), and to the non-homogeneous problem g ̸≡ 0
with zero initial conditions.

Initial value problems. In this paragraph, we assume that g ≡ 0. We consider initial value problems of the form
p(X, 0) = p◦(X), where X = (X, Y ) is the vector of spatial coordinates. Particular solutions can be obtained in the
eigenspaces of the matrix M = n1A + n2B where n = (n1, n2) is a unit vector. The spectrum of M reads {0, λ±} with

λ± =
c
2

(
cosϕ ±

√
cos2ϕ + 2α2 sin2ϕ

)
, (C.2)

here the angle ϕ satisfies n = (cosϕ, sinϕ). If cosϕ and α both equal zero, then M is not diagonalizable. Otherwise,
several eigenspaces can be identified.

• the kernel of M has dimension one or two, and any vector in this eigenspace is of the form p = (0, γ , ε)⊤. The
system yields γ,t = 0 and ε,t = 0. Therefore, if the initial data is of the form p◦

= (0, γ ◦, ε◦)⊤, then the solution of
the initial-value problem is p(X, t) = p◦(X). The solution is stationary.

• we consider vectors p = ε ( c
2

2 α2 sin2ϕ/λ∓, cosϕ, sinϕ)⊤ in the eigenspace of M corresponding to a nonzero
eigenvalue λ±. As α sinϕ → 0, this eigenvector becomes p → ε (−λ±, cosϕ, sinϕ)⊤ and the eigenvalue becomes
λ± → c cosϕ, where ± corresponds to the sign of cosϕ. The system yields ε,1 sinϕ = ε,2 cosϕ, which implies that
ε is a function of n·X and t . Also, the system provides ε,t sinϕ + λ±ε,2 = 0 and ε,t cosϕ + λ±ε,1 = 0. Thus, if p◦

is of the present form and can be expressed as a function of n·X , then the solution to the initial value problem is
p(X, t) = p◦(n·X − λ±t). The solution is a plane wave propagating along the n-direction with the speed λ±.

Duhamel’s principle and the Green’s function could be used to derive more general solutions, of a similar kind to those
in the next paragraphs.

Non-homogeneous problems. We expand Green’s function for the second-order scalar form of (C.1), where zero initial
conditions for u, u,t are considered. For the computation of the two-dimensional Green’s function u = G, we define the
source term as g(X, t) = aδ(X)δ(Y )δ(t) where δ is the Dirac delta. The amplitude a ̸= 0 is expressed in m3/s. Fourier
transformation of the PDE leads to(

−ω2
+ cκXω +

1
2α

2c2κY
2) F [Ĝ] = a , (C.3)

here ω denotes the angular frequency and κ = (κX , κY ) is the vector of spatial frequencies in the X-direction. Here, the
hat symbol denotes Fourier transformation

∫
(·) eiωtdt in the time domain, and the operator F denotes the spatial Fourier

transform
∫∫

(·) e−iκ·XdX . Solutions in Fourier domain may be obtained if the polynomial factor in (C.3) is nonzero, which
is assumed from now on. Using the definition of the time-domain Fourier transform, we have

F [G] =
a
2π

∫
R

e−iωtdω
(ω+ − ω)(ω − ω−)

, ω± =
c
2

(
κX ±

√
κX

2 + 2α2κY
2
)

. (C.4)

he integral in Eq. (C.4) is evaluated as part of a contour integral in the complex ω-plane (a half circle in the lower half
f the complex plane which includes ω±). Taking the limit as the radius of the contour increases to infinity, the residue
heorem yields

F [G] = a
e−iω−t

− e−iω+t

i (ω+ − ω−)
for t > 0 , (C.5)

and the inverse spatial Fourier transform G = (2π )−2
∫∫

F [G] eiκ·Xdκ provides an integral representation of the funda-
ental solution G(X, Y , t).
If α = 0, the evaluation of the fundamental solution is rather straightforward, and we have

G(X, Y , t) =
a
c
δ(Y ) H(X) H(ct − X) , (C.6)

here H denotes the Heaviside function. If α ̸= 0, the evaluation of the fundamental solution is more involved. To do so,
let us introduce stretched polar coordinates κ = k

(
cos θ, 1

α
√
2
sin θ

)
such that dκ =

1
α
√
2
k dk dθ . The fundamental solution

is rewritten as

G(X, Y , t) =
a

πcα
√
2

∫
∞

0
sin( 12kct)

[
1
2π

∫ 2π

0
ei(κ·X−

1
2 κX ct)dθ

]
dk . (C.7)

Then, by identifying various integral representations [37], we find

G(X, 0, t) =
a

πcα
√
2

H(X) H(ct − X)
√
X(ct − X)

(C.8)

or Y = 0. This solution becomes singular as α → 0, which is coherent with Eq. (C.6).
13
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Now let us consider a general point source g(X, t) = aδ(X)δ(Y )s(t), where s is a causal dimensionless signal. For sake
f dimensional homogeneity, the coefficient a is expressed in m3/s2 here. Forward Fourier transformation of the PDE leads
o the identity F [û] = F [Ĝ] ŝ in Fourier domain. By virtue of the convolution theorem, backward Fourier transformation
eads to u = G ∗t s, where ∗t denotes convolution in time. Differentiation in time then leads to v = G ∗t s′, where s′ is the
ausal derivative of s. In the case α = 0, the classical expression

v(X, Y , t) =
a
c
δ(Y ) H(X) s(t − X/c) (C.9)

is deduced from the expression (C.6) of G. In the case α ̸= 0, the velocity is represented by

v(X, 0, t) =
a

cα
√
2πc

H(X)
√
X

D1/2s(t − X/c) , (C.10)

here D1/2 denotes the Caputo derivative of order 1/2, defined by

D1/2s(t̃) =
1

√
π

∫ t̃

0
(t̃ − τ )−1/2s′(τ ) dτ =

2
√

π

∫ √

t̃

0
s′(t̃ − ϑ2) dϑ . (C.11)

In practice, the change of variable ϑ = (t̃ − τ )1/2 and then numerical integration are used to evaluate the fractional
derivative.

Now, let us consider a causal periodic point source, for instance such that s(t) = sin(ωt) for positive times. In the case
α = 0, Eq. (C.9) leads to v(X, Y , t) =

a
c δ(Y ) sin(ωt̃) for positive X and positive t̃ = t − X/c. In the case α ̸= 0, we observe

that the solution (C.10) is asymptotically periodic as the time goes to infinity. In fact, as described in [38], we may express
the velocity field as

v(X, 0, t) ≃
a
cα

H(X)
√
X

√
ω

2πc
sin
(
ω(t − X/c) +

π
4

)
(C.12)

for large times t → +∞. In the next paragraph, an extension of (C.10)–(C.12) to the whole domain is introduced.

Boundary value problems. In this paragraph, we assume that g ≡ 0. We consider a boundary value problem of the
form v(0, Y , t) = aδ(Y )s(t) with a in m2/s. The causal signal s is dimensionless. Let us transform back to retarded time
˜ = t − X/c . The boundary value problem reads v,1t̃ =

1
2 cα

2v,22 with v(0, Y , t̃) = aδ(Y )s(t̃) for positive times t̃ . Fourier
transformation in space and retarded time gives(

κX ω̃ +
1
2α

2κY
2c
)

F [v̂] = 0 . (C.13)

Non-trivial solutions are obtained if the dispersion relation κX ω̃ = −
1
2α

2κY
2c is satisfied. Partial Fourier transformation of

he PDE with respect to Y and t̃ leads to a first-order boundary value problem for FY [v̂] in terms of X , where FY denotes
he Fourier operator

∫
(·) e−iκY YdY . After partial integration with respect to X , we end up with FY [v̂] = aŝ(ω̃)eiκXX for

ositive X , where κX is deduced from the dispersion relation. Inverse Fourier transformation in Y and t̃ then provides the
ntegral representation v = a (2π )−2

∫∫
ŝ(ω̃)ei(κ·X−ω̃t̃)dκydω̃ of the solution.

If α = 0, the evaluation of the solution is rather straightforward, and the classical expression

v(X, Y , t̃) = a δ(Y ) H(X) s(t̃) (C.14)

s recovered. Up to a multiplicative coefficient, this expression is the same as Eq. (C.9). If α ̸= 0, then integration along κY
mounts to the computation of generalized Gaussian integrals. Indeed, completing the squares in the exponentials leads
o integrals of the form

∫
e±ik2dk, which are common in quantum field theory (Appendix A of [39]). After integration w.r.t.

Y , we find

v(X, Y , t̃) =
a

α
√
2πc

H(X)
√
X

(
1
2π

∫
R
(−iω̃)1/2ŝ(ω̃) e

−iω̃
(
t̃− 1

2
Y2

α2cX

)
dω̃

)
=

a

α
√
2πc

H(X)
√
X

D1/2s
(
t̃ −

1
2

Y2

α2cX

)
, (C.15)

here the coefficient (−iω̃)1/2 is the symbol of the fractional derivative D1/2 in time domain. Up to a factor c , the solution
C.15) of the boundary-value problem coincides with the solution of the non-homogeneous problem1 (C.10) along the
ine Y = 0. In the case of periodic forcing, the long-time solution is obtained by following [38], in a similar manner to
he non-homogeneous problem (C.10)–(C.12).

The fundamental solution (C.15) can be used to solve more general problems with boundary data of the form
(0, Y , t) = ah(Y )s(t). Using the convolution theorem for the coordinate Y , we find v = h∗Y vδ where vδ is the expression
n Eq. (C.15) obtained for h = δ. Alternatively, we may write FY [v] = FY [h] FY [vδ] in Fourier domain. In particular, if

1 Duhamel’s principle provides a proof of this property over the whole domain (for Y ̸= 0 in particular). To do so, replace a by a
c δ(ξ ) in the

expression of the boundary data and in Eq. (C.15). Then, consider the velocity
∫ X
0 v(X − ξ, Y , t) dξ with v(X, Y , t) deduced from (C.15) to solve the

non-homogeneous problem.
14
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h ≡ 1, then evaluation of the convolution product gives v = aH(X) h(Y )s(t̃). This result is obvious given that the present
roblem is invariant along the Y -coordinate. Now, consider a monochromatic Gaussian beam where h(Y ) = exp(−(ω

c Y )
2)

and s(t̃) = sin(ωt̃) for all t̃ . The Fourier transform FY [h] is a Gaussian integral, and FY [vδ] follows from FY [v̂δ] = aŝ(ω̃)eiκXX .
Taking the inverse Fourier transform of FY [v] = FY [h] FY [vδ] leads again to generalized Gaussian integrals [39]. Finally,
we find

v(X, Y , t̃) =
aH(X)
4√1 + x2

exp
(
−

1
1+x2

(ω
c Y )

2
)
sin
(

ωt̃ −
x

1+x2
(ω
c Y )

2
+ arctan

(√1+x2−1
x

))
(C.16)

with x = 2α2 ω
c X . The near-field and far-field regions are characterized by ω

c X ≪ 1 and ω
c X ≫ 1, respectively. In the

ear-field range, the diffraction-free expression v ≃ aH(X) h(Y )s(t̃) is recovered. In the far-field range, we recover the
ong-time solution deduced from the point source (C.15).

.2. Nonlinear waves

Consider the homogeneous system (15) with S = 0. Here, both the diffraction and the quadratic nonlinearity are
neglected (α = 0 and β2 = 0), but the cubic nonlinearity has coefficient β3 > 0. Alternatively, assume that the
onfiguration is invariant along the transverse Y -axis. In retarded time, these assumptions lead to a set of two coupled
urgers-like equations satisfied by v2, v3 [5,7]. In physical time, a similar process leads to the set of equations

v̄2,1 +
1
c v̄2,t =

1
3c β3

(
v̄2(v̄2

2 + v̄2
3)
)
,t ,

v̄3,1 +
1
c v̄3,t =

1
3c β3

(
v̄3(v̄2

2 + v̄2
3)
)
,t ,

(C.17)

where v̄i = vi/c. The Riemann invariants w̄1 = v̄2
2 + v̄2

3 and w̄2 = v̄3/v̄2 of (C.17) satisfy the scalar transport equations
w̄i,1 + σiw̄i,t = 0, where the characteristic slownesses σi are given by σ1 =

1
c (1 − β3w̄1) and σ2 =

1
c (1 −

1
3β3w̄1). The

characteristic field with slowness σ1 is genuinely nonlinear everywhere except at the origin, whereas the characteristic
field with slowness σ2 is linearly degenerate. One notes that w̄1 represents the squared modulus in the complex v̄2-v̄3
plane, while w̄2 is related to the argument. In what follows, several analytical methods are briefly introduced. Interested
readers are referred to the literature for complements [26,40].

Initial value problems. The initial value problem p(X, 0) = p◦(X) can be solved analytically in terms of the Riemann
invariants w̄1 and w̄2 of (C.17), which satisfy the scalar transport equations w̄i,t + w̄i,1/σi = 0. Solutions to smooth initial
value problems can be expressed in implicit form up to the breaking time by applying the method of characteristics. In
particular, if the invariant w̄1 is constant in space and time, then both velocity components of (C.17) are transported at
constant speed 1/σ2 —that is to say, waves propagate linearly at the same speed. Similarly, if we assume that w̄2 is a
constant, then the velocity components of (C.17) are advected non-linearly at the speed 1/σ1 with w̄1 = (1 + w̄2

2)v̄
2
2 (or

equivalently, w̄1 = (1 + w̄−2
2 )v̄2

3). The system (C.17) decouples, and it can be rewritten in conservation form as

v̄2,t + F+1(v̄2),1 = 0
v̄3,t + F−1(v̄3),1 = 0

where Fk(v̄) = cv̄
artanh

(
v̄

√
(1 + w̄2k

2 )β3

)
v̄

√
(1 + w̄2k

2 )β3

(C.18)

and where artanh is the inverse hyperbolic tangent function. Thus, we note that the linear advection equation is recovered
at small amplitudes. Solving the Riemann problem of (C.18) for shock and rarefaction waves requires particular care, since
the artanh function is neither convex nor concave (see e.g. Ref. [41] and references therein). To avoid complications, the
example considered in this document involves data located on the same side of the inflection point.

Boundary value problems. The same method applies for the boundary value problem p(0, Y , t) = p◦(t). The Riemann
invariants w̄1 and w̄2 of (C.17) satisfy w̄i,1 + σiw̄i,t = 0. Solutions to smooth boundary value problems can be expressed
in implicit form up to the shock distance. If the only nonzero component at the boundary is v2(0, Y , t) = a sin(ωt), then
the shock distance reads Xs = c3/(β3ωa2) [5,40].

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cnsns.2021.106036.
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