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Abstract. By definition, a homogeneous isotropic compressible Hadamard material has the property
that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when
the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as
regards the wave, ‘homogeneous’ means that the direction of propagation of the wave is parallel to
the direction of eventual attenuation; and ‘longitudinal’ means that the wave is linearly polarized in
a direction parallel to the direction of propagation. In other words, the displacement is of the form
u = n cos k(n ·x−ct), where n is a real vector. It is seen that the Hadamard material is the most gen-
eral one for which a ‘longitudinal’ inhomogeneous plane wave may also propagate in any direction of
a predeformed body. Here, ‘inhomogeneous’ means that the wave is attenuated, in a direction distinct
from the direction of propagation; and ‘longitudinal’ means that the wave is elliptically polarized in
the plane containing these two directions, and that the ellipse of polarization is similar and similarly
situated to the ellipse for which the real and imaginary parts of the complex wave vector are conju-
gate semi-diameters. In other words, the displacement is of the form u = �{S exp iω(S · x − ct)},
where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It
is the most general homogeneous isotropic compressible material which allows the propagation of
infinitesimal ‘longitudinal’ inhomogeneous plane circularly polarized waves for all choices of the
isotropic directional bivector. Finally, the most general forms of response functions are found for
homogeneously deformed isotropic elastic materials in which ‘longitudinal’ inhomogeneous plane
waves may propagate with a circular polarization in each of the two planes of central circular section
of the B

n-ellipsoid, where B is the left Cauchy–Green strain tensor corresponding to the primary
pure homogeneous deformation.
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1. Introduction

Infinitesimal longitudinal homogeneous plane waves play a special role in classi-
cal linearized theory. For such waves the amplitude is parallel to the direction of
propagation n so that all the particles oscillate along the direction n. Such waves
may propagate in every direction in an isotropic compressible elastic body. This
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is no longer the case for propagation in an elastic anisotropic crystal. Possible
directions of propagation of longitudinal homogeneous plane waves, called ‘spe-
cific directions’ by Borgnis [1], may be as few as three in an elastic anisotropic
crystal. Of course, by assuming certain restrictions on the elastic constants, it is
possible, as Hadamard [2] did, to have a special model anisotropic material in
which longitudinal waves are possible in every direction.

A similar situation holds for infinitesimal motions of an isotropic homoge-
neous elastic material held in an (arbitrary) state of static (finite) homogeneous
deformation – specific directions are limited in number. However, it is possible to
place conditions on the basic strain energy density, or on the response coefficients
defining the material, such that every direction is specific for arbitrary (finite) ho-
mogeneous deformation. The resulting model was called a ‘Hadamard material’ by
John [3].

Here we consider the propagation of infinitesimal inhomogeneous plane waves
in an isotropic homogeneous compressible elastic body held in an arbitrary state of
finite static homogeneous deformation. Such waves may be described in terms of
bivectors – complex vectors – the amplitude bivector A and the slowness bivector S,
which is written S = NC, where the directional bivector C is written C = mm̂+ in̂
(m̂ · n̂ = 0, m � 1, |m̂| = |n̂| = 1). Once the directional bivector C is prescribed,
the slowness S and the amplitude A are determined from the equations of motion.
Prescribing C is equivalent to prescribing an ellipse with principal semi-axes mm̂
and n̂; this directional ellipse for inhomogeneous plane waves corresponds to the
direction of propagation n for homogeneous plane waves [4]. We borrow the ad-
jective ‘longitudinal’ to describe an inhomogeneous plane wave for which A and S
(and C) are parallel: A × S = 0. What this means is that [5] the ellipses of A and
of S (and of C) are all parallel, similar (same aspect ratio) and similarly situated
(parallel major axes and parallel minor axes). We determine the most general form
of strain-energy density so that such waves may propagate for all choices of the
directional bivector C. It turns out to be a Hadamard material.

Then we consider the possibility of having ‘circularly polarized longitudinal’
waves. For such waves both C and A are isotropic and coplanar: the corresponding
ellipses are coplanar circles. Such waves are a subclass of longitudinal waves.
A member of the corresponding class of materials for which circularly polarized
longitudinal waves are possible is called a ‘Generalized Hadamard material’. Clearly
they include Hadamard materials.

Next we obtain constitutive equations for materials which allow the propagation
of two special infinitesimal longitudinal circularly polarized inhomogeneous plane
waves for all choices of the basic static homogeneous deformation. The circles of
polarization are to lie in the planes of central circular section of the B

n-ellipsoid:
x · B

nx = 1, where B is the left Cauchy–Green strain tensor corresponding to
the basic deformation. In the particular cases where n = ±1, we determine the
corresponding forms of the strain-energy function. In every case, the slownesses
are presented explicitly. Finally, we present the very simple results when n = 1

2 .
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2. Inhomogeneous Longitudinal Plane Waves

Here we recall some basic properties of inhomogeneous plane waves and then
introduce inhomogeneous longitudinal plane waves. Finally, we introduce inho-
mogeneous longitudinal circularly polarized plane waves.

The displacement field corresponding to an infinite train of infinitesimal inho-
mogeneous plane waves is εu (where ε is an infinitesimal constant: ε2 � |ε|) and
u is given by

u = [A exp iω(S · x − t)]+
= {A+ cos ω(S+ · x − t) − A− sin ω(S+ · x − t)} exp −ωS− · x. (2.1)

Here A = A+ + iA− is the amplitude bivector; S = S+ + iS− is the slow-
ness bivector; and the period of the waves is 2π/ω. The particle initially at x
is displaced to x + εu at time t , so that it moves on an ellipse, centre x, with
conjugate radii εA+ exp −ωS− · x and εA− exp −ωS− · x. When the particle is at
x + εA+ exp −ωS− · x it is moving parallel to A−, and when it is at
x+εA− exp −ωS−·x it is moving parallel to A+. The sense of description of the el-
lipse is from the tip of x + εA+ exp −ωS− · x towards the tip of
x + εA− exp −ωS− · x that is, from the tip of A+ towards the tip of A−.

It has been pointed out [4] that the slowness S may not be prescribed a priori.
Rather, S is written as

S = NC = T eiφ(mm̂ + in̂), (2.2)

where

C = mm̂ + in̂, m � 1, m̂ · n̂ = 0, |m̂| = |n̂| = 1. (2.3)

In the directional ellipse approach [4], what is prescribed is the directional
bivector C, or equivalently, the directional ellipse associated with C that is,
(m̂·x)2/m2+(n̂·x)2 = 1, m̂×n̂·x = 0. On choosing C, then N , and thus S = NC,
are determined from the equations of motion, and A follows as an eigenbivector
of the acoustical tensor [4]. Let p̂ = m̂ × n̂ be the unit normal to the plane of the
directional bivector C. There is an infinity of choices of directional ellipses, first by
varying the magnitude of m, keeping m̂ and n̂ held fixed and orthogonal, and then
by rotating (m̂, n̂) into another orthogonal pair (m̂∗, n̂∗) (say) with p̂ = m̂∗ × n̂∗
and repeating the procedure. Finally, p̂ is rotated and the process continued. In this
way every possible inhomogeneous plane wave solution is obtained.

For a ‘longitudinal’ inhomogeneous plane wave the displacement field εu may
be written

u = [δS exp iω(S · x − t)]+, (2.4)

where δ is a constant. Writing

δ = |δ|eiψ, S = NC = N(mm̂ + in̂) = T eiφ(mm̂ + in̂), (2.5)
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we find

u = |δ|T exp −ωT [(sin φ)mm̂ · x + (cos φ)n̂ · x]
× {

mm̂ cos[ωT (cos φ)mm̂ · x − ωT (sin φ)n̂ · x − ωt + ψ + φ]
− n̂ sin[ωT (cos φ)mm̂ · x − ωT (sin φ)n̂ · x − ωt + ψ + φ]}. (2.6)

The planes of constant phase are

(cos φ)mm̂ · x − (sin φ)n̂ · x = constant, (2.7)

and the planes of constant amplitude are

(sin φ)mm̂ · x + (cos φ)n̂ · x = constant. (2.8)

The particle paths are ellipses with principal axes along m̂ and n̂. We note that

u(0, t) = |δ|T [mm̂ cos(ψ + φ − ωt) − n̂ sin(ψ + φ − ωt)],
(2.9)

u(0, ωt = ψ + φ) = |δ|T mm̂, u(0, ωt = ψ + φ + π/2) = |δ|T n̂.

Hence the sense of description for the motion of the particle initially at x = 0 and
now on the ellipse (2.6) with center at x = 0, is from the tip of the principal axis
along m̂ towards the tip of the principal axis along n̂. This is clearly the case for
the motions of all other particles also.

For circularly polarized waves we take m = 1 so that the planes of constant
phase are orthogonal to the planes of constant amplitude. Also,

u = |δ|T exp −{
ωT [(sin φ)m̂ + (cos φ)n̂] · x

}
×[m̂ cos(κ − ωt) − n̂ sin(κ − ωt)], (2.10)

where

κ = ωT [(cos φ)m̂ − (sin φ)n̂] · x + ψ + φ. (2.11)

The radius of the circle of polarization for the particle initially at x is

|εδ|T exp −{
ωT [(sin φ)m̂ + (cos φ)n̂] · x

}
. (2.12)

The displacement εu where u is given by (2.10) corresponds to an infinite train of
circularly polarized longitudinal inhomogeneous plane waves.

3. Basic Equations

3.1. HYPERELASTIC MATERIALS

We consider a body made of homogeneous isotropic compressible elastic material,
initially in a state of rest B0. When the body is deformed to a state B (say), a
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material particle which was at X in B0 moves to the position x, at time t , where

x = x(X, t). (3.1)

The left Cauchy–Green strain tensor B is defined by

Bij =
(

∂xi

∂XA

)(
∂xj

∂XA

)
, (3.2)

in a rectangular Cartesian coordinate system, fixed in B.
Three principal invariants of B are I, II, III defined by

I = tr B, 2II = I2 − tr(B2), III = det B. (3.3)

The constitutive equation for the material, relating the Cauchy stress tensor T

with the strain tensor B is [6]

T = N01 + N1B − N−1B
−1, (3.4)

where the material coefficients N	 (	 = 0,±1) are functions of I, II, III. In the
case of a hyperelastic material, the strain energy density function W , measured per
unit mass, is characteristic of the material and a function of I, II, III:

W = W(I, II, III), (3.5)

and then N0, N1, N−1 are given by [6]

N0 = 2

[
II III−1/2 ∂W

∂II
+ III1/2 ∂W

∂III

]
,

(3.6)
N1 = 2III−1/2 ∂W

∂I
, N−1 = 2III1/2 ∂W

∂II
.

3.2. FINITE STATIC PURE HOMOGENEOUS DEFORMATION

We assume that the body is first subjected to a finite triaxial static homogeneous
deformation, as it is deformed from B0 to B. Then, the corresponding three princi-
pal axes of deformation constitute a fixed rectangular Cartesian coordinate system
(O, i, j, k) say, in which the deformation (3.1) is written as

x = λ1Xi + λ2Y j + λ3Zk, (3.7)

where the λ’s are the principal stretch ratios, assumed, without loss of generality,
to be ordered as

λ1 > λ2 > λ3. (3.8)

In this case, the left Cauchy–Green tensor reduces to

B = λ2
1i ⊗ i + λ2

2j ⊗ j + λ2
3k ⊗ k, (3.9)
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with corresponding invariants

I = λ2
1 + λ2

2 + λ2
3, II = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, III = λ2

1λ
2
2λ

2
3. (3.10)

The Cauchy stress necessary to maintain the basic finite static homogeneous defor-
mation (3.7) has components

Tαβ = 0, α �= β
(3.11)

Tαα = N0 + N1λ
2
α − N−1λ

−2
α ,

where the N	 (	 = −1, 0, 1) are defined as in (3.6), at values of I, II, III given by
(3.10).

3.3. SUPERPOSED ‘LONGITUDINAL’ INHOMOGENEOUS PLANE WAVES

Let the body be subjected to a further deformation bringing it from the state B
to the state B, corresponding to the propagation of an infinitesimal ‘longitudinal’
inhomogeneous plane wave of complex exponential type in the deformed material,
such that the current position x in B, of a particle at x given by (3.7) in B, and at
X in B0, is given by

x = x + ε
{
Seiω(S·x−t )

}+
. (3.12)

Here, ε is a small parameter, such that terms of order higher than ε may be ne-
glected in comparison with first order terms.

Now, corresponding to the superposition of the small-amplitude motion (3.12)

upon the large deformation (3.7) are the quantities B, B
−1

, I, II, III, N−1, N0, N1,
and T, that is, respectively, the left Cauchy–Green tensor and its inverse, the first
three invariants, the three material constitutive parameters, and the Cauchy stress
tensor. Each of these quantities may be expanded up to the first order in ε, and
written in the form,

B = B + ε
{
iωB

∗eiω(S·x−t )
}+

, . . . ,

I = tr B = I + ε
{
iωI∗eiω(S·x−t )

}+
, . . . , (3.13)

T = T + ε
{
iωT

∗eiω(S·x−t )
}+

.

Here, we have:

B
∗ = S ⊗ BS + BS ⊗ S,

(B−1)∗ = −S ⊗ B
−1S − B

−1S ⊗ S,

I∗ = 2(S · BS),

II∗ = 2[II(S · S) − III(S · B
−1S)], (3.14)

III∗ = 2III(S · S),

N∗
	 = I∗N	,I + II∗N	,II + III∗N	,III, (	 = −1, 0, 1),

T
∗ = N∗

0 1 + N∗
1 B − N∗

−1B
−1 + N1B

∗ − N−1(B
−1)∗.
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Finally, the mass density ρ in the current configuration is

ρ = III−1/2ρ
(
1 − ε

{
iω(S · S)eiω(S·x−t )

}+)
. (3.15)

3.4. EQUATIONS OF MOTION

In the dynamic state B, the equations of motion, written in the absence of body
forces, read

∂T ij

∂xj

= ρ
∂2xi

∂t2
. (3.16)

Up to the first order in ε, they are equivalent to T
∗ · S = ρS, or

�S + �BS + 	B
−1S = 0, (3.17)

where

� := N∗
0 + N1(S · BS) + N−1(S · B

−1S) − ρ,

� := N∗
1 + N1(S · S), (3.18)

	 := N∗
−1 − N−1(S · S).

When referred to axes i, j, k, the principal axes of B, equations (3.17) may be
written

(� + �λ2
α + 	λ−2

α )Cα = 0, α = 1, 2, 3, no sum, (3.19)

where C = C1i + C2j + C3k. These equations have to be satisfied for all choices
of C1, C2, C3, and for all positive choices of λ1, λ2, λ3 satisfying (3.8). Noting that∣∣∣∣∣∣

1 λ2
1 λ−2

1

1 λ2
2 λ−2

2

1 λ2
3 λ−2

3

∣∣∣∣∣∣ = (λ2
1 − λ2

2)(λ
2
2 − λ2

3)(λ
2
3 − λ2

1)

III
�= 0, (3.20)

it follows that we must have

� = � = 	 = 0. (3.21)

Thus, writing S = NC, we have

ρN−2 = (2N0,I + N1)C · BC + (−2IIIN0,II + N−1)C · B
−1C

+ (2IIN0,II + 2IIIN0,III)C · C, (3.22)

and also

2N1,I(C · BC) − 2IIIN1,II(C · B
−1C)

+[N1 + 2IIN1,II + 2IIIN1,III](C · C) = 0, (3.23)

2N−1,I(C · BC) − 2IIIN−1,II(C · B
−1C)

+[−N−1 + 2IIN−1,II + 2IIIN−1,III](C · C) = 0. (3.24)
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Here C is assumed prescribed. Then, S = NC is determined from (3.22). The
response functions N1, N−1 must be such that (3.23) and (3.24) are satisfied for all
choices of C and all positive choices of λ1, λ2, λ3.

4. Propagation of ‘Longitudinal’ Inhomogeneous Plane Waves for Any
Directional Bivector C

Here we find the most general form of the stored energy density for which infin-
itesimal longitudinal inhomogeneous plane waves may propagate in the finitely
deformed material for any choice of directional bivector C.

4.1. ‘LONGITUDINAL’ WAVES OF GENERAL POLARIZATION

Equations (3.23) and (3.24) must be satisfied for any C. In particular, choose C �= 0
such that C · C = 0, C · B

−1C = 0. In that case, C · BC �= 0 and it follows from
(3.23), (3.24) that

N1,I = N−1,I = 0. (4.1)

Next choose C �= 0 such that C · C = 0, C · BC = 0. In that case, C · B
−1C �= 0

and it follows that

N1,II = N−1,II = 0. (4.2)

Thus

N	 = N	(III), 	 = −1, 1. (4.3)

The N	 are functions of III alone, and equations (3.23) and (3.24) reduce to

[N1 + 2IIIN ′
1](C · C) = 0, [−N−1 + 2IIIN ′

−1](C · C) = 0. (4.4)

These equations must be satisfied with any C, in particular with C such that
C · C �= 0 (e.g., C = i + 2ij). So,

N1 + 2IIIN ′
1 = 0, −N−1 + 2IIIN ′

−1 = 0, (4.5)

and by integration,

N1 = 2νIII−1/2, N−1 = 2µIII1/2, (4.6)

where ν and µ are two constant parameters, independent of the strain invariants.
The corresponding hyperelastic material has the following constitutive equation,
by (3.4),

T = N0(I, II, III)1 + 2νIII−1/2
B − 2µIII1/2

B
−1. (4.7)
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In order that this expression should correspond to that of an hyperelastic material,
it is seen that N0 has to be independent of I and linear in II, thus

N0 = 2

(
II III−1/2µ + III1/2 dh

dIII

)
, (4.8)

so that the strain energy density is given by

W = νI + µII + h(III), (4.9)

characteristic of the Hadamard material [3]. Here h is an arbitrary function of III.
We conclude:
• The most general material in which ‘longitudinal’ inhomogeneous plane waves

may propagate for any choice of the directional bivector C, when it is held
in any state of finite static pure homogeneous deformation, is the Hadamard
material.

This same conclusion was reached by John [3] for the propagation of finite ampli-
tude homogeneous plane waves.

Using (3.22) and (4.6), we note that the slowness S corresponding to the direc-
tional bivector C is given by S = NC, where

ρN−2 = 2(N0,I + νIII−1/2)C · BC + 2(−IIIN0,II + µIII1/2)C · B
−1C

+ 2(IIN0,II + IIIN0,III)C · C. (4.10)

In the particular case of a hyperelastic Hadamard material, on using (4.8) and
(4.9), equation (4.10) becomes

ρN−2 = 2νIII−1/2C · BC − 2µIII1/2C · B
−1C

+ 4[µII III−1/2 + III(III1/2h′)′]C · C. (4.11)

For any choice of the directional bivector C, whether it is taken to be linear, el-
liptic, or circular, the corresponding wave train is linearly, elliptically, or circularly
polarized, respectively, the displacement field being given by

x = x + ε
{
NCeiω(NC·x−t )

}+
, (4.12)

wherein N is given by (4.10).

EXAMPLE. As an example we may choose C such that

C2
1

C2
3

=
(

λ4
2 − λ4

3

λ4
1 − λ4

2

)(
λ2

1

λ2
3

)
,

C2
2

C2
3

= −
(

λ4
1 − λ4

3

λ4
1 − λ4

2

)(
λ2

2

λ2
3

)
. (4.13)

Then

C · BC = C · B
−1C = 0, (4.14)
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and (4.11) gives

ρN−2 = −4[µII III−1/2 + III(III1/2h′)′](λ
2
1 − λ2

3)(λ
2
2 − λ2

3)(λ
2
2 − λ2

3)

λ2
3(λ

2
1 + λ2

2)
C2

3 .

(4.15)

Thus NC3 is determined in terms of λα , h′, and µ, and from (4.13), NC1

and NC2 are also determined. Thus the displacement field (4.12) may be written
explicitly in terms of the basic deformation stretches λα, and µ, h′.

We note in passing that (4.14) may be interpreted [5] in terms of the two special
central planes for which the sections of the ellipsoids x · Bx = 1, x · B

−1x = 1,
are a pair of similar and similarly situated ellipses. The plane of C must coincide
with either of the two special central planes and also the ellipse of C is similar and
similarly situated to the elliptical sections of the B and B

−1 ellipsoids by the plane
of C.

4.2. ‘LONGITUDINAL’ WAVES OF CIRCULAR POLARIZATION

Now we determine the most general material for which infinitesimal ‘longitudinal’
inhomogeneous plane waves of circular polarization may propagate for any choice
of isotropic directional bivector C, when the material is held in an arbitrary state
of finite static pure homogeneous deformation. Of course, as we have seen already,
such waves may propagate in a deformed Hadamard material.

The condition that such waves may propagate is that equations (3.23) and (3.24)
be satisfied for all isotropic C: C · C = 0 and for all positive choice of λ1, λ2, λ3.
When C · C = 0, equations (3.23) and (3.24) reduce to

N	,I(C · BC) − IIIN	,II(C · B
−1C) = 0, (	 = −1, 1). (4.16)

Because λ1, λ2, λ3 are arbitrary, it follows that

N	,I = N	,II = 0, (	 = −1, 1), (4.17)

so that the corresponding constitutive equation is

T = N0(I, II, III)1 + N1(III)B − N−1(III)B
−1. (4.18)

The corresponding materials are called ‘Generalized Hadamard materials’. The
class encompasses Hadamard materials.

For any choice of isotropic C, the wave train is circularly polarized, with the
plane of C being the plane of polarization, and the corresponding slowness S =
NC being given through

ρN−2 = (2N0,I + N1)C · BC + (N−1 − 2IIIN0,II)C · B
−1C, (4.19)

on using (3.22).
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If the Generalized Hadamard material is to be hyperelastic, then it may be
shown that N0 must have the form

N0 = I III1/2(III1/2N1)
′ − II III−1/2(III1/2N−1)

′ + III1/2h′(III), (4.20)

and the corresponding form of the strain energy density W is

2W = I III1/2N1(III) + II III−1/2N−1(III) + h(III), (4.21)

where N1, N−1, and h are arbitrary functions of III.

REMARK. A universal relation. Using equation (4.19) we derive a universal rela-
tion among the wave slownesses corresponding to three choices of the directional
bivector C. We write C1 = i + ij, C2 = j + ik, C3 = k + ij. Then Cα · Cα = 0, and

C1 · BC1 = λ2
1 − λ2

2, C1 · B
−1C1 = λ−2

1 − λ−2
2 ,

C2 · BC2 = λ2
2 − λ2

3, C2 · B
−1C2 = λ−2

2 − λ−2
3 , (4.22)

C3 · BC3 = λ2
3 − λ2

1, C3 · B
−1C3 = λ−2

3 − λ−2
2 .

Let the value of N corresponding to Cα be N(Cα). Then

ρN−2(C1) = (2N0,I + N1)(λ
2
1 − λ2

2) + (N−1 − 2IIIN0,II)(λ
−2
1 − λ−2

2 ),

(4.23)

etc., and we have the universal relation

N−2(C1) + N−2(C2) + N−2(C3) = 0. (4.24)

5. Propagation of ‘Longitudinal’ Inhomogeneous Plane Waves, Circularly
Polarized in Special Planes

Now we seek elastic isotropic materials which allow the propagation of two very
special circularly polarized ‘longitudinal’ inhomogeneous plane waves, irrespec-
tive of the basic static homogeneous deformation. The circle of polarization of
the waves is to be one or the other of the two central sections of the ellipsoid
x ·Bnx = 1 (the B

n-ellipsoid), where B is the left Cauchy–Green strain tensor (3.9)
corresponding to the basic static deformation.

We first consider the cases where n = 1 and where n = −1, and then treat the
general case.

5.1. CIRCLE OF POLARIZATION LIES IN A PLANE OF CENTRAL CIRCULAR

SECTION OF THE B-ELLIPSOID OR OF THE B
−1-ELLIPSOID

The B-ellipsoid is the surface described by x · Bx = 1. Because B is a positive
definite tensor, there exist two central planes which cut the ellipsoid in circular
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sections. Boulanger and Hayes [5] have proved that the circles are described by the
bivector A (say) such that A · A = A · BA = 0. Hence, the wave (3.12), with a
bivector C satisfying

C · C = C · BC = 0, (5.1)

is a ‘longitudinal’ inhomogeneous plane wave, circularly polarized, with a central
circular section of the B-ellipsoid as circle of polarization. When (5.1) is satisfied,
it follows that C · B

−1C �= 0 unless C ≡ 0, so that (3.23), (3.24) reduce to

N1,II = N−1,II = 0. (5.2)

These must hold for all possible positive λ1, λ2, λ3. Hence N1 = N1(I, III), N−1 =
N−1(I, III) and the corresponding constitutive equation is

T = N0(I, II, III)1 + N1(I, III)B − N−1(I, III)B−1. (5.3)

This is, of course, inclusive of the Generalized Hadamard materials class (4.18).
When (5.1) holds, then, from (3.22),

ρN−2 = (−2IIIN0,II + N−1)C · B
−1C. (5.4)

To determine the possible C, we recall that the Hamiltonian decomposition of the
B tensor is

B = λ2
21 + 1

2
(λ2

1 − λ2
3)[h+ ⊗ h− + h− ⊗ h+], (5.5)

where

h± = δi ± φk, δ =
√

λ2
1 − λ2

2

λ2
1 − λ2

3

, φ =
√

λ2
2 − λ2

3

λ2
1 − λ2

3

, δ2 + φ2 = 1, (5.6)

δ2λ2
3 + φ2λ2

1 = λ2
2, δ2λ−2

3 + φ2λ−2
1 − λ−2

2 = δ2φ2(λ2
1 − λ2

3)
2

III
. (5.7)

By (5.1) it follows, using (5.5), that (C · h+)(C · h−) = 0. Hence either C · h+ = 0
or C · h− = 0, so that the only possible C are

C = φi ± ij − δk, or C = φi ± ij + δk. (5.8)

For the first pair of possible C, C = φi + ij − δk and C = φi − ij − δk, the pola-
rization circles lie in the same plane (with normal h+) of central circular section of
the B-ellipsoid. However the two circles are described in opposite senses. A similar
comment applies to the second pair of possible C, C = φi ± ij + δk. The reason
why there are four possibilities for C is that if C is a solution of (5.1) then so also
is its complex conjugate C, because B is real and there are just two central circular
sections of the B-ellipsoid.
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Now, for all these four possible choices of C, C ·B−1C = δ2λ−2
3 +φ2λ−2

1 −λ−2
2= δ2φ2(λ2

1 − λ2
3)

2/III and so N is given by

ρN−2 = δ2φ2(λ2
1 − λ2

3)
2III−1(N−1 − 2IIIN0,II). (5.9)

We note that C and N are determined completely by the basic deformation. The
planes of constant phase and the planes of constant amplitude are orthogonal.
From (5.9), N is either purely real or purely imaginary. When N is real (imaginary),
the planes of constant phase (amplitude) are φx ∓ δz = const. and the planes of
constant amplitude (phase) are y = const. Of course, any scalar multiple of S is a
possible amplitude bivector. The displacements corresponding to (5.8)1 are

x = x + εe−ωNy
{
(φi ± ij − δk)eiω[N(φx−δz)−t ]}+

. (5.10)

Essentially, there are two possible circularly polarized longitudinal inhomogeneous
plane waves for which C · BC = 0.

Also, we note that for (5.3) to represent a hyperelastic material, the response
function N−1(I, III) must be independent of I. The response functions are then of
the form

N−1 = G(III), N0 = IIG′(III) +
[

II

2III

]
G(III) + K(I, III),

(5.11)
N1 = III−1/2L(I) + III−1/2

∫
∂K(I, III)

∂I
III−1/2 dIII,

with corresponding strain energy density W given by

2W =
∫

L(I) dI +
∫

K(I, III)III−1/2 dIII + II III−1/2G(III), (5.12)

where G, K, L are arbitrary functions of their arguments.
Similarly, the wave (3.12), with a bivector C satisfying

C · C = C · B
−1C = 0, (5.13)

is a ‘longitudinal’ inhomogeneous plane wave, circularly polarized, with a cen-
tral circular section of the B

−1-ellipsoid as circle of polarization. When (5.13) is
satisfied, then (3.23) and (3.24) reduce to

N1,I = N−1,I = 0, (5.14)

which are to be satisfied for all positive λ1, λ2, λ3. The corresponding constitutive
equation is

T = N0(I, II, III)1 + N1(II, III)B − N−1(II, III)B−1. (5.15)

Again, the corresponding class of materials is inclusive of the Generalized Hada-
mard materials class. When (5.13) holds, then

ρN−2 = (N1 + 2N0,I)C · BC. (5.16)
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To determine those C for which C · C = C ·B−1C = 0, we use the Hamiltonian
decomposition of the B

−1 tensor:

B
−1 = λ−2

2 1 + 1

2
(λ−2

1 − λ−2
3 )[l+ ⊗ l− + l− ⊗ l+], (5.17)

where

l± = δ̂i ± φ̂k, δ̂ =
√

λ−2
2 − λ−2

1

λ−2
3 − λ−2

1

, φ̂ =
√

λ−2
3 − λ−2

2

λ−2
3 − λ−2

1

,

δ̂2 + φ̂2 = 1, (5.18)

δ̂2λ−2
3 + φ̂2λ−2

1 = λ−2
2 , δ̂2λ2

3 + φ̂2λ2
1 − λ2

2 = δ̂2φ̂2(λ−2
3 − λ−2

1 )2III.

Here the only possible C are those for which C · C = 0, namely, C · l+ = 0 or
C · l− = 0. Thus, suitable C are

C = φ̂i ± ij − δ̂k, or C = φ̂i ± ij + δ̂k. (5.19)

For all these four possible choices of C, the corresponding complex scalar slow-
ness N is given by

ρN−2 = δ̂2φ̂2(λ−2
3 − λ−2

1 )2III(N1 + 2IIIN0,I). (5.20)

In order that the constitutive equation (5.15) represent that of a hyperelastic
material, the response functions N0, N1, N−1 must satisfy certain compatibility
equations [7, Section 86]. Using those compatibility equations it is found that for
(5.15) the response function N1(II, III) must be independent of II. Then integrating
the compatibility equations it is found that

N1 = R(III), N0 = I III1/2 d

dIII
[R(III)III1/2] + S(II, III), (5.21)

where R and S are arbitrary functions of their arguments and N−1 is a solution of

1

2
N−1 + III

∂N−1

∂III
+ II

∂N−1

∂II
+ III

∂S(I, III)

∂II
= 0. (5.22)

The characteristics of this equation are

dIII

III
= dII

II
= dN−1

(1/2)N−1 + III∂S/∂II
, (5.23)

the solutions of which depend upon S. To make progress we assume

S = M(III)II + T (III), (5.24)

where M and T are arbitrary functions of III. In this case the general solution of
(5.23) is

f

(
II

III
, III1/2N−1 −

∫
III1/2M(III) dIII

)
= 0, (5.25)
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where f is an arbitrary function, or

N−1 = −III−1/2
∫

III1/2M(III) dIII + III−1/2h

(
II

III

)
, (5.26)

where h is an arbitrary function. It is found that h must be zero for a hyperelastic
material. We obtain

2W = I III1/2R(III) − II III−1
∫

III1/2M(III) dIII +
∫

III−1/2T (III) dIII,

(5.27)

and

N1 = R(III), N−1 = −III−1/2
∫

III1/2M(III) dIII,
(5.28)

N0 = 1

2
IR(III) + I IIIR′(III) + IIM(III) + T (III),

where R, M, T are arbitrary functions of III. Of course alternative choices of S

will lead to alternative forms for W .
Finally, we recap for the constitutive model (5.3) (or (5.15)) that amongst the

waves which may propagate in the material when it is held in an arbitrary state of
finite static homogeneous deformation are two infinitesimal circularly polarized
longitudinal plane waves whose circles of polarization lie in the planes of the
central circular sections of the B-ellipsoid (or the B

−1-ellipsoid) corresponding to
the finite static deformation.

5.2. CIRCLE OF POLARIZATION LIES IN A PLANE OF CENTRAL CIRCULAR

SECTION OF THE B
n-ELLIPSOID

Here we determine the most general form of the response functions N0, N1, N−1

such that the circle of polarization lies in a plane of central circular section of
the B

n-ellipsoid, x · B
nx = 1, where B is the left Cauchy–Green strain tensor

corresponding to the finite static homogeneous deformation. As in the previous
cases (n = ±1), it is found that the response functions N1, N−1 depend just upon
two invariants of B. They take the forms N	 = N	(III, tr B

n). Up to a sign there
are four directional bivectors C such that two infinitesimal circularly polarized
longitudinal plane waves may propagate and whose circles of polarization lie in
the planes of central circular section of the B

n-ellipsoid.
Now we have

C · C = C · B
nC = 0, (5.29)

and equations (3.22), (3.23), (3.24) become

ρN−2 = (2N0,I + N1)C · BC + (−2IIIN0,II + N−1)C · B
−1C, (5.30)
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and

N1,I(C · BC) = IIIN1,II(C · B
−1C),

(5.31)
N−1,I(C · BC) = IIIN−1,II(C · B

−1C).

Now it may be shown (Appendix) that when (5.29) hold, then

C · BC
C · B−1C

= III(∂ tr B
n/∂II)

∂ tr Bn/∂I
, (5.32)

so that (5.31) become

N	,I
∂ tr B

n

∂II
− N	,II

∂ tr B
n

∂I
= 0, 	 = ±1. (5.33)

This suggests that we write N	(I, II, III) in terms of the set of invariants I, III, tr B
n

(n �= 1) which is equivalent to the set (I, II, III). We write

N	 = N̂	(I, III, tr B
n), 	 = ±1, (5.34)

and

∂N	

∂I
= ∂N̂	

∂I
+ ∂N̂	

∂ tr Bn

∂ tr B
n

∂I
,

(5.35)
∂N	

∂II
= ∂N̂	

∂II
+ ∂N̂	

∂ tr Bn

∂ tr B
n

∂II
,

so that (5.33) becomes

∂N̂	

∂I
= 0, 	 = ±1, (5.36)

and thus, because these are to be valid for all λ1, λ2, λ3 > 0, we have

N̂	 = N̂	(III, tr B
n), 	 = ±1. (5.37)

Hence, those materials such that when they are in any state of finite static homoge-
neous deformation, two infinitesimal ‘longitudinal’ inhomogeneous circularly po-
larized plane waves may propagate, the circle of polarization being in the planes of
central circular sections of the B

n-ellipsoid, where B is the strain tensor associated
with the finite static homogeneous deformation, have constitutive equation

T = N̂0(I, III, tr B
n)1 + N̂1(III, tr B

n)B − N̂−1(III, tr B
n)B−1. (5.38)

This result is in accord with what we found previously when n = ±1. Indeed, for
n = 1, tr B

n = I and (5.38) becomes (5.3), whilst for n = −1, tr B
n = II/III and

(5.38) may be written in the form of (5.15).
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Returning to the general case, upon using (5.30), (5.32), and (5.35), we find

ρN−2 =
(

2
∂N̂0

∂I
+ N̂1

)
C · BC + N̂−1C · B

−1C. (5.39)

Thus, if C is chosen so that C · C = C · B
nC = 0, then a circularly polarized

plane wave with slowness S = NC (N given by (5.39)) may propagate in the
material with constitutive equation (5.38) when it is held in an arbitray state of
finite static homogeneous deformation. The possible choices of C satisfying C·C =
C · B

nC = 0 are

C = φni ± ij − δnk, C = φni ± ij + δnk, (5.40)

where

δn =
√

λ2n
1 − λ2n

2

λ2n
1 − λ2n

3

, φn =
√

λ2n
2 − λ2n

3

λ2n
1 − λ2n

3

, δ2
n + φ2

n = 1. (5.41)

We note that the terms occuring in (5.39) for all four possible choices of C are
given by

C · BC = (λ2
1 − λ2

2)φ
2
n − (λ2

2 − λ2
3)δ

2
n,

(5.42)

C · B
−1C = [λ2

1(λ
2
2 − λ2

3)δ
2
n − λ2

3(λ
2
1 − λ2

2)φ
2
n]

III
.

Special Case n = 1
2

The expressions simplify greatly in the case when n = 1
2 , that is, when we assume

that the circles of polarization lie in the planes of central circular section of the
B

1/2-ellipsoid. Thus C is such that C · C = 0, C · B
1/2C = 0, so that the possible

C are given by√
λ1 − λ3 C = √

λ2 − λ3 i ± ij + √
λ1 − λ2 k,

(5.43)√
λ1 − λ3 C = √

λ2 − λ3 i ± ij − √
λ1 − λ2 k.

The corresponding constitutive equation is

T = N̂0(I, II, III)1 + N̂1(III, tr B
1/2)B − N̂−1(III, tr B

1/2)B−1. (5.44)

Using (5.39), the slownesses S = NC of all four possible circularly polarized
waves with directional bivectors C given by (5.43) are such that

ρN−2 = (λ1 − λ2)(λ2 − λ3)

[
2
∂N̂0

∂I
+ N̂1 + λ1λ2 + λ2λ3 + λ3λ1

(λ1λ2λ3)
2

N̂−1

]
.

(5.45)
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Appendix

Here we present a proof of (5.32).
For convenience we write

α = λ2
1, β = λ2

2, γ = λ2
3, (A.1)

so that

B = diag(α, β, γ ), I = α + β + γ, III = αβγ,
(A.2)

II = αβ + βγ + γ α, tr B
n = αn + βn + γ n.

It may be checked that

∂α

∂I
= α(β − γ )III

βγ (α − β)(β − γ )(γ − α)
,

(A.3)
∂α

∂II
= −(β − γ )III

βγ (α − β)(β − γ )(γ − α)
,

and that

∂ tr B
n

∂I
= n[(β − γ )αn+1 + (γ − α)βn+1 + (α − β)γ n+1]

(α − β)(β − γ )(γ − α)
,

(A.4)
∂ tr B

n

∂II
= −n[(β − γ )αn + (γ − α)βn + (α − β)γ n]

(α − β)(β − γ )(γ − α)
.

Thus, we have the identity

n
∂ tr B

n+1

∂II
= −(n + 1)

∂ tr B
n

∂I
. (A.5)

If C is such that C · C = C · B
nC = 0, i.e.

C2
1 + C2

2 + C2
3 = 0, C2

1α
n + C2

2β
n + C2

3γ
n = 0, (A.6)

then

C2
1

C2
3

= βn − γ n

αn − βn
,

C2
2

C2
3

= γ n − αn

αn − βn
, (A.7)

so that

C · BC
C · B−1C

= C2
1α + C2

2β + C2
3γ

C2
1/α + C2

2/β + C2
3/γ

= −III
(β − γ )αn + (γ − α)βn + (α − β)γ n

(β − γ )αn+1 + (γ − α)βn+1 + (α − β)γ n+1
. (A.8)

Thus, when C · C = C · B
nC = 0, we have the result

C · BC
C · B−1C

= III
∂ tr B

n/∂II

∂ tr Bn/∂I
. (A.9)
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