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Some relationships, fundamental to the resolution of interface wave problems, are presented. These
equations allow for the derivation of explicit secular equations for problems involving waves localized
near the plane boundary of anisotropic elastic half-spaces, such as Rayleigh, Scholte, or Stoneley waves.
They are obtained rapidly, without recourse to the Stroh formalism. As an application, the problems of
Stoneley wave propagation and of interface stability for misaligned predeformed incompressible half-
spaces are treated. The upper and lower half-spaces are made of the same material, subject to the same
prestress, and are rigidly bonded along a common principal plane. The principal axes in this plane do
not, however, coincide, and the wave propagation is studied in the direction of the bisectrix of the angle
between a principal axis of the upper half-space and a principal axis of the lower half-space.
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1. Introduction

We all know from experience or from intuition that when we press together two large, well-polished,
glass plates, they will stick together extremely well; in fact we will have a tough job trying to separate
them again because in effect, the two glass panes have become one. A somewhat similar process of
‘gluing without glue’ is used in the microelectronics and optoelectronics industries to bond together
semiconductor wafers (Gösele & Tong, 1998). When brought into contact, mirror-polished, flat, clean
wafers made of almost any material are attractedvia Van der Walls forces and adhere in a rigid and
permanent way. This method of direct bonding allows for new and promising designs for insulators,
sensors, actuators, nonlinear optics, light-emitting diodes, etc. Solid polymers can also be brought into
permanent and rigid contact to manufacturepolymer composites. The main traditional technologies
of polymer joining are mechanical fastening (bolts, rivets, fit joints) and adhesive bonding. Another
technology, ‘fusion bonding’, presents great advantages over the previous ones, such as avoidance of
high stress concentrations, reduced surface treatment, fewer inhomogeneities at the interfaces, etc. A
recent book by Ageorges & Ye (2002) presents a comprehensive description of fusion bonding, defined
as ‘the joining of two polymer parts by the fusion and consolidation of their interface’; in particular
four classes of fusion bonding are listed: ‘bulk heating (co-consolidation, hot-melt adhesives, dual-
resin bonding), frictional heating (spin welding, vibration welding, ultrasonic welding), electromagnetic
heating (induction welding, microwave heating, dielectric heating, resistance welding), and two-stage
techniques (hot plate welding, hot gas welding, radiant welding).’

For semiconductor wafer bonding, the most common and most economical combination is the
silicon/silicon wafer bonding. Mozhaevet al. (1998) considered the theoretical implications of
misorientation when two identical silicon wafers are rigidly bonded. Specifically they considered, within
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the framework of anisotropiclinear elasticity, the propagation of interface (Stoneley) waves along the
bisectrix of a twist angle of misorientation. This paper deals with the propagation of waves of similar
nature but within the framework of small motions superimposed on large static deformations (stress-
induced anisotropy) innonlinear elasticity, which is required to describe the possibly large elastic
deformations of polymers (elastomers). Specifically, two half-spaces made of the same hyperelastic
incompressible material are maintained in the same static state of pure homogeneous deformation and
are then rigidly bonded along a common principal plane of deformation, but in such a way that the two
principal axes defining this plane for one half-space do not coincide with the two counterpart principal
axes for the other half-space.

The study of a superimposed infinitesimal interface wave propagating along the bisectrix of the
misalignment angle provides insights into the possible ultrasonic non-destructive evaluation of the
bond and of the angle of twist, and into the influence of the pre-strain on the interface stability.
Indeed in general, an increasingly tensile load applied on the semi-infinite bodies leads to faster
speeds for an interfacial wave whereas a compressive load slows the wave down, until eventually the
buckling/bifurcation criterion is met at the critical load, where the speed is zero. Such investigations of
interface waves and interfacial stability for two bonded hyperelastic pre-strained half-spaces are quite
rare in the finite elasticity literature. They were initiated by Biot (1963), followed by: Chadwick &
Jarvis (1979a,b), Dunwoody & Villaggio (1988), Dowaikh & Ogden (1991), Chadwick (1995), Destrade
(2004a), among aothers (see Guz (2002) for pointers to the Russian and Ukrainian literature). Note,
however, that in those papers, the two semi-infinite deformed bodies are always aligned so that all three
principal axes of pre-deformation for the upper half-space coincide with those for the lower half-space.
Moreover, the interface wave propagates along one of the common principal axes, except for Chadwick
& Jarvis (1979a,b), who consider non-principal directions of propagation but for a specific simple form
of strain energy function (compressible neo-Hookean materials).

Some papers have been devoted to the study of non-principal interface waves (e.g. Flavin, 1963;
Willson, 1973, 1974; Chadwick & Jarvis, 1979a,b; Connor & Ogden, 1995; Rogerson & Sandiford,
1999) but explicit secular equations for tri-axially pre-strained materials have been found only in
the case of neo-Hookean (compressible or incompressible) materials. This strain energy density is
exceptional with respect to the propagation of inhomogeneous plane waves because for any direction of
propagation in a principal plane (with associated orthogonal attenuation), the in-plane strain components
always decouple from the anti-plane strain components. Section 2 presents the incremental equations of
motion for non-principal interface waves in a tri-axially pre-strained material with a generic (non neo-
Hookean) strain energy function, formulated as a first-order differential system for the six-component
displacement–traction vector. It also presents the ‘effective boundary conditions’, consequences of the
continuity of the mechanical displacements and tractions across the interface. Namely, these conditions
are that at the boundary, either one displacement and two tractions are zero, or two displacements
and one traction are zero. Mozhaevet al. (1998) noted this important result for bonded silicon/silicon
wafers in linear anisotropic crystallography. It is further proved here that once the displacement–traction
vector is normalized with respect to one of its non-zero components, then the normalized components
are either real or pure imaginary (see the Appendix for details). This author recently obtained, in a
quick and simple manner, some equations which are fundamental to the resolution of general interface
boundary value problems (Destrade, 2003, 2004b) including Rayleigh (solid/vacuum interface), Scholte
(solid/fluid interface), and Stoneley (solid/solid interface) waves; they are presented in Section 3.1. The
following section brings together these fundamental equations and the effective boundary conditions
for the title problem, with an explicit form of the secular equation: that is, a polynomial of which the
interface wave speed is a root. Finally, Section 4 shows how numerical results can be obtained from the
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FIG. 1. Misoriented deformed cuboids at the interface.

analysis, with the case of deformed semi-infinite bodies made of Mooney–Rivlin material, a model often
used to describe the behaviour of incompressible rubber in large deformations.

2. Basic equations

2.1 Finite static pre-deformation

Consider an infinite body made of two pre-strained hyperelastic semi-infinite bodies, rigidly bonded
along a plane interface. Take the originO of a rectangular Cartesian coordinate system (O XY Z ) to lie
in the boundary, so that the plane of separation between the half-spaces isY = 0. The upper half-space
Y � 0 is made of an incompressible isotropic hyperelastic body, with mass densityρ and strain energy
function W , which has been subjected to a finite static pure homogeneous deformation with principal
stretchesλ1, λ2, λ3 (λ1 �= λ2 �= λ3 �= λ1 andλ1λ2λ3 = 1) say, along the principal axesO X1X2X3
say, such thatX2 is aligned withY but X1 (X3) makes an angleθ with X (Z ). The lower half-space
Y � 0 is madeof the same body, which has been subjected to thesame pre-deformation: that is, a
pure homogeneous deformation with principal stretchesλ1, λ2, λ3 along the principal axesO X̂1X̂2X̂3
(say) whereX̂2 is aligned withY , but such that nowX̂1 (X̂3) makes an angle−θ with X (Z ). Figure 1
summarizes this set-up with the representation of two parallelepipeds, one aboveY = 0, one below,
which were unit cubes before the static deformation took place.
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2.2 Incremental equations of motion and effective boundary conditions

Now a small-amplitude inhomogeneous plane wave is superimposed upon the primary large static
deformation. The wave propagates with speedv and wave numberk in the X direction and vanishes
away from the interfaceY = 0. In other words, the corresponding incremental mechanical displacement
u is of the form

u(x, y, z, t) = U(ky)eik(x−vt), U(±∞) = 0, (2.1)

where(Oxyz) = (O XY Z) is the rectangular Cartesian coordinate system associated with the motion.
Similarly, the incremental nominal tractionss j2 ( j = 1, 2, 3) acting on the planesy = const. are of

the form,

s j2(x, y, z, t) = ikt j (ky)eik(x−vt), t j (±∞) = 0. (2.2)

The following quantities allow for a compact form of the incremental equations of motion (Rogerson &
Sandiford, 1999):

γi j := (λi Wi − λ j W j )λ
2
i /(λ

2
i − λ2

j ) = γ j i + λi Wi − λ j W j ,

2βi j := λ2
i Wii − 2λiλ j Wi j + λ2

j W j j + 2(λi W j − λ j Wi )λiλ j/(λ
2
i − λ2

j ) = 2β j i , (2.3)

(whereWi := ∂W/∂λi ) and also

cθ := cosθ, sθ := sinθ,

ηθ := 2c2
θ (β12 + γ21) + s2

θ γ31, νθ := c2
θ (γ12 − γ21) + s2

θ (γ32 − γ23),

µθ := c2
θ γ13 + 2s2

θ (β23 + γ23), κθ := cθ sθ (β13 − β12 − β23 − γ21 − γ23). (2.4)

A careful reading of the literature on incremental motions in incompressible materials (e.g. Ogden,
1984; Chadwicket al., 1985; Chadwick, 1995; Rogerson & Sandiford, 1999; Destrade & Scott, 2004)
and a fair amount of algebra reveal that the incremental equations of motion (in the upper half-space)
can be cast in the form

ξ′ = iNξ, where ξ(ky) = [U(ky), t(ky)]T, (2.5)

the prime denotes differentiation with respect toky, andN is the following matrix:

N =




0 −cθ 0 1
γ21

0 0
−cθ 0 −sθ 0 0 0

0 −sθ 0 0 0 1
γ23

X − ηθ 0 κθ 0 −cθ 0
0 X − νθ 0 −cθ 0 −sθ

κθ 0 X − µθ 0 −sθ 0




, X := ρv2. (2.6)

The block structure of this matrix is reminiscent of that for the ‘fundamental elasticity matrix’N of
linear anisotropic elasticity (Ingebrigsten & Tonning, 1969), although its components are different. In
the lower half-space the equations of motion are the same, allowing for the change in sign ofsθ andκθ .

At the interface, the displacement–traction vector is continuous,

ξ(0+) = ξ(0−) =: ξ(0). (2.7)
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Lengthy, but straightforward to establish expressions for these quantities lead to theeffective boundary
conditions at the interface. In effect, and as displayed by Mozhaevet al. (1998) in the linear anisotropic
elasticity case, either one displacement component and two tractions are zero at the interface, orvice
versa. More specifically, and these details were not noted by Mozhaevet al. (1998),ξ(0) must be of one
of the two following forms. Either

ξ(0) = U2(0)[0, 1, iα2, β1, 0, 0]T, (2.8)

whereα2 andβ1 are real, or

ξ(0) = U1(0)[1, 0, 0, 0, α1, iβ2]T, (2.9)

whereα1 andβ2 are real. The Appendix presents the derivation of these expressions. Following Mozhaev
et al. (1998), the interface acoustic wave satisfying (2.8) (resp. (2.9)) is called IAW1 (resp. IAW2).

3. Explicit resolution

3.1 Fundamental equations for interface boundary value problems

Here a quick derivation is made of some equations (Destrade, 2003) which are fundamental to the
resolution of interface boundary problems involving waves or static deformations which are localized
near, or equivalently vanish away from, the plane interface of a semi-infinite body. The equations are
valid for unconstrained or constrained, pre-deformed nonlinearly elastic or anisotropic linearly elastic,
materials. They do not rely on the Stroh (1958) formalism. All that is required for their derivation are the
few manipulations, available in the literature, leading to the equations of motion and boundary conditions
in the form (2.5), (2.1)2, (2.2)2, that is

ξ′ = iNξ, ξ(∞) = 0. (3.1)

In general here,N is a square matrix of even dimensions, 2p × 2p say. Now a simple induction
process (Currie, 1979; Ting, 2004) shows thatNn , wheren is any positive or negative integer, is of the
following form (see (2.6) forn = 1):

Nn =
[

N1
(n) N2

(n)

K(n) N1
(n)T

]
, with K(n) = K(n)T, N2

(n) = N2
(n)T. (3.2)

Consequently, pre-multiplication ofNn by Î, defined as

Î :=
[

0 Ip
Ip 0

]
, whereIp is the p × p identity matrix, (3.3)

leads to a symmetric matrix,

ÎNn =
[

K(n) N1
(n)T

N1
(n) N2

(n)

]
= (ÎNn)T. (3.4)

Now take the scalar product of (3.1)1 by ÎNnξ and add the complex conjugate quantity to obtain
ξ′ ·ÎNnξ+ξ·ÎNnξ

′ = 0. Direct integration between zero and infinity yields, using (3.1)2, thefundamental
equations sought,

ξ(0) · ÎNnξ(0) = 0. (3.5)
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The Cayley–Hamilton theorem states thatN satisfies its own characteristic polynomial of degree 2p.
Hence there are only 2p − 1 powers ofN which are linearly independent, and so (3.5) generates at most
2p − 1 linearly independent equations. For instance, in our caseN is a 6× 6 matrix, leading to only five
linearly independent equations. These are nevertheless enough to deduce the secular equation explicitly,
as is now seen.

3.2 Secular equation

The fundamental equations (3.5) now prove useful in the resolution of the paper’s problem. The structure
of ÎNn depends on the parity ofn. For instance,

ÎNn =




0 N n
42 0 N n

11 0 N n
31

N n
42 0 N n

53 0 N n
22 0

0 N n
53 0 N n

13 0 N n
33

N n
11 0 N n

13 0 N n
15 0

0 N n
22 0 N n

15 0 N n
26

N n
31 0 N n

33 0 N n
26 0




, for n = −2, 2, (3.6)

whereN n
i j := (Nn)i j ; thus for example,N 2

42 := (N2)42 = N4k Nk2. The forms (2.8) and (2.9) forξ(0)

lead to two trivial identities when (3.5) are written atn = −2, 2. On the other hand,

ÎNn =




N n
41 0 N n

43 0 N n
21 0

0 N n
52 0 N n

12 0 N n
32

N n
43 N n

63 0 N n
23 0

0 N n
12 0 N n

14 0 N n
16

N n
21 N n

23 0 N n
25 0

0 N n
32 0 N n

16 0 N n
36




, for n = −1, 1, 3, (3.7)

and so the fundamental equations (3.5) written for IAW1, that isξ(0) given by (2.8), and forn =
−1, 1, 3, yield the following system:


N−1

12 N−1
14 N−1

63
N 1

12 N 1
14 N 1

63
N 3

12 N 3
14 N 3

63





2β1

β2
1

α2
2


 =


−N−1

52−N 1
52−N 3
52


 . (3.8)

When the fundamental equations (3.5) are written for IAW2, that isξ(0) given by (2.9), and forn =
−1, 1, 3, they yield the system


N−1

21 N−1
25 N−1

36
N 1

21 N 1
25 N 1

36
N 3

21 N 3
25 N 3

36





2α1

α2
1

β2
2


 =


−N−1

41−N 1
41−N 3
41


 . (3.9)

These equations are of the typeMikbk = ai where hereM is the 3× 3 matrix on the left-hand side of
(3.8) for IAW1 and of (3.9) for IAW2,a is the vector on the right-hand side, andb = [2β1, β

2
1, α2

2]T,
[2α1, α

2
1, β2

2]T, for IAW1 and for IAW2, respectively. By Cramer’s rule, the unique solution isbk =
∆k/∆, where∆ = detM, and∆k is the determinant of the matrix obtained fromM by replacing
the kth vector column witha. However, two components ofb are related one to another. Specifically,
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FIG. 2. Mooney–Rivlin bimaterial subject to the triaxial pre-stretchλ2
1 = 3·695, λ2

2 = 0·7, λ2
3 = 0·387: plot of the Stoneley wave

speed withθ (thick curve), bounded above by the shear wave speeds (crossing atθ = 45o) and below by the Rayleigh wave speed.

b2
1 = 4b2, which is theexplicit secular equation for interface waves propagating along the bisectrix of

the misorientation angle for two identical, rigidly bonded, pre-deformed, hyperelastic half-spaces,

∆2
1 − 4∆∆2 = 0. (3.10)

4. Numerical results for rubberlike materials

The classical Mooney–Rivlin model has been used extensively to model the behaviour of incompressible
rubberlike materials in large deformations. Its strain energy functionW is given by

2W = C(λ2
1 + λ2

2 + λ2
3 − 3) + D(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3), (4.1)

whereC andD are constant material parameters. In that case, theγi j andβi j defined in (2.3) reduce to
(i �= j �= k �= i)

γi j = λ2
i (C + Dλ2

k), 2βi j = (λ2
i + λ2

j )(C + Dλ2
k) = γi j + γ j i . (4.2)
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FIG. 3. Deformed Mooney–Rivlin bimaterial in compressive plane strain atθ = 30o: variations withλ of the shear (dashed
curves), Stoneley (thick curve), and Rayleigh (lower curve) wave speeds.

Now the peculiarities of interface acoustic waves in deformed hyperelastic materials are highlighted. In
particular, and in contrast to the corresponding situation in linear anisotropic elasticity, it is seen that
there exist certain ranges of misorientation and certain ranges of pre-stretch ratios for the existence of
an IAW. Also, interface instability may arise at certain compressive critical ratios.

4.1 Mooney–Rivlin material in tri-axial strain

First, in order to make the connection with results obtained by Rogerson & Sandiford (1999) about non-
principal surface waves, the material constantsC , D, and the stretch ratiosλ2

i are fixed at the following
values:

C = 2·0, D = 0·8, λ2
1 = 3·695, λ2

2 = 0·7, λ2
3 = 0·387. (4.3)

The secular equation (3.10) is a polynomial of degree 10 inX = ρv2 for IAW1, of degree 6 for IAW2.
Out of the 16 possible roots, only one leads to an interface wave of the Stoneley type satisfying the
known conditions that its speed is bounded above by the speed of the slowest homogeneous bulk wave
and below by the speed of the Rayleigh surface wave associated with either half-space (Barnettet al.,
1985). Moreover, this wave, of IAW1 type, satisfies these requirements only within a limited range of
misorientation angle, approximatively 16·7o < θ < 73·6o. This situation is in sharp contrast with the
case of silicon/silicon wafers in linear anisotropic elasticity (Mozhaevet al., 1998) where the IAW1 was
found to exist for allθ .

Figure 2 depicts the variations of the relevant root to the secular equation, scaled as
√

X = √
ρv2,
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with θ (thick curve). The speeds of two homogeneous shear waves (roots of detN = 0) are represented
by the two thin curves above, and the speed of the Rayleigh wave by the thin curve below.

4.2 Mooney–Rivlin material in compressive plane strain

Next, the half-spaces are assumed to have been pre-deformed in such a way that they were not allowed
to expand in theZ -direction (λ3 = 1). For this example, the different parameters take the following
numerical and algebraic values:

C = 2·0, D = 0·8, θ = 30o, λ1 = λ, λ2 = λ−1, λ3 = 1. (4.4)

Figure 3 shows the variations of the speeds as functions ofλ in compression (λ < 1). The two
upper dashed curves represent the speeds of homogeneous shear waves; the intermediate thick curve,
the speed of the Stoneley wave (type: IAW1); the bottom thin curve, the speed of the Rayleigh wave
associated with either deformed half-space. Again, the situation is different from that encountered in
linear anisotropic elasticity with silicon/silicon wafers (Mozhaevet al., 1998). In particular, the Stoneley
waveexists only for stretch ratios greater than 0·321 and the Rayleigh wave for stretch ratios greater than
0·451. In between these two critical stretches, there is a range where the Stoneley wave exists but not the
Rayleigh wave. At the critical stretch, instability might occur; hence is presented an example where two
bonded deformed half-spaces exhibit interfacial stability at some compressive stretch ratios for which
the separated half-spaces are unstable (at least in the linearized theory).
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Appendix: effective boundary conditions

Here two main results about the boundary conditions of the paper’s problem are established. The first
result is that at the interface, either one displacement component and two tractions are zero, orvice
versa. Mozhaevet al. (1998) found this result for the corresponding problem in anisotropic linear
elasticity; because of space limitations they only sketched the proof. The second result is that once
the displacement–traction vector at the interface is normalized with respect to one of the three non-zero
components, the two others are either purely real or purely imaginary quantities. This Appendix is a
generalization of results obtained by Ting (2004) for surface (Rayleigh) waves and by Destrade (2003)
for 2-partial interface (Stoneley) waves.

Consider, for theupper half-space, acombination of inhomogeneous plane waves of the form

ξ = ξi eik(x+pi y−vt), (A1)

whereξi is a constant vector and�(pi ) > 0 to ensure decay of the wave with distance from the interface.
Substitution of this form of solution into the equations of motion (2.5) shows that thepi are roots of the
bicubic: det(N − p1) = 0, or (Rogerson & Sandiford, 1999)

γ21γ23p6 − [(γ21 + γ23)X − c1]p4 + (X2 − c2X + c3)p2 + (X − c4)(X − c5) = 0, (A2)

with

c1 = (γ21γ13 + 2β12γ23)c
2
θ + (γ23γ31 + 2β23γ21)s

2
θ ,

c2 = (γ23 + γ13 + 2β12)c
2
θ + (γ21 + γ31 + 2β23)s

2
θ ,

c3 = (γ12γ23 + 2β12γ13)c
4
θ + (γ21γ32 + 2β23γ31)s

4
θ

+ [γ12γ21 + γ13γ31 + γ23γ32 − (β13 − β12 − β23)
2 + 4β12β23]c2

θ s2
θ , (A3)

c4 = γ12c2
θ + γ32s2

θ ,

c5 = γ13c4
θ + 2β13c2

θ s2
θ + γ31s4

θ .
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Let p1, p2, p3 be the three roots with positive imaginary part. Then the wave combination is

ξ = γ1ξ
1eik(x+p1y−vt) + γ2ξ

2eik(x+p2y−vt) + γ3ξ
3eik(x+p3y−vt), (y � 0), (A4)

where theγi are constant numbers.
In the lower half-space, the equations of motion are of the same form as in the upper half-space

with θ changed to−θ . Hence onlysθ andκ change signs in the components ofN whilst the coefficients
of the associated characteristic polynomial remain unchanged. Consequently, a suitable combination of
inhomogeneous plane waves is here

ξ̂ = γ̂1ξ̂
1eik(x−p1y−vt) + γ̂2ξ̂

2eik(x−p2y−vt) + γ̂3ξ̂
3eik(x−p3y−vt), (y � 0), (A5)

where theγ̂i are constant numbers and theξ̂i are constant vectors.
Now two possibilities arise for the rootsp1, p2, p3 of (A2). Either

(I) pi = iqi (qi > 0), or (II) p1 = −p2, p3 = iq3 (q3 > 0). (A6)

In case (I) it is a straightforward matter to show, using the adjoint of(N − p1), that theξi (upper
half-space) can be written in the form

ξi = [ai , ibi , ci , idi , ei , i fi ]T, (A7)

say, whereai , bi , ci , di , ei , fi (i = 1, 2, 3) arereal numbers. Furthermore, the vectorsξ̂i (lower half-
space, whereθ is changed to−θ ) are then in the form

ξ̂i = [−ai , ibi , ci , idi , −ei , −i fi ]T. (A8)

At the interfacey = 0 the displacement–traction vector is continuous,ξ(x, 0, t) = ξ̂(x, 0, t), or

γ1ξ
1 + γ2ξ

2 + γ3ξ
3 = γ̂1ξ̂

1 + γ̂2ξ̂
2 + γ̂3ξ̂

3
. (A9)

These six equations are recast as

A(γ + γ̂) = 0, B(γ − γ̂) = 0, (A10)

where

A =

 a1 a2 a3

e1 e2 e3
i f1 i f2 i f3


 , B =


ib1 ib2 ib3

c1 c2 c3
id1 id2 id3


 , γ =


γ1

γ2
γ3


 , γ̂ =


γ̂1

γ̂2
γ̂3


 . (A11)

For non-trivial solutions to exist, either (a) detA = 0 or (b) detB = 0. In case (a), equation (A10)2
leads toγ = γ̂. Then (A10)1 reads

Aγ = 0. (A12)

Owing to the form (A11)1 of A, this condition is satisfied when the components ofγ are all real. In
conclusion,ξ(0) now reads

ξ(0) = γ1




0
ib1
c1
id1
0
0




+ γ2




0
ib2
c2
id2
0
0




+ γ3




0
ib3
c3
id3
0
0




, γi real, (A13)
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that isξ(0) is of the form (2.8). A similar procedure shows that in case (b),ξ(0) is of the form (2.9).
In case (II) theξi (upper half-space) can be written in the form

ξ1 =




a1
b1
c1
d1
e1
f1




, ξ2 =




a1

−b1
c1

−d1
e1

− f1




, ξ3 =




a3
ib3
c3
id3
e3
i f3




, (A14)

say, wherea1, b1, c1, d1, e1, f1 are complex and a3, b3, c3, d3, e3, f3 are real. The vectorsξ̂i (lower
half-space) are then in the form

ξ̂1 =




−a1
b1
c1
d1

−e1
− f1




, ξ̂2 =




−a1

−b1
c1

−d1
−e1

f1




, ξ̂3 =




−a3
ib3
c3
id3
−e3
−i f3




. (A15)

The continuity of the displacement–traction vector aty = 0 can again be written in the form (A11)
where now

A =

a1 a1 a3

e1 e1 e3

f1 − f1 i f3


 , B =


b1 −b1 ib3

c1 c1 c3

d1 −d1 d3


 . (A16)

Again case (a) detA = 0 or case (b) detB = 0 arises. In case (a),γ = γ̂ and soAγ = 0. Owing to
the form (A16)1 of A, this condition is satisfied whenγ is of the formγ = [γ1, γ1, γ3]T, whereγ1 is
complex andγ3 is real. In conclusion,ξ(0) now reads

ξ(0) = γ1




0
b1
c1
d1
0
0




+ γ1




0
−b1
c1

−d1
0
0




+ γ3




0
ib3
c3
id3
0
0




, γ3 real, (A17)

which means that, once normalized,ξ(0) is of the form (2.8). A similar procedure shows that in case (b),
ξ(0) is of the form (2.9).


