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Rayleigh Waves in Anisotropic
Crystals Rotating About the
Normal to a Symmetry Plane
The propagation of surface acoustic waves in a rotating anisotropic crystal is studied
crystal is monoclinic and cut along a plane containing the normal to the symmetry pl
this normal is also the axis of rotation. The secular equation is obtained explicitly u
the ‘‘method of the polarization vector,’’ and it shows that the wave is dispersive
decelerates with increasing rotation rate. The case of orthorhombic symmetry is
treated. The surface wave speed is computed for 12 monoclinic and 8 rhombic cry
and for a large range of the rotation rate/wave frequency ratio.
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1 Introduction
Introduced more than 30 years ago, surface acoustic w

~SAW! devices have been used with great success by the tele
munication industry: nowadays, they are produced in large qu
tities ~several billions per year! and used in wireless transmissio
and reception technology for color television sets, cell phon
global positioning systems, etc. In recent years, new applicat
for SAW devices have emerged, namely acoustic sensors, w
are passive~no power supply is needed!, resistant, almost nonag
ing, cheap~only one photo-lithographic process is involved in t
production!, light ~less than 1g! and can be operated remotely an
wirelessly. For instance@1#, SAW identification tags are used fo
highway toll collection in Norway and for the Munich subwa
system; SAW temperature sensors can achieve a resolutio
0.02°C from2196°C up to 500°C; wide ranges and fine reso
tions are also achieved for pressure, torque, or current sensors
Also, the automotive industry is engaged in the search for
‘‘intelligent tire’’ which could provide direct information on its
current state as the car is moving; in this context SAW sens
have been used to measure tire pressure,@2#, or friction, @3#, as the
wheel rotates. In general, SAW devices may be used as ang
rate sensors~gyroscopes! to measure frequency shifts due to th
rotation,@4–6#. In the present paper, an investigation of the eff
of rotation upon the speed of surface~Rayleigh! waves in an an-
isotropic crystal is presented.

The crystal may possess as little as a single plane of symm
It is cut along any plane containing the normal to the symme
plane and is assumed to rotate at a constant rate about this no
The surface wave is polarized in the symmetry plane. In ot
words, it suffices to consider the propagation of a surface wav
the x1-direction of a monoclinic crystal with symmetry plane
x350, cut along thex250 plane, and rotating about thex3-axis
~see Fig. 1!. The secular equation for rotating materials was o
tained by others but in simpler settings: by Clarke and Burdes
an isotropic material, first for small rotation rate/wave frequen
ratios,@4#, then for any ratio,@5#; by Grigor’evskiǐ, Gulyaev, and
Kozlov @7# also for isotropic materials but neglecting the centrif
gal force; and by Fang, Yang, and Jiang@6# for crystals having
tetragonal symmetry. Here, the analysis is fully developed
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crystals with a single symmetry plane, up to the derivation of
secular equation in explicit form, that is an equation giving t
Rayleigh wave speed in terms of the elastic parameters and o
rotation rate.

The equation is reached in Sec. 3, after the governing equat
have been written down in Sec. 2. The secular equation turns
to be a polynomial of degree 8 for the squared wave speed
also for the squared rotation rate/wave frequency ratio. In
simpler case of orthorhombic symmetry~Sec. 4!, the polynomial
is of degree 6. The Rayleigh wave speed is computed numeric
for 20 specific anisotropic materials~12 monoclinic, 8 orthorhom-
bic! and for a rotation rate/wave frequency ratio varying from 0
10. Of course, this range is way beyond the elastic behavior lim
and is irrealistic for pratical purposes where the frequency o
SAW device is typically in the 100 kHz–10 MHz range. It
presented to show that the method of resolution is exact and
approximate, applies for any rate of rotation, and that in cont
with the nonrotating case, the secular equation is dispersive
small rotation rates, and for certain crystals such as PZT-5, o
papers,@6,8#, show that the Rayleigh wave speed may at fi
increase slightly with the rotation frequency/wave frequency ra
At large ratios, it is seen here that the wave speed decreases
increasing ratios. These variations are crucial to the understan
and correct design of rotating SAW sensors or SAW signal p
cessing devices. A recent article,@9#, describes the manufacturin
of a 1 cm31 cm SAW gyroscope and how the rotation rate m
be measured using SAW technology. Another example t
springs to mind is that of ‘‘spinning missiles,’’@10#, for which one
might speculate that the communication is ensured via SAW g
eration and processing of high-frequency signals modified by
rotation. Finally in Sec. 5, the merits of several methods of de
vation for the secular equation in non-rotating crystals are d
cussed. This paper aims to provide a theoretical and analy
framework for the study of surface acoustic waves in rotat
crystals.

2 Basic Equations
We consider a half-spacex2>0 occupied by a homogeneou

anisotropic crystal possessing one plane of symmetry atx350,
and rotating at a constant angular velocityV about thex3-axis. We
study the propagation of a surface~Rayleigh! wave in the
x1-direction, with attenuation in thex2-direction. In the rotating
Cartesian frame (Ox1 ,Ox2 ,Ox3)[(O,i,j ,k), the equations of
motion are,@11#,

div s5ru,tt12rVkÃu,t1rV2k3~kÃu!, (1)

wheres is the Cauchy stress tensor,r is the constant mass densit
of the material, and the comma denotes differentiation. The s
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In Eq. ~4!, N1 andN2 are the same as the 232 submatrices of
the 636 fundamental elasticity matrixN from Ingebrigsten and
Tonning @16#. Their real matrixN3 , however, has been modified
by the introduction of off-diagonal pure imaginary terms. Explic-
itly, we have
ond term in the right-hand side of Eq.~1! is due to the Coriolis
acceleration, the third is due to the centrifugal acceleration. N
that Eq.~1! represents the time-dependent part of the full eq
tions of motion. The time-independent part, namely divss

5rV2k3@k3(us1x)#, whereus5us(x) ands i j
s 5ci jkl ul ,k

s must
be solved separately. The questions remain of~a! whether an ac-
tual time-independent solution exists for allV and if it does, of~b!
whether the boundary conditions of a traction-free rotating h
space may be satisfied without perturbating the time-depen
boundary value problem. These questions do not seem to
been addressed in the literature, but some preliminary work s
however to suggest that~a! and~b! may be answered positively, a
least within the framework of small amplitude waves superi
posed upon a large elastic deformation.

Now, turning back to the time-dependent Eq.~1!, the mechani-
cal displacementu is taken in the form

u~x1 ,x2 ,x3 ,t !5U~kx2!eik~x12vt !, (2)

showing a sinusoidal propagation with speedv and wave number
k in the x1-direction, and the possibility of an attenuation in th
x2-direction through the unknown functionU(kx2).

We wish to describe the influence of the frame rotation upon
speed of Rayleigh waves, and to this end, we introduce the
lowing quantities:

X5rv2, d5V/~kv !5V/v,

wherev is the real frequency of the wave.
For two-dimensional motions (]u/]x350) such as Eq.~2!, the

anisotropy of a crystal possessingx350 as a symmetry plane i
described by the following strain-stress relationship,@12#:

Fig. 1 Monoclinic crystal with symmetry plane at x 3Ä0, cut
along x 2Ä0, and rotating about x 3 at constant angular velocity
V
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where the strain componentse i j are defined in terms of the dis
placement components by: 2e i j 5ui , j1uj ,i , and thesi j8 are the
reduced compliances. Alternatively, the equivalent strain-stress
lations can be used,~@12#, p. 39!,

s+5C+e+, C+s851, (3)

where s+5@s11,s22,s23,s31,s12#
T, e+5@e11, . . . ,2e12#

T. The
Ci j

+ are elements, in the Voigt notation, of the fourth-order elas
stiffness tensorCi jkl . Table 1 shows the relevant reduced comp
ances of 12 different monoclinic crystals, computed from the c
responding stiffnesses as collected by Chadwick and Wilson@13#;
the last column gives the corresponding Rayleigh wave spee
the nonrotating case,@14#.

In view of the form Eq.~2! for the displacement, we introduc
the functionst1 , t2 for the tractionss12, s22 on the planesx2
5const. as

s12~x1 ,x2 ,x3 ,t !5 ikt1~kx2!eik~x12vt !,

s22~x1 ,x2 ,x3 ,t !5 ikt2~kx2!eik~x12vt !.

Then, substituting Eqs.~2! and ~3! into the equations of motion
~1!, we derive the following system of linear first-order differe
tial equations forU1 , U2 , t1 , t2 ,

FU8
t8 G5 i F N1 N2

Ň31~11d2!X1 N1
G FUt G , (4)

whereU5@U1 ,U2#T, t5@ t1 ,t2#T, and the prime denotes differ
entiation with respect tokx2 . Note that, as in the static case,@15#,
the antiplane strain~stress! decouples from the plane strai
~stress! and need not be considered for this problem. This dec
pling would not occur if the crystal was rotating about thex1-axis
or thex2-axis, @6#.

The surfacex250 is free of tractions and so, the bounda
conditions are

t1~0!5t2~0!50. (5)
Table 1 Values of the reduced compliances „10À12 m2ÕN…, density „kg Õm3
…, and „nonrotating …

surface wave speed „mÕs… for 12 monoclinic crystals

Material s118 s228 s128 s168 s268 s668 r vR

diphenyl 854 1858 2366 2698 21.44 5049 1114 1276
tin fluoride 345 228 259.2 2197 120 922 4875 1339
tartaric acid 343 211 2164 2223 301 1650 1760 1756
oligoclase 133 227 2108 97.0 2160 483 2638 2413
microcline 94.5 165 235.1 47.2 1.69 446 2561 2816
gypsum 243 130 268.6 32.9 28.1 326 2310 3011
hornblende 63.3 103 232.7 215.8 22.72 320 3120 3049
aegirite-augite 53.6 78.4 221.0 210.6 233.5 237 3420 3382
epidote 53.3 49.6 211.3 17.7 23.74 237 3400 3409
augite 54.5 64.4 219.5 219.0 215.7 211 3320 3615
diopside 53.1 58.6 220.1 24.0 6.98 186 3310 3799
diallage 49.8 69.1 211.3 26.88 214.5 166 3300 4000
JULY 2004, Vol. 71 Õ 517
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where the quantitiesr 2 , r 6 , n22, n26, n66, h are given in terms of
the elastic parameters as~@14,17#!

h5
1

s118
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,

n665
1
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Us118 s168

s168 s668
U, n225

1
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s128 s228
U, n265

1

s118
Us118 s168

s128 s268
U.

Thus the rotation of the crystal perturbs the equations of motio
three ways: the introduction of dispersion throughd; a shift of
magnituded2 in X5rv2 for the lower left submatrix ofN pro-
portional to the 232 unit matrix; and the modification ofN3 ,
which is diagonal in the nonrotating case~note that the new ma

trix Ň3 is Hermitian:Ň35Ň3
T .) Despite these modifications, th

secular equation can be obtained explicitly for the surface w
speed, using a method proposed by Currie@18# and by Taziev@19#
for nonrotating anisotropic crystals with and without a plane
symmetry, respectively.

3 Secular Equation
The method of the polarization vector was first presented

Currie @18# to derive the secular equation for Rayleigh waves
the symmetry plane of monoclinic nonrotating crystals. Then
ziev @19# generalized the method to triclinic~no symmetry plane!
crystals. This method takes advantage of the Cayley-Hami
theorem for the fundamental matrixN, which implies that onlyn
matrices Nk (k51, . . . ,n) are linearly independent (n53 for
monoclinic crystals,n55 for triclinic crystals!. Currie used the
matricesN, N2, N3; Taziev, the matricesN, N2, N3, N4, N5.
Recently, Ting@20# placed their results within the context of th
Stroh-Barnett-Lothe formalism and improved on them by show
that the choices ofN21, N, N2 for monoclinic crystals and of
N22, N21, N, N2, N3 for triclinic crystals lead to simpler and
more explicit secular equations. His approach is now adapte
our present context of a rotating crystal with one symmetry pla
An alternative derivation, not based on the Stroh-Barnett-Lo
formalism, is available elsewhere,@21,22#.

We seek solutions to the equations of motion Eq.~4! presenting
exponential decay with distance

U~kx2!5aeikpx2, t~kx2!5beikpx2, I~p!.0,

where the constant vectorsa and b are related through@12#, p.
139: bi5(Ck1i11pCi2k2)ak . Then the equations of motion Eq
~4! give

pFa
bG5ŇFa

bG , (6)

whereŇ is the 434 matrix in Eq.~4!. This eigenvalue problem
yields a quartic forp. We limit our investigation to the subsoni
range, defined as the greatest interval of values forv where the
determinant ofŇ2p1 possesses two rootsp1 , p2 , with positive
imaginary parts. We calla1 , a2 , andb1 , b2 , the vectorsa andb
corresponding to each root. Then the solution is of the form~@12#,
p. 141!

U5A^eikp* &q, t5B^eikp* &q, ^eikp* &5diag~eikp1x2,eikp2x2!,

whereA5@a1 ,a2#, B5@b1 ,b2#, andq is a constant vector. Using
the boundary conditions Eq.~5!, we have at the free surfacex2
50,

Bq50, and u~x1,0,x3 ,t !5aReik~x12vt !, aR5Aq. (7)

Moreover, the matricesA and B satisfy the orthogonality condi
tion, @23#,
518 Õ Vol. 71, JULY 2004
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Now, the eigenrelation Eq.~6! may be generalized for any pos
tive or negative integern as

pnFa
bG5ŇnFa

bG , where Ňn5F N1
~n! N2

~n!

Ǩ ~n! N1
~n!TG ~say!. (9)

Explicitly, the elements ofŇn are computed by multiplication o
Ň or its inverse by itself. For instance,Ǩ (n) for n51, 2, 21 is
given by Ǩ (1)5Ň31X(11d2)1,

Ǩ11
~2!522s168 @12s118 ~11d2!X#/s118

2,

Ǩ12
~2!5@12~s118 2s128 !~11d2!X22is168 dX#/s118 ,5Ǩ21

~2!, (10)

Ǩ22
~2!50,

and

Ǩ11
~21!52@s228 ~11d2!2~s118 s228 2s128

2!~12d2!2X#X/D,

Ǩ12
~21!5@s268 ~11d2!12is128 d1~s128 s168 2s118 s268 !~12d2!2X#X/D

5Ǩ21
~21!, (11)

Ǩ22
~21!5@12~s118 1s668 !~11d2!X1~s118 s668 2s168

2!~12d2!2X2#/D,

whereD is a real denominator common to theKi j
(21) whose ex-

pression is too long to reproduce and which turns out to be ir
evant for the derivation of the secular equation.

Now we write in turn the second vector line of Eq.~9!1 for p1
and forp2 , and deduce

Ǩ ~n!A1Ň1
~n!B5B diag~p1 ,p2!.

Multiplying this equality to the left byaR
T5q̄TĀT and to the right

by q, and using Eqs.~7!, ~8!, we conclude that~see@20# for the
nonrotating case!

aR
TǨ ~n!aR50. (12)

At n521, 1, 2, andaR5@1,a#T ~say), three equations follow:

Ǩ12
~21!a1Ǩ12

~21!ā1Ǩ22
~21!aā52Ǩ11

~21! ,

Ǩ12
~1!a1Ǩ12

~1!ā1Ǩ22
~1!aā52Ǩ11

~1! ,

Ǩ12
~2!a1Ǩ12

~2!ā52Ǩ11
~2! .

We rearrange this system as:Fikgk5hi , by introducing the fol-
lowing quantities:

F115DR~Ǩ12
~21!!, F125DI~Ǩ12

~21!!, F135DǨ22
~21! ,

F2150, F225s118 I~Ǩ12
~1!!, F235s118 Ǩ22

~1! ,

F315s118 R~Ǩ12
~2!!, F325s118 I~Ǩ12

~2!!, F3350,

g15a1ā, g25 i ~a2ā !, g35aā,

h152DǨ11
~21! , h252s118 Ǩ11

~1! , h352s118 Ǩ11
~2! .

Note that the explicit expressions for the nondimensional qua
ties Fik and hi in terms of X5rv2, d5V/v, and thesi j8 are
easily read off Eqs.~10!, ~11!. For instance,F1252s128 dX,
F32522s168 dX, h2512s118 (11d2)X, and so on.

The linear nonhomogeneous systemFg5h has a unique solu-
tion for g. IntroducingD5detF and Dk (k51,2,3), the determi-
nant of the matrix obtained fromF by replacing itskth column
with h, we write the solution asgk5Dk /D. But the components
of g are related one to another throughg35(g1/2)21(g2/2)2.
This relation is theexplicit secular equation for Rayleigh wave
on an anisotropic crystal rotating in its plane of symmetry,
Transactions of the ASME
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This equation is a polynomial of degree 8 inX5rv2, and also
of degree 8 ind2. Becaused5V/v appears only in even powers i
the secular equation, the Rayleigh speed obtained as a root o
~13! does not depend on the sense of rotation. Numerically,
find that the rotation slows the Rayleigh wave down and that
speed is a monotone decreasing function ofd. We see this behav
ior on Fig. 2, where the dependence of the Rayleigh wave sp
upond is shown for the 12 monoclinic crystals from Table 1. T
curves are arranged in the same order as in the table, from
slowest~diphenyl, starting at 1276 m/s! to the fastest~diallage,
starting at 4000 m/s!.

The secular equation is valid for any crystal possessing at l
one plane of symmetry, as long as the half-space is cut alon
plane containing the normal to the plane of symmetry. In parti
lar, it is also valid for orthorhombic crystals when the plane of c
contains one of the crystallographic axes. When this plane c
tains two crystallographic axes, the secular equation factor
and a separate treatment is required.

4 Orthorhombic Materials
When the material possesses three orthogonal planes of

metry and the axes (O,i,j ,k) are aligned with the crystallographi
axes, some compliances vanish:s168 5s268 50. Table 2 lists the val-
ues of the relevant reduced compliances for 8 rhombic crys

Fig. 2 Rayleigh wave speeds for 12 monoclinic crystals rotat-
ing about x 3

Table 2 Values of the reduced compliances „10À12 m2ÕN…, den-
sity „kg Õm3

…, and „nonrotating … surface wave speed „mÕs… for 8
orthorhombic crystals

Material s118 s228 s128 s668 r vR

sulfur 65.1 76.2 242.2 132 2070 1628
iodic acid 36.1 20.1 27.88 57.5 4630 1678
a-uranium 4.89 5.29 21.13 13.5 19000 1819
rochelle salt 49.3 33.0 218.2 102 1775 2114
sodium-tartrate 32.1 27.1 216.8 102 1818 2197
strotium formate 24.5 30.9 27.32 58.1 2250 2451
olivine 3.26 5.34 20.97 12.6 3324 4599
benzophenone 13.0 13.9 27.17 27.9 1219 4723
Journal of Applied Mechanics
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computed from the corresponding values of the stiffnesses as
lected by Shutilov@24#. The corresponding Rayleigh wave spe
vR in the nonrotating case~last column! is found from the exact
secular equation,~@25#!

~12Xs118 !A12Xs668 2XAs118 @s228 2X~s118 s228 2s128
2!#50.

When the frame is rotating, the systemFg5h reduces to

F 0 F12 F13

0 F22 F23

F31 0 0
G F g1

g2

g3

G5F h1

h2

0
G ,

whereF31Þ0 and

F1252s128 dX,

F13512~s118 1s668 !~11d2!X1s118 s668 ~12d2!2X2,

F22522s118 dX, F235s118 ~11d2!X,

h15@s228 ~11d2!2~s118 s228 2s128
2!~12d2!2X#X,

h2512s118 ~11d2!X.

From this new system of equations, we deduce thatg25D̂2 /D̂ and
g35D̂3 /D̂, where

D̂5F12F232F22F13, D̂25h1F232h2F13,

D̂35F12h22F22h1 ,

and also thatg15a1ā50, implying that g252ia, g352a2

5(g2/2)2 as well. This last equality is theexplicit secular equa-
tion for Rayleigh waves on an orthorhombic crystal rotating
one plane of symmetry,

D̂2
224D̂3D̂50.

This equation is a polynomial of degree 6 inX5rv2 and in
d5V/v. As in the monoclinic case above, the roots are even fu
tions of d. Numerically, the results are similar to those of th
monoclinic case, as Fig. 3 shows for the eight orthorhombic cr

Fig. 3 Rayleigh wave speeds for 8 rhombic crystals rotating
about x 3
JULY 2004, Vol. 71 Õ 519
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tals of Table 2. Again, the curves are arranged in the same ord
in the table, from the slowest~sulfur, starting at 1628 m/s! to the
fastest~benzophenone, starting at 4723 m/s!.

5 Concluding Remarks
Several methods have been proposed to derive explicitly

secular equation for surface waves in nonrotating monocl
crystals with the plane of symmetry atx350. This author,@14#,
wrote the equations of motion as a system of two second-o
differential equations for the tractionst: â iktk92 i b̂ iktk82ĝ iktk50,
whereâ, b̂, ĝ are 232 real symmetric matrices. Then the meth
of first integrals@26#, yields the secular equation. The equations
motion Eq. ~4! may also be written in a similar manner for
rotating crystal, butâ, b̂, ĝ become complex and the method
first integrals is no longer applicable as such. Next, Ting@17#
assumed an exponential form fort(kx2) and obtained the secula
equation through some simple algebraic manipulations, taking
vantage of the fact thatâ125b̂2250; in the rotating case, how
ever, these quantities are no longer zero. Furs@27# ~using the
displacement field! and this author@25# ~using the traction field!
devised yet another method, where the secular equation is
resultant of two polynomials; again, having real quantities for
components ofN is a crucial property, no longer true for rotatin
crystals.

All in all, it seems that the method of the polarization vector
the most appropriate for the case of a rotating crystal. Note th
simple derivation of its main result~12!, not relying on the Stroh
formalism, was presented recently,@21,22#.
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