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the “method of the polarization vector,” and it shows that the wave is dispersive and
decelerates with increasing rotation rate. The case of orthorhombic symmetry is also
treated. The surface wave speed is computed for 12 monoclinic and 8 rhombic crystals,
and for a large range of the rotation rate/wave frequency ratio.
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1 Introduction crystals with a single symmetry plane, up to the derivation of the

secular equation in explicit form, that is an equation giving the

Introduced more than 30 years ago, surface acoustic Waﬁ@yleigh wave speed in terms of the elastic parameters and of the
(SAW) devices have been used with great success by the telecqg{éti on rate

munication industry: nowadays, they are produced in large quan-rpq equation is reached in Sec. 3, after the governing equations
tities (several billions per yeaiand used in wireless transmission, .« heen written down in Sec. 2 'I"he secular equation turns out
and reception technology for color television sets, cell phone@ be a polynomial of degree 8 for the squared wave speed and
global positioning systems, etc. In recent years, new applicatiog, for the squared rotation rate/wave frequency ratio. In the
for SAW_devices have emerged, namely _acoustic sensors, Whﬁ%’upler case of orthorhombic symmei(§ec. 4, the polynomial
are passivéno power supply is needgdesistant, almost nonag- js of degree 6. The Rayleigh wave speed is computed numerically
ing, cheap(only one photo-lithographic process is involved in the, 20 specific anisotropic materials2 monoclinic, 8 orthorhom-
production, light (less than 1pand can be operated remotely andyic) and for a rotation rate/wave frequency ratio varying from 0 to
wirelessly. For instancfl], SAW identification tags are used for 10 of course, this range is way beyond the elastic behavior limit,
highway toll collection in Norway and for the Munich subwayang js jrrealistic for pratical purposes where the frequency of a
system; SAW temperature sensors can achieve a resolutionsgiy device is typically in the 100 kHz—10 MHz range. It is
0.02°C from—196°C up to 500°C; wide ranges and fine resolupresented to show that the method of resolution is exact and not
tions are also achieved for pressure, torque, or current sensors, gproximate, applies for any rate of rotation, and that in contrast
Also, the automotive industry is engaged in the search for gith the nonrotating case, the secular equation is dispersive. At
“intelligent tire” which could provide direct information on its small rotation rates, and for certain crystals such as PZT-5, other
current state as the car is moving; in this context SAW sensqigpers,[6,8], show that the Rayleigh wave speed may at first
have been used to measure tire presg@feor friction, [3], as the jncrease slightly with the rotation frequency/wave frequency ratio.
wheel rotates. In general, SAW devices may be used as anguyl@farge ratios, it is seen here that the wave speed decreases with
rate sensorggyroscopesto measure frequency shifts due to thencreasing ratios. These variations are crucial to the understanding
rotation,[4—6]. In the present paper, an investigation of the effecind correct design of rotating SAW sensors or SAW signal pro-
of rotation upon the speed of surfa@iRayleigh waves in an an- cessing devices. A recent artic[®], describes the manufacturing
isotropic crystal is presented. of a 1 cmx1 cm SAW gyroscope and how the rotation rate may
The crystal may possess as little as a single plane of symmetsg. measured using SAW technology. Another example that
It is cut along any plane containing the normal to the symmetgprings to mind is that of “spinning missiles]10], for which one
plane and is assumed to rotate at a constant rate about this normmight speculate that the communication is ensured via SAW gen-
The surface wave is polarized in the symmetry plane. In otheration and processing of high-frequency signals modified by the
words, it suffices to consider the propagation of a surface waverittation. Finally in Sec. 5, the merits of several methods of deri-
the x;-direction of a monoclinic crystal with symmetry plane atation for the secular equation in non-rotating crystals are dis-
x3=0, cut along thex,=0 plane, and rotating about thg-axis cussed. This paper aims to provide a theoretical and analytical
(see Fig. 1 The secular equation for rotating materials was olframework for the study of surface acoustic waves in rotating
tained by others but in simpler settings: by Clarke and Burdessarystals.
an isotropic material, first for small rotation rate/wave frequency
ratios,[4], then for any ratio[5]; by Grigor'evskij Gulyaev, and 2 Basic Equations

Kozlov [7] also for isotropic materials but neglecting the centrifu- \ye consider a half-space,=0 occupied by a homogeneous
gal force; and by Fang, Yang, and Jiaf@] for crystals having anisotropic crystal possessing one plane of symmetry,ato,
tetragonal symmetry. Here, the analysis is fully developed fgf,q rotating at a constant angular veloditabout thexs-axis. We
— _ o study the propagation of a surfad®ayleigh wave in the
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where the strain componentg are defined in terms of the dis-

placement components by:e2=u; ;+u;;, and thesi’j are the

Fig. 1 Monoclinic crystal with symmetry plane at X3=0, cut reduced compliances. Alternatively, the equivalent strain-stress re-

along x,=0, and rotating about Xx; at constant angular velocity lations can be used|12], p. 39,
o o=C¢€, Cg=1, ®)
where O'o:[0'11,0'22,0'23,0'31,0'121-'—, Eo:[fll, ...,2E1i|T. The

. _ ) ) _ . C;jj are elements, in the Voigt notation, of the fourth-order elastic
ond term in the right-hand side of E€l) is due to the Coriolis stiffness tenso€;;, . Table 1 shows the relevant reduced compli-
acceleration, the third is due to the centrifugal acceleration. Noj@ces of 12 different monoclinic crystals, computed from the cor-
that Eq. (1) represents the time-dependent part of the full equgesponding stiffnesses as collected by Chadwick and W{i8h
tions of motion. The time-independent part, namely @fiv the last column gives the corresponding Rayleigh wave speed in
=pQ%k X [kx (u+x)], whereu’=u’(x) and o} = c;j U7, must  the nonrotating cas¢14].
be solved separately. The questions remaigapfvhether an ac-  In view of the form Eq.(2) for the displacement, we introduce
tual time-independent solution exists for Qlland if it does, ofb)  the functionst,, t, for the tractionss;,, o,, on the planes,
whether the boundary conditions of a traction-free rotating half= const. as
space may be satisfied without perturbating the time-dependent

" . ik _

boundary value problem. These questions do not seem to have T1dX1, %z X3, 1) =ikt (kxp) ka0,
been addressed in the literature, but some preliminary work seem —ikto(k ik(xg— 0t)
however to suggest th&) and(b) may be answered positively, at 022 X1,X2,X3,1) =ikta(kxp) € :

least within the framework of small amplitude waves superim]-hen, substituting Eq€2) and (3) into the equations of motion

posed upon a large elastic deformation. (1), we derive the following system of linear first-order differen-
Now, turning back to the time-dependent Et)), the mechani- | equations fol,, U,, t;, to,
N 4
t] (4)

cal displacement is taken in the form
whereU=[U,,U,]", t=[t;,t,]", and the prime denotes differ-
showing a sinusoidal propagation with speednd wave number entiation with respect t&x,. Note that, as in the static ca$é&5],
k in the x;-direction, and the possibility of an attenuation in théhe antiplane strain(stres$ decouples from the plane strain
Xo-direction through the unknown functidd(kxs). (stres$ and need not be considered for this problem. This decou-
We wish to describe the influence of the frame rotation upon thing would not occur if the crystal was rotating about iheaxis
speed of Rayleigh waves, and to this end, we introduce the folr the x,-axis, [6].
lowing quantities: The surfacex,=0 is free of tractions and so, the boundary
conditions are

N1 N,
No+(1+85)X1 Ny

u’} _
. y |=1
U(Xq,Xp,Xg,t) = U(kxp)elkxa—v0), ) [ t

X=pv?, 6=0/(kv)=0Qlw, t1(0)=t,(0)=0. (5)

In Eq. (4), N, andN, are the same as the<2 submatrices of
wherew is the real frequency of the wave. the 6x6 fundamental elasticity matriXl from Ingebrigsten and
For two-dimensional motions?(/ 9x3=0) such as Eq(2), the Tonning[16]. Their real matrixN;, however, has been modified
anisotropy of a crystal possessirg=0 as a symmetry plane is by the introduction of off-diagonal pure imaginary terms. Explic-
described by the following strain-stress relationshif2): itly, we have

Table 1 Values of the reduced compliances  (10™*2m?/N), density (kg/m®), and (nonrotating )
surface wave speed (m/s) for 12 monoclinic crystals

Material Si1 S22 Si2 St6 S26 Sgo p URr
diphenyl 854 1858 —366 —698 —1.44 5049 1114 1276
tin fluoride 345 228 —59.2 -197 120 922 4875 1339
tartaric acid 343 211 —164 —223 301 1650 1760 1756
oligoclase 133 227 —108 97.0 —160 483 2638 2413
microcline 94.5 165 -35.1 47.2 1.69 446 2561 2816
gypsum 243 130 —68.6 329 28.1 326 2310 3011
hornblende 63.3 103 —-32.7 —15.8 —2.72 320 3120 3049
aegirite-augite 53.6 784 —-21.0 -10.6 -33.5 237 3420 3382
epidote 53.3 49.6 -11.3 17.7 —-3.74 237 3400 3409
augite 54.5 64.4 —19.5 —19.0 —15.7 211 3320 3615
diopside 53.1 58.6 —-20.1 24.0 6.98 186 3310 3799
diallage 49.8 69.1 -11.3 —6.88 —14.5 166 3300 4000
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Y, 0 Nas Na2 —2i6X 0 Now, the eigenrelation Eq6) may be generalized for any posi-
where the quantities,, rg, Ny, Ny, Ngs, 77 are given in terms of UVE OF nNegative integen as

the elastic parameters §44,17)) Ta i a e i N(l”) N<2n) .
1 ol s, Plp|=N[p): whereN'=| i yoor (say. (9)
n=o s em o .
S11 Su St Explicitly, the elements oN" are computed by multiplication of
1sy Sis 1 sy sio 1]s), s} Norits ig\(/le)zrsq by itself. l;or instanc& " for n=1, 2, —1 is
Nge=—— v Npp=— v Nog=—~ . iven by K =Nz+X(1+ 691,
° S111St6  Ses 2 S111S12 S 2 S11S12  Soe g y V(;) ( ) , )
_ ’ _ ! ’
Thus the rotation of the crystal perturbs the equations of motion in Ki1=—2s1d 1531+ 8)X /sy,
three ways: the introduction of dispersion througha shift of ()1 et ot PNV T
magnitudes? in X=puv? for the lower left submatrix oN pro- Kig =[1= (11819 (1+ 89X = 2is360X]/s11, = K371, (10)
portional to the X2 unit matrix; and the modification dfs, k(222>:0

which is diagonal in the nonrotating cae®te that the new ma-

trix N3 is Hermitian:Ny=NJ.) Despite these modifications, the
secular equation can be obtained explicitly for the surface wave k(- 1— g/ (14 §?)—(s},s),—s]2)(1— 6%)2X]X/D,
speed, using a method proposed by CUrt® and by Tazie\y19] 5

for nonrotating anisotropic crystals with and without a plane ofK<151>=[sé6(1+ 82) + 2iS1,04 (S1,816— S11S96) (1 — 6%)2X]X/D
symmetry, respectively.

and

=KG Y, (11)

3 Secular Equation Kby V=1~ (s}yt se) (1 62X+ (s}~ S12)(1— 69)2X2)/D,

The method of the polarization vector was first presented by
Currie[18] to derive the secular equation for Rayleigh waves iWhereD is a real denominator common to the, » whose ex-
the symmetry plane of monaclinic nonrotating crystals. Then T@ression is too long to reproduce and which turns out to be irrel-
ziev[19] generalized the method to triclinioo symmetry plane evant for the derivation of the secular equation.
crystals. This method takes advantage of the Cayley-HamiltonNow we write in turn the second vector line of B§), for p;
theorem for the fundamental matry, which implies that onlyn ~ and forp,, and deduce
matrices Nk (k=1, ... n) are linearly independentn&3 for > N T
monoclinic crystalsn=>5 for triclinic crystalg. Currie used the K )A+N(1 'B=Bdiag ps,py)-
matricesN, N?, N° Taziev, the matriceN, N°, N°, N*, N°.  Multiplying this equality to the left byag =g'AT and to the right
Recently, Ting[20] placed their results within the context of thepy g, and using Eqs(7), (8), we conclude thatsee[20] for the
Stroh-Barnett-Lothe formalism and improved on them by showingonrotating case
that the choices oN~1, N, N? for monoclinic crystals and of .
N~2, N7, N, N2, NS for triclinic crystals lead to simpler and ag'KMag=0. (12)
more explicit secular equations. His approach is now adapted zp ,_ _

. . 1, 1, 2, andar=[1,a]" (say), three equations follow:
our present context of a rotating crystal with one symmetry plane. Be=[1a]" (say) q

An alternative derivation, not based on the Stroh-Barnett-Lothe KGYa+KGYat+ Ky Yaa=-KGY,
formalism, is available elsewherg1,22. -
We seek solutions to the equations of motion &.presenting KYa+KYa+KDaa= KDL,
exponential decay with distance o
U(kxp)=ae"™2,  t(kx,)=be*PX, T(p)>0, KZa+KFa=-K7.

where the constant vectossand b are related throughl2], p. We rearrange this system &syg,=h;, by introducing the fol-
139: b;=(Cysi1+ PCiskz)ax. Then the equations of motion Eg.lowing quantities:

4) give v .o .o
@9 Fui= DR(K(lzl))y Fio= DI(K(lzl))1 F13:DK(221):
a|_ ~la ' e (1) r (1)

Plp|=Np| (6) F21=0, Fao=s;7(K335),  Fag=s;Ky;

whereN is the 4x4 matrix in Eq.(4). This eigenvalue problem Fa=sR(KD), Fa=s,,7(K?), Fz3=0,

yields a quartic forp. We limit our investigation to the subsonic R . — =

range, defined as the greatest interval of valuessfovhere the gi=ata, g;=i(a—a), gz=aqa,

determinant oN—p1 possesses two roofs, p,, with positive hy=— Dk(ﬁ“ , hy= —Silk(ﬂ) , hsy= _Silkgzl) ]

imaginary parts. We caly, a,, andb,, b,, the vectorsa andb
corresponding to each root. Then the solution is of the fga#]], Note that the explicit expressions for the nondimensional quanti-
p. 149 ties Fy, and h; in terms of X=pv?, 6=Q/w, and thesi’j are

e ikp* ko Kp*y KD ikDox easily read off Egs.(10), (11). For instance,F,=2s;,6X,
U=A(e")a, t=B(e"P)q, (eP)=diage™rr? et>), Fao=—28160X, h,=1—s],(1+ 6% X, and so on.
whereA=[a;,a,], B=[by,b,], andq is a constant vector. Using The linear nonhomogeneous syst&ig=h has a unique solu-
the boundary conditions E@5), we have at the free surfacg tion for g. IntroducingA=detF andA, (k=1,2,3), the determi-
=0, nant of the matrix obtained frork by replacing itskth column
with h, we write the solution ag,=A,/A. But the components
of g are related one to another through=(g./2)%+ (g,/2).
Moreover, the matriced andB satisfy the orthogonality condi- This relation is theexplicit secular equation for Rayleigh waves
tion, [23], on an anisotropic crystal rotating in its plane of symmetry

Bg=0, and u(xy,0x3,t)=age ™17V a.=Aq. (7)
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Fig. 2 Rayleigh wave speeds for 12 monoclinic crystals rotat-

ing about x5

This equation is a polynomial of degree 8= pv?, and also
of degree 8 ins°. BecauseS=0/w appears only in even powers in

A2+ A3—4A;A=0.

(13)

4000

8
3

Rayleigh wave speed
g

1000

2 4 6 8 10

rotation rate/wave frequency ratio

Fig. 3 Rayleigh wave speeds for 8 rhombic crystals rotating
about x;

computed from the corresponding values of the stiffnesses as col-
lected by Shutilof24]. The corresponding Rayleigh wave speed
vR in the nonrotating cas@ast column is found from the exact

the secular equation, the Rayleigh speed obtained as a root of @um equation|25])
(13) does not depend on the sense of rotation. Numerically, we

find that the rotation slows the Rayleigh wave down and that the
speed is a monotone decreasing functiod.ofVe see this behav-

(1= Xspy) V1= Xsgg— XS] Shp— X(S]385,—515)]1=0.

ior on Fig. 2, where the dependence of the Rayleigh wave speedVhen the frame is rotating, the systéfg=h reduces to

upon§ is shown for the 12 monoclinic crystals from Table 1. The 0
curves are arranged in the same order as in the table, from the

slowest(diphenyl, starting at 1276 m)/do the fastesidiallage,
starting at 4000 mjs

The secular equation is valid for any crystal possessing at least

Fi Fi3 01 h,
0 Fy Fa3||02]=|hy|,
Fy 0 0]lgl LO

one plane of symmetry, as long as the half-space is cut alongvhereFs# 0 and

plane containing the normal to the plane of symmetry. In particu-
lar, it is also valid for orthorhombic crystals when the plane of cut

contains one of the crystallographic axes. When this plane con-
tains two crystallographic axes, the secular equation factorizes

and a separate treatment is required.

4 Orthorhombic Materials

When the material possesses three orthogonal planes of sym-
metry and the axe<J,i,j,k) are aligned with the crystallographic

F1o=251,6X,
F13=1—(S1;+ Sge) (1+ 6%) X+ 57;556(1— 67)2X?,
Foo=—251,6X, Faa=s],(1+8)X,
hy=[$5(1+ 6% — (51585~ 513) (1~ 6%)°X]X,
h,=1-s],(1+ &)X.

axes, some compliances vanishg=sjs=0. Table 2 lists the val- From this new system of equations, we deduce ghatA,/A and
ues of the relevant reduced compliances for 8 rhombic crystatg=A3/A, where

Table 2 Values of the reduced compliances

(1072 m?/N), den-
sity (kg/m®), and (nonrotating ) surface wave speed (m/s) for 8
orthorhombic crystals

Material sh Shy Si, Sts p VR

sulfur 65.1 76.2 —42.2 132 2070 1628
iodic acid 36.1 20.1 —7.88 57.5 4630 1678
a-uranium 4.89 529 -1.13 13,5 19000 1819
rochelle salt 49.3 33.0 -—-18.2 102 1775 2114
sodium-tartrate 32.1 27.1 -16.8 102 1818 2197
strotium formate 24.5 309 -—-7.32 58.1 2250 2451
olivine 3.26 5.34 —-0.97 12.6 3324 4599
benzophenone 13.0 139 -7.17 27.9 1219 4723

Journal of Applied Mechanics

A=FFo3—FoF13,  Ay=hiFy3—hyFyg,

Az=Fh—Foohy,

and also thaty;=a+ a=0, implying thatg,=2ia, gz=—a?
=(g,/2)? as well. This last equality is thexplicit secular equa-
tion for Rayleigh waves on an orthorhombic crystal rotating in
one plane of symmetry

A2-ak.i-o0.

This equation is a polynomial of degree 6 X=pv? and in
5= w. As in the monoclinic case above, the roots are even func-
tions of 6. Numerically, the results are similar to those of the
monoclinic case, as Fig. 3 shows for the eight orthorhombic crys-
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