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Attention is given to surface waves of shear-horizontal modes in piezoelectric crystals permitting
the decoupling between an elastic in-plane Rayleigh wave and a piezoacoustic antiplane Bleustein—

Gulyaev wave. Specifically, the crystals possessymmetry (inclusive of £m, 43m, and 23
classesand the boundary is any plane containing the normal to a symmetry friata¢edY cuts

about theZ axis). The secular equation is obtained explicitly as a polynomial not only for the
metallized boundary condition but, in contrast to previous studies on the subject, also for other types
of boundary conditions. For the metallized surface problem, the secular equation is a quadratic in the
squared wave speed; for the unmetallized surface problem, it is a sextic in the squared wave speed,;
for the thin conducting boundary problem, it is of degree 16 in the speed. The relevant root of the
secular equation can be identified and the complete solution is then €atteduation factors, field
profiles, etc. The influences of the cut angle and of the conductance of the adjoining medium are

illustrated numerically for AlAs T@m), BalLaGaO, (ZZm), and Bj,GeO, (23). Indications are
given on how to apply the method to crystals with 222 symmetry2@4 Acoustical Society of
America. [DOI: 10.1121/1.1819503

PACS numbers: 43.35.Pt, 43.38.Fx, 43.38[RNN] Pages: 3432-3442

I. INTRODUCTION main purpose of this paper is to derive explicitly the secular
_ _ . equation for piezoacoustic SH surface waves uncoupled from
The nature and properties of a piezoacoustic surfacgurely elastic Rayleigh waves polarized in a plane of sym-

wave depend heavily on the crystallographic and anisotropignetm for a crystal in the_asymmetry clasgand thus for the
properties of the piezoelectric substrate, on the direction of;

propagation, and on the orientation of the ¢hbundary 42mS,43m,|and k23 clajjéas d this tobic in th ke of th

plane. For certain choices, the in-plane components of the e\I/era wor t?rSBaIl resse dlsb OF();C Im € \éva €o i ¢
mechanical displacement decouple from the antiplane conpeminal papers by eust'eln and by Gulyaev, ut exp 'C!t
ponent, leading to two different types of surface Wavesresqlts remalned_ limited either to p_ropagatlo_n in special c_h—
namely, the Rayleigh wave, elliptically polarized in the |olanerectlons for which one of the piezoelectric constant is

,9-13 -
containing the direction of propagation and the normal to thefero’ or to the case where the free surface of the sub
substrate surface, and the shear-horizot®) wave, lin- strate is metallized,or in the weak piezoelectric coupling

. . ’14 .
early polarized in the direction normal to the direction of approximatiorf.** Here, the crystal is cut along a plane con-

propagation and parallel to the free surface. Moreover, eithdiNing theZ axis and makingany angle with theX crys-
wave or both waves may be coupled to the electromagnetit!lographic plane. Moreover, the surface may be metallized,
fields. Of special interest are the configurations allowing foro" In contact with the vacuum, or in contact with a thin
a piezoacoustic SH wave, decoupled from a purely elasti€onducting layer with arbitrary finite conductance. Also, no
Rayleigh wave. Indeed, the former type of wave, also knowrPproximation is made about the strength of the piezoelectric
as Bleustein—Gulyaé¥ wave, penetrates more deeply into effect. Attention is, however, limited to crystals with tetrag-
the substrate than the latter type; consequently, the acoustimal 4 symmetry (inclusive of the tetragonal 2m, cubic
energy is less localized and the power can be increased sig3m, and cubic 23 symmetripsThis limitation is not essen-
nificantly before damage occuréTsend) although, as tial but simplifies the notation to a certain extent; it is nev-
pointed out by a referee, there are exceptions to thigrtheless possible to extrapolate the method presented here-
behavior’ Moreover, an SH wave-based resonator is smalleggter to crystals with lower symmetries such as orthorhombic
than a resonator based on the propagation of a sagittally p@22, as pointed out at the end of the paper. Note that the
larized surface wavésee Kadota and collaboratdfy; this  study of piezoacoustic SH surface waves in potassium nio-
feature results in a downsizing of design, an attractive poinpate(2-mm symmetrywas recently undertaken by Mozhaev
for the miniaturization of mobile phones for instance, wheregng Weihnacht® who showed that for that class, the secular
SAW devices are used as filters. Koerber and Vbjelen-  equation is a cubic in the squared wave speed.

t?fied all the cuts and rc_)tations of axes leading to piezoacous-  The constitutive equations and the piezoacoustic equa-
tic SH modes; they exist for some suitable cuts and transforjons for the class of crystals listed above are recalled in
mations in the following crystal classes: 2, 28mM, 222, Secs. Il Aand Il B, respectively, and some fundamental equa-
2mm, 4, 4 6, 4mm, 6mm, 32, 2m, 6m2, 422, and 622. The tions, which encapsulate the whole boundary value problem
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and its resolution, are quickly derived in Sec. Il C. The paper concludes with a discussion of the merits and
These fundamental equations are applied in Sec. Il tgossible applications of the method presented, and with a

the consideration of a piezoacoustic SH surface wave. Ahronological account of the several advances in the field,

method based on the resolution of the propagation conditiowithout which the results of this paper could not have been

for partial modes first, and the resolution of the boundaryestablished.

value conditions next, would lead to quite an involved analy-

sis, including the analytical examination of a quartic polyno—”' PRELIMINARIES

mial for the coefficients of attenuation. The method based oi. Constitutive equations

the fundamental equations derived in Sec. Il C circumvents . . lectri | with densi

the stage of the quartic and delivers directly the secular equa- Conslder a piezoelectric crystal wit mass engity

tion in polynomial form. In particular it is seen that for met- POSS€SSing at most the tetragonaiyfnmetry(this symmetry

allized (also known as short-circditboundary conditions includes the tetragonal 2in, cubic 8m, and cubic 23

(Sec. 11 A), this equation is just a quadratic in the squaredcases.LetCiy, &k, and; be its respective elastic, piezo-

wave speed whose relevant root is readily identified. Foglectric, and dielectric constants with respect to the coordi-

open-circuit boundary conditionéSec. 1I1B), the secular hate systenXYZalong the crystallographic axes. Now, cut

equation is also a quadratic in the squared wave speed, buttfte crystal by a plane containing tieaxis and making an

is not valid (the corresponding solution does not satisfy thedngle ¢ with the XY plane. The new coordinate system

boundary conditiong For the freetnonmetallizediboundary ~ X1X2X3 (say, obtained after rotation oKYZ aboutZ, is

condition (Sec. 1110, the secular equation is a sextic in the defined by

squa_rt_ad wave speed. For the conduc’;ive _thin layer bqundary « cosé sind 0]rx

condition(Sec. Il D), the secular equation is a polynomial of 1 ) oll v

degree 16 in the wave speed. Xz|=| —siné cosd ; @
Once the secular equation is solved for the speed, the LX*3 0 0 1jLZ

complete description of the wave follows naturallgec. and so, the plane of cut is defined =0, as shown in Fig.
IVA), including the attenuation coefficients and the profiles; ’ ’

for the mechanical displacement, electric potential, traction,
and electrical induction. A simple check for the validity of
the solution is proposed in Sec. IV B.

In the new coordinate system, under the electrostatic ap-
proximation for the electrical field, the stress tensor compo-
. . , nentsoj; and the electric induction componerils are re-
The results are illustrated numerically and gLaph'Ca”yIated to the gradients of the mechanical displacenieand
using experimental data available for AlAsubic 43m),  of the electrical potentia by the constitutive relations
BaLaGaO; (tetragonal 2m), and Bj,GeO, (cubic 23 in
Sec. V. The range of existence of the free-SH wave with 71j = Cijia Ur i+ Cijk o Di=Eita Uik~ €k 2
respect to the angle of cut, the speeds of propagation, thehere the comma denotes partial differentiatibere, with
amplitude of the profiles, etc. are all quantities which can beespect to thex, coordinates Using the Voigt contracted
obtained numerically with as high a degree of numerical acnotation for thec, e, and ¢, these relations are written in

curacy as is needed. matrix form as
J

~_ [cu ¢ c3 O 0 cg 0 0 € | _ -

71 Ciz €1 Cz3 O 0 —-cp O 0 — €31 U
u
2| e 63 i3 O O O O 0 0 2.2
033 U3 3
O 0 0 0 cuu O 0 ey —es O UpatUs,
O3 | = 0 0 0 0 C44 0 el5 e14 0 u3,1+ U1,3 . (3)
J12 Cig —Cis O 0 0 c O 0 ess || Yr2TUz1
Bl 0 O 0 e14 615 0 — €171 0 O z'l
2 2
i D3_ 0 0 0 _915 614 0 0 — €11 0 ¢3 |
[ €33 —€3; O 0 0 e O 0 €33

Explicitly, the c;; ande;; are deduced from thg;; and  B. Piezoacoustic equations

&;; in XY Z by well-known relationships. In particular Now, consider the propagation of an antipla&) in-

Caa=Cas, €11= €11, €14=87,C0S 20— &;55in 20, homogeneous wave in the half-space=0, traveling with
speedv and wave numbek in the x, direction, with attenu-
€15= &15C0S 20+ &1,Sin 26. (4)  ation in thex, direction. It is known® that for the crystals

J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. Collet and M. Destrade: Shear-horizontal piezoacoustic surface waves 3433



/////////// W B n -
X
where' denotes the transpose, and where the submatrices of

N" are 2< 2 matrices. As kindly pointed out by a referee, the
first-order differential form Eq.10) of the piezoacoustic
equations dates back to Kradtand before that, to Strdh

and others(see Fahmy and AdItt for referencesfor the
purely elastic case. The subsequent analysis below builds
Y ] upon several crucial contributions, which are listed and put
into context at the end of this article.

% . .
Now, because the wave amplitude must vanish away
FIG. 1. Rotatedy cut about theZ axis. from XZ:O, §(kx2) is such that
under consideration this wave decouples entirely from its  &«)=0. (12

in-plane counterpart, a purely elastic two-component Ray-

leigh wave. Thus, the wave is modeledwas=u,=0, and Clearly, premultiplication oN" by T defined as

{ug, @} ={U3(kxp), p(kxp)}e'ka—v, 5
for some yet unknown functiond s and ¢ of kx,. Accord- . |0 1 1 0
ingly, the constitutive equations E(®) lead to similar forms I= 1 0l where 1= 0 1/ (13
for the stress and electrical components

{oi) . Di}=ik{t;j(kxp),di(kxp) ye' =", (6)  produces a symmetric matrix,
Wheret11:t22:t12: d3=O, and

L L o M (NMT
tag=CaUs—icnlUy,  te=—icyuUzteyptiese’, TN = KT (Ny) — (N T 14
Ngn) N(2n) ( ) 1 ( )

tsi=CalUstesp—iep’, di=esUz—ieUs— 611<P,( )
7
so that taking the scalar product on both sides of (&) by
IN"&, where the overbar denotes the complex conjugate,
Here and hereafter, the prime denotes differentiation witheads toEang':iEanﬂg, the right-hand side of which is
respect to the variabliex; . purely imaginary. Taking the real part and integrating yields

Using the above-introduced functiobls, ¢, t;;, d;, the Eangz const.=0 [by Eq.(12)], and in particular
classical equations of piezoacoustics

d2:e]_4U3+ie:|_5Ué+i611qDl.

i j=pUix. Di;i=0, ®) £0)-TN"g0)=0. (15)
reduce to

—tygtithy=—XUs, —dy+id}=0, (99  Thesefundamental equatioR®?? allow for a completely

5 analytical derivation of the secular equation, for a great va-

whereX:=pv®. _ riety of boundary conditions. Note that becauseis a 4
When the regiorx,<0 above the crystal is the vacuum  4° matrix, there are at most three independent fundamental

(permeability: €g) and the surface;=0 remains free of eqyations according to the Cayley—Hamilton theorem. Any

tractions, then the boundary value problem corresponding tgngjce of three different integersis legitimate, although the

Eq. (9) is that of piezoacousti(Bleustein—GulyaevSH sur-  noicen= — 1,1,2 seems to yield the most compact expres-

face waves. sions for the components &f".

C. Fundamental equations for the resolution
) I1l. SECULAR EQUATIONS
The method of resolution rests on the property that the

piezoacoustic equatior(9) can be written in the form, For the piezoacoustic(Bleustein—Gulyaev shear-
£=iINE  where &kxo)=[Us, .t dp]T, (10) horizontal wave, the matriX in Eq. (10) is written in com-

pact form using the following quantity:
andN is a real 4X4 matrix which, brought up to any posi-
tive or negative integer powar, has the following block
structure: KP=—"
Ngn) N(Zn) €11C44t €75

KO (NPT

2
e
14 (16)

N"=

o with KW= (KM)T,

as
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€15 €11 €11 €15
2 2 - K2 K2

—K - —k >
€14 €14 €14 €14
7V €15 €15 Cas
o o
14 14 14 14
N= ) 17
e C
X_C44(1+ K2) _615(1+ K2) —15 2 ﬁ 2
€14 €14
2 2 €11 , €5 ,
_615(1+K ) 611(1+K ) — —K —K

Note thatN is indeed of the form Eq(1l). To express 1) €115 , )
explicitly integer powers oN, it proves convenient to use Miz ™= = —Z— "X+ e15(1+ k%),

) - . 14
scalar multiples of the matrikN", for which the fundamen- 5

tal equations Eq(15) are also valid. For instance, the funda- €11 _1) €15
. S MG Y= X+ (1462, MGY=—=42,
mental equationg15) also hold ath=2,—1 wheniN" is 22 e§4K e+« 13 e
replaced withM @, M~ respectively, defined by Y e
CH_f11, 2 yen_ 1 2 ey "R o
e €14 N2 M(_1)=<611C44K2X—1)fN_1 M3 914K , My Eik , Mi, - K%,
€15K ’ €14 . (20
(18)
_1y €15 1 €15 1y X—Cu
These symmetric matrices are given explicitly by their com-M $ l):e_ K2, M§41)=e—21<2, MG, H= o2 K2
ponents, 14 14 14
@)_ ) Now all the required equations and quantities are in
MIT =2[X=2Cs(1+ &%), place to treat various electrical boundary value problems.
M(lzz): _ 6—1lx+ 5 €11C44— e§5(1+ «2), A. Metallized (short-circuit ) boundary condition
€15 15 Here, the surface of the crystal is coated with a thin
M@ =4e,,(1+k?), metallic film, with thickness negligible when compared to
e wavelength, and brou 0 a zero electrical potential.
th length d brought t lectrical potential
2)_ €1 €11C44— efs ) Moreover, the coating still allows the surface to remain free
T euers N €14815 (1+2x%), of mechanical tractions. Then
N Tt (19 023=0, ¢=0, at x,=0, so that
2 Tey P ey £0)=[U3(0),0,0d,(0)]". (21)
@ 1 Cas , Writing &(0)=U3(0)[1,0,0¢¢], where a=d2(Q)/U3(O) is
M14:—e—l4x+2e—l4(1+2'< ), complex, the fundamental equatiofs5) for IN (n=1),
, M®@ (n=2), andM(~? (n=-1) lead to the following ho-
€11Caq— € mogeneous system of equations:
M(zi):_w(1+zk2), 9 y q
€14€15 N N N
, 31 21 24 1 0
M@= 85 2 e 42 ME M M ||ata|=|0]. 22
€14815 14 MGD MY MY L e 0
and

For a nontrivial solution to exist, the determinant of the sys-

M{V=|1+ ELZC‘M) K2X— Caa( 1+ K2), tem’s ma_tr_ix must be zero. Factoring out common factors,
€14 this condition reads
X—Caq( 1+ K?) Caak® —Cy4
Z[X_2C44(l+ Kz)] — X+ 2C44(1+2K2) _4C44 0 (23)
€11C e
(1+ 1elz44) KZX_C44(1+K2) (X_C44)K2 X_C44
14
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When X=0, the first column in the determinant becomesconsidering the known speed of a Bleustein—Gulyaev surface

proportional to the third, and the determinant is zero. Hencewave in a cubic @m or 23 crystal wherd=45°. Then, the
X is a factor of the determinant; the remaining factor is aroot of the quadratic corresponding to the plus sigrXis

guadratic inX

2 2
3 611C44+ 4e14+ 4815

X2~ C44( 2
€11C44t €75

2 2
» [ €11Caat 2674+ 2€75
+2¢3,

-0, (24)

2
€11Ca4t €75

that is, the explicit secular equation for piezoacoustic

=pv?=2c,,, and the root corresponding to the minus sign

IS
A2
€14
= C44( 1 +

2
€15

p02=C44( 1+

P 7
Cas€111 €75 Cas€111 €1y

(29

(Bleustein-Gulyaev) antiplane surface waves on a metal-in accordance with Tsefgsee also Koerber and Vogehl-

lized tetragonal4 (or tetragonal42m, or cubic 43m, 23)
crystal, cut along any plane containing the Z axis
This equation being a quadratic X it is solved explic-

burque and Chatf, Velasco'! Bright and Hunt®). By conti-

nuity with the other cases (42m, 43m, 23,6+ 45°), the
speed of the generic BleusteiBulyaev wavdound from the

itly and it yieldsa priori two roots. The selection is made by secular equatiofi24) is vggm, given by

2 2 2 212 27102
PUBem  3€11Cast A€yt Aels—[(€11Cqst 4€7,)° + (4€14815)°]

2
Caa 2(€11Ca47 €15)

For tetragonal_am, cubic 8m, or cubic 23 crystal€,5=0 and by Eq(4), this expression reduces to

PUgem  3+AX*—[(1+4%%co$ 20)+4%* sirf 40112
- 2(1+ ¥°sirf 26) ’

Cas

as proved by Braginskiand Gilinski® using a different
method. In Eq.(27), ¥°=&2,/(e11C4q) is the “piezoelectric
coupling coefficient” for bulk waves.

B. Electrically open boundary condition

(26)
(27)

|

2 2

€ e

KX~ ey (1+ k?)| 3~ 1+4%’) Kz}x

€14 €14

+2(1+ k%)%(€11C44— €7,— €75 =0. (30)

At this stage, an important point must be raised. Al-
though this secular equation might seem legitimate at first

The substrate is said to be “mechanically free, electri-Sight, it must be recalled that it was obtained through a pro-

cally open” (Ingebrigsterf® Lothe and Barnetf) when

0'32:0, D2:0, at X2:0,

=[U3(0),¢(0),0,0]".

so that &(0)
(28)

Writing  §(0)=U3(0)[1,2,0,0], where «a=¢(0)/
U5(0) is complex, the fundamental equatiofi) for IN
(n=1), M@ (n=2), andM? (n=-1) lead to the fol-
lowing homogeneous system of equations:

N3p N3 N2 1 0
MZ  ME  MP || a+a|=|0],
MG mMGY Mo L aa ) 10

(29

cess based on the fundamental equatid®s which, due to

the involvement of integer powers of the matfik might
generate spurious secular equations. In fact, it has been
proved?* that the Bleustein—Gulyaev wawdpes not exist

for open-circuit boundary conditionsHence, the secular
equation Eq(30) is not valid. It is given here for complete-
ness and to illustrate one limitation of the fundamental equa-
tions approach. However, as is seen in Sec. IV B, a simple
check can be done to realize whether the speed given by an
explicit secular equation is valid or not.

C. Free-boundary condition

In the general case of a nonmetallized, mechanically free
boundary, the tangential component of the electric field and
the normal component of the electric induction are continu-
ous across the substrate/vacuum interface. These continuities

For a nontrivial solution to exist, the determinant of the sys-lead to the relationshife.g., Dieulesaint and Roy&tp.288,

tem’s matrix must be zero. Its components are given in Eq.

(17), Eq. (19), and EQ.(20). As in the short-circuit configu-

ration, atX=0 the first and third columns in the determinant

both become proportional {d.,4,1]" and soX is a factor of
the determinant; the remaining factor is a quadratiXin
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so that &0)=¢(0)[,1,0j€,]",
(3D

wherea= a1+ia,=U3(0)/¢(0) is complex. Now, the fun-

damental equationél5) for IN (n=1), M@ (n=2), and

d;(0)=ie€pe(0),
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MY (n=—1) lead to a nonhomogeneous linear system of —Ngo— 2N~ (€54 €2)Nyy
equations ~MPD—2eMP—(2+)MP | (35)

N3, €oNy1 N3; 2a, ~MEY—2eM V- (e + MY
M(122) EOMﬁ) M(121) 2a, respectively. Then, the secular equation is E3{l), where
MY MY MY ai+a’ A,...,A; are appropriately changed. Because here the quan-
tity e depends upom, the secular equation is a polynomial
—Ngo— ESN24 in the speed of degree higher than in the previous subsection,
= -M@-&mMP | (32  namely it is a polynomial of degree 16 in

~ME V- egMi, Y
By Cramer’s rule, the unique solution to this system is
200=A1/A, 2a,=A,IA, ai+as=A4/A, (33

whereA is the determinant of the83 matrix in Eq.(32), ) ]
with components given in Eq17), Eq. (19), and Eq.(20), Once a wave speed is determined from the secular equa-

and theA, are the determinants obtained by replacing thision it is @ rather straightforward matter to construct the
matrix's kth column with the vector on the right-hand side of c0esponding complete solution. Indeed, the antiplane me-
Eq. (32). It follows from Eq.(33) that chanical displacementi;, the electrical potentiakp, the

shear stress;,, and the electric inductioDd, are given by

IV. CONSTRUCTION OF THE SOLUTIONS

A. Description of the wave

A2+ A3—4AA;=0, (34)
. . .. . . . [U3,¢,U32,D2](X1,X2,t)
which is the explicit secular equation for piezoacoustic _
(Bleustein-Gulyaev) antiplane surface waves on a nonmet-  =%R{[Us, @,iktg,,ikd,](kx,)ekav0y, (36)

allized, mechanically fred (or 42m, 43m, 23) crystal, cut
along any plane containing the Z axis o . . . .
. . =iN&. Takingé in exponential form leads to the followin
The expansions of the determinadis.., A are lengthy d ! .g ! qul. xp I wing
: . ecaying solution:

and are not displayed here, but they are easily computed by
using the componen_ts Eq17), Eqg. (19), and Eq.(20). It. £= B, ek g, gelkaxe, (37)
turns out thatA factorizes into the product af, and a cubic _
in X which is independent ofy, while A; (respectivelyd,, ~ Whereg;, B, are constantsy;, q are the two roots with
Aj) factorizes into the product of,X (respectivelyX, e,)  Positive imaginary part to thexhomogeneous wave propa-
and a polynomial which is quadratic X and linear ine2. gation condition det(N—q1)=0, and theg' satisfy: N&'
The resulting secular equatiai34) is a sextic inX and a =€ o .
cubic in €3, with the coefficient of thesS term proportional Explicitly, the g; are roots of the quartic
to the “metallized secular equatior(24) and the coefficient 2. 4 3 B a2
of the €3 term proportional to thénonvalid “open-circuit (€1:Cast €157~ 4€148150" ~ [ €11(X— 2Cas) — 401y
SeCUIar equatlon,(so) . . + Zeis]q2+4e14el5q+ eis_ Ell(X— C44) = 0, (38)

It is emphasized again that, as in Sec. Ill B, great care _
must be taken to ensure that the speed given by the seculand the&' are proportional to any column vector of the ma-
equation Eq.(34) leads to a valid solution. This point is trix adjoint toN—g;1, the third one say. Hence

discussed in Sec. IV B.
2 T
i | €14 2. €14
&'=|—a,bjeyfi, —a , (39
Caa Caa

Here,Ujs, ¢, t3,, d, are the components &, solution to

D. Thin conducting layer boundary condition

As a final type of boundary condition, consider that theWhere the nondimensional real quantites b;, f;, g; (i
semi-infinite substrate is covered with a metallic film with =1,2) are given by
thicknessh and conductance, whereh is assumed to be so

small with respect to the acoustic wavelength that the effects, = — 6“2044(qi2+ 1), b :e_15(qi2_ 1)-2q;,
of mechanical loading can be neglected. Then, the perme- 14 €14
ability of the regionx,<<0 close to the interface is changed 2
from €, (see the previous subsectjaio €,—ie (see Royer f:%(ng_l)_ %q-(q?—l)— GLC““q.(qZJF 1)—2q;
and Dieulesainf® p. 30D, with e=yh/v. Replacing the = €1 e e v
former quantity with the latter in the previous subsection (40)
leads to similar results as above, except that the3 3natrix
and the right-hand side of E(32) are now replaced with ¢, — 611;:44 qi2+ze_15qi_1)_
N3t €Ny €oN2y N3p Fus s
M(122)+6M (1%) eoM(ﬁ) M(lﬁ) and Fipally, the ratioB,/B,; comes fr_om the condition that the
1) 1) 1) 1) third component ofé(0), proportional tot,5(0), must be
Mi "+ eMis™ €M™ My zero, so thap,/B,=—f,/f,.
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B. Validity of the solution 3980
Once a wave solution has been constructed, its validity AlAs o Vauik
must be checked, that is, it must satisfy the boundary condi- @
tions. 39751
Thus, for a solution to thehort-circuit problem (Sec. .
IIA), it must be checked thap(0)=pB,b;+B,b, and Y
tax(0)= Bie14f 1+ Bo€14f» are indeed equal to zero. These E
conditions are equivalent to checking that 2 39701 1
[
b =/
I 4y 2 /_
f, f, :‘é 3965 £
For a solution to th@pen-circuitproblem(Sec. Il B), it = ‘g?
must be checked thdg,(0)= B1e14f1+ Bo€14f» and d,(0) ®
=B1(eldCad 91t Bo(€7/Can)gz are equal to zero. These oo | §
conditions are equivalent to checking that =
40 45 50
f1 f2 6 (deg.)
9 @ 3% 10 20 30 40 50 60 70 80 90

As expected;?* this condition is never satisfied. 6 (deg.)

For a solution to théree-boundaryproblem(Sec. Il O, FIG. 2. Sheeds of b ; in & ARG ey crystal
: — — . 2. Speeds ol plezoacoustic waves In a symmetry crystal,
it must be checked thal(0)=B1€14f1+ B2€14f,=0 and as a function of the cut angle: bulk shear waupper curvg SH surface

i H 2
that d,(0)=iege(0), that IS, B1(€14Cas) 91 wave for freefunmetallized boundary conditiongintermediate curve and
+ 32(954/044)92: ieg(B1b1+ Boby). These conditions are SH surface wave for metallized boundary conditigiosver curve.

equivalent to checking that

f, f, A. AlAs
&4 . ety _ib =0. (42 For aluminum arsenide @m symmetry the physical
Cueg 1P ¢, e 92 P2 quantities of interest afé p=3760 kgm 3, ¢,,=58.9

x10° N-m~2, &,=—0.225 Gm 2, ande;;=10.06¢,.

Using the results of Secs. Ill and 1V, it is found that the
the Clj't angles. ) ) , speeds of the piezoacoustic SH surface wave with metallized
Finally, for a solution to thethin conducting layer  geq i A) and with free(Sec. 1110 boundary conditions
boundary problem (Sec. IIID), it must be checked that .o 4imost indistinguishable on a graph from the speed of the
t32(0)=0 and thatd,(0)=(e+i€o) ¢(0). These conditions - shear wave. For instance at 45°, these speeds are

In general, this condition is met only for a limited range of

are equivalent to checking that (m-s™1): 3976.784, 3976.965, and 3976.966, respectively.
f, f, Note however that the SH surface wave for the metallized

o2 . _0. (43 (“shorted”) boundary condition exists for all values &
— 2 g—ib, ——2g,—ib,| (within the range delimited above by the speed at 45° and
Caal€g—i€) Caal€0—i€) below by the speed at 0° and at 90°, which is

3957.890 ms™ 1), whereas the SH surface wave for the un-

V. EXAMPLES metallized(“free” ) boundary condition exists only within a

] ] ] ] ] limited range, delimited above by the speed at 45° and below

In this section, the sgcular equations derived in Sec. IlbOy the speed at 45.8°8.51°, which is 3975.276 rs 1.

and the tests presented in Sec. IV are employed to find nu-" igyre 2 displays the variations of the three speeds as a
merically the wave speEd and its range of existence for threg,nction of 6. The speed of the bulk shear wave is always
crystals, one with cubic 3m symmetry, one with tetragonal above the speed of the SH surface wave for the metallized
42m symmetry, and one with cubic 23 symmetry. Data col-boundary condition; they are both defined everywhere. The
lected from the specialized literature are used for the valuespeed of the SH surface wave for the unmetallized boundary
of the mass densities, of the stiffnesses, and of the piezoelecendition is intermediate between these two speeds, but ex-
tric and dielectric constants. In order to graph the depth proists only in the rang¢36.49°,53.513. A zoom is provided
files, a frequency of 100 MHz and a mechanical displacefor this range. In that zoom, the curve for the bulk shear
ment of 10 ¥ m atx,=0 are picked to fix the ideas. Note wave almost coincides with the curve for the SH surface
that at a 45° angle of cut, the profiles present gnanoscil-  wave corresponding to the unmetallized boundary condition;
lating) exponential decay, because the propagation conditiotogether, they form the upper curve while the lower curve
(38) is a biquadratic and the corresponding roots are purelyepresents the variations of the SH surface wave speed cor-
imaginary; they are essentially similar to those displayed byesponding to the metallized boundary condition.
Bright and Hunt:® Here, the profiles are computed at angles Note that the simple test for the solution’s validity pre-
F45°, sented in Sec. IV B works perfectly here and hence forward.
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f=100 MHz, A =38.6720 um, 6=22°30°, metallized surface 2705 T T T T T T T T
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FIG. 3. Depth profiles of the SH surface wave for metallized boundary _

conditions in a AlAs crystal cut at 22°30mechanical displacement, shear FIG. 4. Speeds of piezoacoustic waves in a BalAT;g42m symmetry

stress, electrical potential, electric induction. crystal, as a function of the cut angle: bulk shear waygper curvg, SH
surface wave for frequnmetallized boundary conditiongintermediate
curve, and SH surface wave for metallized boundary conditidosver

Thus, using a 40-digit precision undenpPLE for AlAs, the  curve.

modulus of the determinant if#2) is found to be less than

10 % at 45.0%-8.5125° and more than 0.2 at 45.0° _ N

+8.5129°. to the unmetallized boundary condition, and for the SH sur-
Figure 3 shows the variations with depth of the fields offace wave corresponding to the metallized boundary condi-

interest(mechanical displacement, shear stress, electrical pdion. Figure 5 shows the variations with depth of the fields of

tential, electric inductionfor the SH surface wave corre- interest(mechanical displacement, shear stress, electrical po-

sponding to the metallized boundary condition at tential, electric inductionfor the SH surface wave corre-

=22°30. The variations of the fields are presented over 25@Ponding to the metallized boundary condition &t

Wave|engthsy and zooms are provided for Ebe 5] wave- =22°30. Similar comments to those made for F|g 3 apply

lengths range, where, o3,, andD, undergo rapid changes.

f=100 MHz, A =26.8755um, 0=22°30°, metallized surface

B. BLGO 15510
|28

Soluchet al?® measured experimentally the elastic, pi- BalaGa,0,, (BLGO)

ezoelectric, and dielectric properties of BaLaGa (42m
symmetry, mass densityp=5450 kgm~3) as: c,,=39
x10° N-m 2, 8,,=0.29 Cm 2, ande;;=12.4¢,.

Here, the speeds of the piezoacoustic SH surface wavi o
with metallized(Sec. Il A) and with freetSec. Il O bound-
ary conditions differ more notably than in the previous ex- -8
ample from the speed of the bulk shear wave. For instance a
45°, these speeds are (sn'): 2700.739, 2701.239, and
2701.242, respectively. The range of values for the wave =
speedv ggm, Of the metallized shorted boundary condition is
delimited above by the speed at 45° and below by the speer 15
at 0° and at 90°, which is 2675.063&1. For the un- € ,
metallized free-boundary condition, the correspondiing- 90_5
ited) range for the wave speedsq; is bounded above by the
speed at 45° and below by the speed at 45.0485°,
which is 2699.369 ns 1. The difference between the two % 20 40 e s 100
speeds is the largest a=45°; there, the ratio 2fggs
~vgem/veer iS equal to 3.76:10 . FIG. 5. Depth profiles of the piezoacoustic SH surface wave for metallized

Figure 4 displays the variations withof the speeds for ~ boundary conditions in a BalLa@a, crystal cut at 22°30 mechanical
the bulk shear wave, for the SH surface wave correspondingjsplacement, shear stress, electrical potential, electric induction.

ug (m)
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FIG. 6. Speeds of piezoacoustic waves in @Be0y, (23 symmetry crys- FIG. 7. Variations of 2¢ggi—vpem)/vees With 8 in a Bij,GeOy (23 sym-

tal, as a function of the cut angle: bulk shear wéaweper curvg SH surface  metry) crystal.

wave for free(unmetallized boundary conditiongintermediate curve and

SH surface wave for metallized boundary conditigimsver curve. wave for the unmetallized boundary condition penetrates far

more deeply than the SH surface wave for the metallized
boundary condition. The electrical potential and the electric
induction are plotted inside the crystal for the raf§e500

The relevant physical quantities of bismuth germaniumwavelengths, and also in the vacuum over the crystal for the
oxide (Bi,GeOy, 23 symmetry aré® p=9200 kgm™2, range[ — 10,0] wavelengths; the continuity of these fields
C4=25.52<10° N-m~2, &,,=0.983Cm 2, and e;; across the interface is made apparent with a zoom for the
=38.0¢g. range[ —5,5] wavelengths.

Here, the differences between the speeds of the bulk
shear wave, of the SH surface wave corresponding to th¥!- CONCLUDING REMARKS
metallized boundary condition, and of the SH surface wave  The method of resolution for the title problem of this
corresponding to the unmetallized boundary condition argaper is based on the fundamental equati¢hs. This
more marked than in the previous example. At 45°, these
speeds are (s 1) 1747.812, 1756.836, and 1756.846, re- 10
spectively. At 0° and at 90°, the speeds of the bulk shear * 1, Ge0,,
wave and of the SH surface wave corresponding to the met 0 IS
allized boundary conditon are both equal to
1665.507 ms 1. The SH surface wave for the unmetallized
boundary condition exists only in the range 45:(8149°,
and at the extremities of this range, its speed is o
1755.068 ms ™.

Figure 6 displays the variations of the three wave speeds 35020 2 0 50
as a function of. Figure 7 shows the variations of the quan- X,fA
tity 2(vear—vsem)/veas With the angle of cut; its largest x10°
(smallest value is 1.02% 102 at 45.00° (0.97% 102 at 2
48.149°). 15

Figure 8 shows the variations with depth of the fields of 1
interest(mechanical displacement, shear stress, electrical pOSM

C. BGO

f=100 MHz, A=17.0144pum, 6=22°30’, metallized surface

(m)

o

tential, electric inductionfor the SH surface wave corre- 0 ‘go ———

sponding to the metallized boundary condition &t e

=22°30. Similar comments to those made for Figs. 3 and 4 s o S

apply. Yo 10 2 2 a0 s P 10 2 wm a %
Figure 9 shows the variations with depth of the same X,/h X;/h

fields for the SH surface wave correspondlng to the unmEtl-:IG. 8. Depth profiles of the piezoacoustic SH surface wave for metallized

al_lized boundary Qonditi(_)n ap=42°30. By comparison  poyndary conditions in a BiGeO,, crystal cut at 22°30 mechanical dis-
with the previous figure, it can be seen that the SH surfacelacement, shear stress, electrical potential, electric induction.
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=100 MHz, 1 =17.5572 um, 6 =42° 30, free surface ements of the matriN in Eq. (10). Their general expression
is given for instance by Abbudi and Barn#s an illustra-

=13
‘“; 5e0 ST 15 tion, they are now presented for rhombic 222 crystals.
1270 For such a crystal, the relevant nonzero piezoacoustic
05 ‘:;': _ constants in the crystallographic coordinate systemtare
£ . “5 Cs5, €14, 55, €17, and &,,. In the coordinate system ob-
> ° e < tained after the rotation Eq1), they are
©
-0.5 Cag= 644CO§ 0+ 655 S|n2 0, C45: (644_ 655) cosésin 0,
C55: 655 C032 0+ 644Sin2 0, €10= (%22_ %11) cosd sin 0,
o 10 200 300 400 500 R o R o
lel €11— 6110052 0+ 622$|n2 0, €90= 6220052 0+ 6113|n2 0,
3xw" (44)
25 3 ©14=814C08 0—8y5Si? 0, €15=(814+&y5)COSHSING,
x10™ 2 ~ A . ~
S 2 s —— . ' 625: 625 COS2 60— 614SII’12 0, 6242 - 615.
g18 32 : TNE s 0 The equations of motion can be cast in the form Ed),
T e a—— T where the matriN is defined by its X 2 blocksN{", NV,
05 xfh ) N K® in Eq. (11). The components of-N{Y and NV are
AAAAAAAAAAAAAAAAAAAAA -' given here by
-010 -8 -6 -4 -2 [} -30 100 200 300 400 500 -
x* */ €045 Co5) o (S22, €12) o
ox1e” il €14815 €14 €15 €14
Case c €1, '
2 \ ’ _(LZE’+_45 2 (ﬂ_l)Kz
E o ~ L 1814615 €14 €14815
o -04 x10 “E 2‘
Yo |5 [ eewm ] S [ e 1
$ o8l ¢° :// g w0 22 K? - —k?
D= S v = ° €14€15 €14
08l 25 a s -2 1 c ' (49
xzm _ 2 _ 44 K2
Yo = % 4 -2 0 0 100 200 30 40 500 o €14 €14815
o P respectively, and those ¢ are

FIG. 9. Depth profiles of the piezoacoustic SH surface wave for (nee eZ e €25C
metallized boundary conditions in a BiGeOy, crystal cut at 42°30 me- K(lll):)(_ Css— ( 25 225 2_45> P

. . 2 h o- . Cuu———+2Cys 45
chanical displacement, shear stress, electrical potential, electric induction. €14€15 €14 €14€15

method has proved itself to be very effective and versatile. K(llz): —est

Ca4€12  Cas€22 €12C44
+ — o5l T — 1 K2,

The end result is the complete analytical elucidation of the €14 €15 €14615
problt_am, for a great variety qf surface impedance problem_s ) €1Ca4 el ,
in a piezoelectric half-space, i.e., problems where the electric K37 = — €111 €12 | T €K (46)
: o ) . . €14815 €15
induction is proportional to the electrical potentidd . .
=ivZD, (say at the boundary plane. The method can beHere, the quantitk is defined by
followed through when the impedancg is zero (short-
AN S i ) 2 €14€15
circuit), infinite (open-circuif, pure imaginary (free- = (47)
€11C4471 €15

boundary, or complex(thin conducting layer It has already
been used for other types of surface impedance problems for Finally, in the guise of a conclusion, the main relevant
elastic interface waves(Stoneley wave&)?> Scholte advances toward the full resolution of the problem presented
waves) and could be adapted to configuratihsvith a  in the paper are recapitulated. In the purely elastic case, the
resistance force proportional to the normal velocity, a massecular equation for Rayleigh waves polarized in a plane of
concentrated in a thin surface layer, a system of elastic ossymmetry was derived by Curfiéewho, using an algebraic
cillators resting on an elastic half-space, a thin elastic layeapproach based on the Stroh formalism, obtained the equa-
longitudinally deformable, etc. The method can also accomtions
modate a coupling between elastic and piezoelectric fields, in  —
situations such as the one treated here or for instance, the U(0)-K™u(0)=0, (48)
case of interface acoustic waves at a domain bouridary.  whereU(0) is the mechanical displacement on the free sur-
Here, attention was restricted to Bleustein—Gulyaeviace. Although these equations are also valid in generally
waves in tetragonal piezoelectric crystals. The extension to anisotropic crystals, his derivation of the secular equation for
the classes of orthorhombic 222 or monoclinic 2 crystals idriclinic (no symmetry crystals apparently leads to a trivial
straightforward and only requires the computation of the elidentity. This problem was later corrected by Taylor and
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