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Abstract: Two semi-infinite bodies made of prestressed, homogeneous, Bell-constrained, hyperelastic mate-
rials are perfectly bonded along a plane interface. The half-spaces have been subjected to finite pure homo-
geneous predeformations, with distinct stretch ratios but common principal axes, and such that the interface
is a common principal plane of strain. Constant loads are applied at infinity to maintain the deformations
and the influence of these loads on the propagation of small-amplitude interface (Stoneley) waves is exam-
ined. In particular, the secular equation is found and necessary and sufficient conditions to be satisfied by the
stretch ratios to ensure the existence of such waves are given. As the loads vary, the Stoneley wave speed
varies accordingly: the upper bound is the “limiting speed” (given explicitly), beyond which the wave am-
plitude cannot decay away from the interface; the lower bound is zero, where the interface might become
unstable. The treatment parallels the one followed for the incompressible case and the differences due to the
Bell constraint are highlighted. Finally, the analysis is specialized to specific strain energy densities and to the
case where the bimaterial is uniformly deformed (that is when the stretch ratios for the upper half-space are
equal to those for the lower half-space.) Numerical results are given for “simple hyperelastic Bell” materi-
als and for “Bell’s empirical model” materials, and compared to the results for neo-Hookean incompressible
materials.
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1. INTRODUCTION

This paper is a prolongation of a series of articles concerned with the propagation of small-
amplitude waves in deformed Bell materials. Beatty and Hayes [1] wrote the incremental
equations of motion for a hyperelastic body maintained in a state of static finite homogeneous
deformation and subject to the constraint of Bell [2]: tr V = 3, where V is the left stretch
tensor associated with the finite deformation. They studied plane [1] as well as torsional
[3] waves. Then this author [4] found the secular equation for surface (Rayleigh) waves
propagating on a semi-infinite deformed body made of Bell-constrained material. Next [5]
the surface stability of such a half-space under compression was analyzed and compared
with that of incompressible rubber. Now the propagation of interface (Stoneley) waves is

Mathematics and Mechanics of Solids 10: 227-246, 2005 DOI: 10.1177/1081286505036404
©2005 Sage Publications



228 M. DESTRADE

considered for two rigidly bonded semi-infinite bodies made of distinct Bell materials. Each
half-space was subjected to a finite homogeneous predeformation and the principal axes of
each deformation are assumed to coincide at the interface, which is a common principal
plane. Moreover, the interfacial wave is assumed to propagate in a principal direction. These
common [6,7] restrictions aside, a general necessary and sufficient condition of existence of
a Stoneley wave is established, together with the corresponding secular equation.

These general results are obtained in Section 3, after the basic equations of the
problem have been written in Section 2. For purposes of comparison and contrast,
these latter equations are written in a manner which is similar to those governing the
propagation of interfacial waves in deformed hyperelastic materials subject to the constraint
of incompressibility, det V. = 1. Then in Section 4, the analysis is specialized to the
case where the infinite body made of the two bonded half-spaces is uniformly prestrained,
that is when the principal stretch ratios of strain are the same for the upper half-space and
for the lower half-space. For “simple hyperelastic Bell” materials, the influence of the
initial deformation on the wave speed is highlighted. As the half-spaces are more and more
compressed, this speed tends to zero and the secular equation gives the “neutral equation”.
The critical stretch ratios, at which the neutral equation is reached, are obtained. In the
case of a plane prestrain, these critical stretches, and the corresponding ones for “Bell’s
empirical model”, are compared with the critical stretches obtained by Biot [8] for the
interfacial stability of (incompressible) neo-Hookean materials, often used to model rubber.
The conclusion is that, as far as interfacial stability is concerned, rubber may be compressed
more than Bell’s empirical materials, but not as much as Bell simple hyperelastic materials,
before the critical stretches are reached.

2. PRELIMINARIES

2.1. Deformed Bell Half-Spaces

Consider two semi-infinite bodies made of different homogeneous Bell-constrained
hyperelastic materials, separated by plane interface xo, = 0. Initially, each body is at rest
in a reference configuration, denoted by B, for the lower half-space x, > 0, and by B for
the upper half-space xo < 0. The constitutive equation for the lower half-space is [2]

T =pV + vyl + 0, V?, (2.1)

expressing the Cauchy stress tensor T in terms of the left stretch tensor V. Here p is an
undetermined scalar, to be found from the equations of motion or of equilibrium, and from
the boundary conditions. The constitutive parameters w, and w, are defined in terms of the
derivatives of the strain energy density > = X(is, i3) of the hyperelastic body with respect
to the principal invariants i, = [(tr V)? — tr (V?)]/2, i3 = det V, as

wo = 0%/dis <0, @y = —iz 9%/dis > 0. (2.2)
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The inequalities above are called the Beatty—Hayes A-inequalities [2]. Also, the Bell
constraint is satisfied at all times:

h=trV=3. (2.3)

Similar (starred) equalities and inequalities apply for the upper half-space x, < 0.

Next, consider that each half-space is subject to a finite static pure homogeneous static
deformation By, — B; and B — Bj by the application of suitable loads. The principal axes
of these deformations are along x5, and x; and x3, two orthogonal directions in the x; = 0
plane. Hence the finite deformations are described in the coordinate system of the principal
axes by

xr =ArXr (x2>0), and xr=A{Xr (x2<0), (I'=1,2,3;n0sum), (2.4)

where the A, A} are the principal stretch ratios for each half-space. For the lower half-space
we have

VvV = Diag(/117/127/13), /11 +/12 +/13:3,

o = Aido+Ahs+Ashy, i3 =A1dods, (2.5)

and the following constant Cauchy stress tensor:
Trr =poAir + o + wedp (['=1,2,3;n0sum), T; =0 (i #j), (2.6)

where p, is constant, and @, w- are given by (2.2) and evaluated at iy, i3 given by (2.5)3 4,
clearly satisfies the equilibrium equations 7;; ; = 0. So does T*, the equivalent starred
version for the upper half-space. Finally, the half-spaces are rigidly bounded. At the interface
x9 = 0, the continuity of the tractions imposes that

Poha + @o + 25w, = piAs + wf + 25705 2.7)

The half-spaces are maintained in these deformed states B;, I3} by the application at infinity
of the loads Pr = —Trr, Pt = —T}. It follows from (2.7) that P, = PJ.

2.2. Small-Amplitude Interface Wave

Now consider that a small amplitude wave travels with speed v and a wave number £ at
the interface, in the direction of x;, with attenuation away from x, = 0. The following
expressions describe this incremental motion B, — By, Bf — B :

X =x +eR{U(kx,)e* 17 1 and X = x + eR{U"(kxp)e* 27 1 (2.8)
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for xo > 0 and for xo < 0, respectively. Here €is small enough to allow linearization and the
amplitudes U and U* are of the form U = [U,, U, 0]*, U* = [U;, U;, 0]". The remainder
of this paper is devoted to the study of these interfacial (Stoneley) waves. Dowaikh and
Ogden [6] and Chadwick [7] conducted similar studies for prestrained incompressible and
compressible materials, respectively. In both cases, the authors proved that the initial normal
traction 722 = T3, played no role in the resolution and analysis of the problem. It can be
checked that such is also the case for deformed Bell materials and without loss of generality,
we choose Toy = T4, = 0, and thus P, = P; = 0 (of course, the traction 75, might play a
role in issues other than the derivation of the secular equation for Stoneley waves.) Hence the
following loads Py = —T11, P3 = —T33 and Py, P; are applied at x; = £0o and x3 = £00
in order to sustain the finite homogeneous deformation,

PF = (lg—lr)(—({)o—'—lrigﬂ)g)/lg,
Pro= (A3 = Ap)(—wp +Adzw5) /25, (T'=1,3). (2.9)

Moreover, this assumption enables us to use previously established results for the incremental
equations of motion. Specifically, the equations are written as the following system of first-
order differential equations for the components of the displacements U, U*, and of the
tractions t, t* on the planes x5 = const (see [4] for details):

bglgU{ + lbglgUg - tl == O,tll + illigltg — (lliglc—pVQ)Ul = 0,

Uy +il145, U = 0,8y + ity — [b3(A3 — 13) — pv?|Us = 0, (2.10)
where
—wo + A1d209
b3 —
Ao(A1+42)
C = 2742011 42145 Coy — Ciy — Coy — 209 — (A7 + 13) @2,
Cl'/' = 2&1251/ Wy — /ljz(C()QQ +/112a)22) +11/1213(6003 +/1i26023), (211)

for xo > 0, and a starred version for xo < 0. Here p(p*) is the mass density of the lower
(upper) half-space, and the derivatives wgr, wor (I' = 2, 3) of the material parameters wy,
- are taken with respect to ir and evaluated at i, i3 given by (2.5). The half-spaces are
rigidly bonded at xo = 0 so that the following boundary conditions apply:

U(0) = U*(0), t(0) = t*(0), 2.12)

together with the requirement that the wave vanishes as x, — F00.
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3. GENERAL PREDEFORMATIONS AND STRAIN ENERGY FUNCTIONS

Here we solve the problem at hand, that is we solve the equations of motion (2.10) and then
apply the boundary conditions (2.12) in order to derive the secular equation for the speed of
Stoneley waves in deformed Bell materials. We adopt an approach reminiscent of that used
by Dowaikh and Ogden [6] for Stoneley waves in incompressible materials and show how
each constraint leads to different results.

3.1. Secular Equation; Comparison with Incompressible Materials

For small-amplitude waves of the form (2.8)1, the incremental constraint of incompressibility,
u1,1 + Uz 2 + us 3 = 0, imposes that

iU, + Uy =0, (3.1)
suggesting the introduction of the function ¢ defined by
Uy (kry) =i (kxo),  Us(kxa) = @(kxs). (3.2)

In our context, the incremental constraint of Bell, 4111 1 +A2u5 5 + 4313 3 = 0, imposes
Equation (2.10)s, that is

A4, U, + Uy =0,
suggesting the function ¢ defined by
Ul(]OCQ) :i(p/(kllj,gl)(é), UQ(]QCQ) :(p(kﬂ.llg_l)(fg). (33)
From (2.10), 1, the traction components are also expressed in terms of ¢ and its derivatives:

ho= ibsA3(2iAy 0" + ),
t2 = —bgl’{ 1/12('0/” + /11_1/12(/1 1/12_1C — b3/1 1/12 — pV2)(p/. (34)

Finally, Equation (2.10), reads as
bsd3p"" — (A3 C — 2b3hihy — pvH)p" + (bsA? — pv?)p = 0. (3.5)

The same procedure is of course also valid for the upper half-space, with the introduction of
a function ¢*.

Dowaikh and Ogden [6] expressed the strain energy density as a function I;V(/l 1,42,43)of
the principal stretches of deformation, rather than as a function of the invariants i(il, Iy, 13),
a practice also favored by Biot [9]. With this choice, and the introduction of the function ¢
in (3.3), they proved that for incompressible materials, the counterpart to (3.5) is



232 M. DESTRADE

~ oAl

— (28 —pV*)P" + (& —pv*)p =0, (3.6)
where a , ﬁ , and ); are defined in terms of W and its derivatives with respect to the A; as
aly = yii= (W —AW)A303/ (5 - 13),
2ﬁ +2VA - /linl +13W22—211/12W12+2/12W2. (37)

Also, for incompressible materials, the assumption of strong ellipticity for the equations of
motion implies that

a >0y >0 p+Vay >0. (3.8)
For Bell constrained materials, introduce by analogy a, f8, and y, defined by
a=Db3, y=bid; 28+2Vay =M;'C (3.9)

or equivalently, by

aky = iy = (Wi —W2)iida/[As(2T = 23)],
Qﬁ + 2\/ ay = (Wll + WQQ - 2W12)/11/(/12/13> (310)

Now rewrite the equation of motion (3.5) as
ap" — (2B —pv* )" + (a—pv?)p = 0. (3.11)

Using the strong ellipticity condition for the equations of motion in deformed Bell materials
(see Appendix) together with (2.2) and 2.11, we also find the following inequalities:

a>0, y>0, f+a>0. (3.12)

The contrast between the effects of incompressibility and of the Bell constraint is striking
(compare for instance the first term in (3.6) and in (3.11).) Now Equation (3.11) and its
starred version for the upper half-space are solved.

Because Stoneley waves vanish with distance from the interface, the solutions ¢ and ¢*
must be of the form

pl)=de™" $Be " (z>0), p'(2) =T BT (z<0), (13
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where 51 # 59, R(s;) > 0, s7 # 55, R(s}) > 0, for some constants 4, B, 4*, B*. Explicitly,
the s;, s7 are roots of the biquadratics

as* — (2B — pvH)s® +a—pv? =0, a*s* — (2B* — p*V)s*? +aF —p*V' =0,
sitsy =28 —pV)/a, s +s3" = (28" —p™)/a’,

sisy = (a—pv¥)Ja,  s7%s57 = (a" —p™V?)/a". (3.14)

The roots s? and s3 of the real quadratic (3.14); are either both real or both complex; if they
are real, they are non-negative, otherwise s; and s are purely imaginary in contradiction with
the decaying requirement R(s;) > 0; if they are complex, they are conjugate, because the
coefficients of (3.14), are real. In both cases, s?s3 > 0 and similarly, s32s3> > 0, so that

0 <v<min{v,,v]}, where v, =+/a/p, vi =+ a*/p*. (3.15)

In fact, the interval of possible values for v for which the wave decays away from the
interface (the subsonic interval ) might be smaller than the interval defined above. This
point is clarified in §3.2. For the time being, we derive an explicit expression for the
secular equation. Equations (2.12) express the continuity of the displacement and traction
incremental amplitudes at the interface xo = 0. Using the expressions (3.2), (3.4) of U;, U/,
t;, t*, in terms of ¢, ¢ and their derivatives, they lead to

p(0) = ¢*(0), ¢'(0)=9¢"(0),

= 7 [ Ep (0)+07(0)

)

—Vayp(0) + \/g(% +Vay —pv*)p'(0)

Using (3.14)3 4 and (3.13), we rewrite this system as four homogeneous linear equations for
the unknowns 4, B, A*, B*:

A+B = A"+B", s1A+s:B = —s14A" —s3B",
(Vaysi +7)A+ (Vays; +7)B = (Vary*si® +y")4*
+ (Vary*sy® +y*)B",



234 M. DESTRADE
si(Vayss +y)A+s:(Vaysi+9)B = —si(Vay*s;> +y*)4*
—ss(Vory*si? +y*)B . (3.17)

The vanishing of the corresponding determinant yields the secular equation. Dropping the
factor (s; — s2)(s7 — s3) and using the quantities #, » (and #7*, r*) defined as follows:

nz\/“_”vg, rz\/(n+1>2+2u, (3.18)
o o

the secular equation is written compactly as

2 2
/ a a * OC* *_ %k a* *
iv) = y*|-nr - \/jﬂ—l S A b Al VAot M
y Y y Y
oo* a a*
\ =+ )"+ 2 \ﬁn—l \/—=n"—1]| =0.3.19)
Yy Y Y

The quantities 77, #* are real by (3.15) and so are r, #*, at least as long as the decaying condition
is satisfied. We now elaborate on this last point.

+yy”

3.2. The Subsonic Interval

From (3.14) and the definition (3.18) of , expressions for the squared sum and difference of
the roots s; follow:

(s1 +52)2 =7, (51— 32)2 =% (3.20)

2 _ 2 _ 2 —
2 2B—pv _2,/u:(,7_1)2+2ﬁ_“:r2_4n. (3.21)
[ o o

Hence the requirement of exponential decay R(s;) > 0 is equivalent to

where

R(r+s) > 0. (3.22)

Now we span the subsonic range, that is the interval / (say) of possible values for v such that
(3.22) is satisfied. This interval is [ = [0, V] where V is called the limiting speed.
Starting at v = 0, we have, using the strong ellipticity condition (3.12)s,

v=0, 5=1, r:,/2/¥>0, Pr o2 =40, (3.23)

so that (3.22) is satisfied.
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Now, if 28 — a > 0, then we may increase v from 0 to v, = \/a/p, where

26 — a

o

v=v,, =0, r= >0, r’-s*=0, (3.24)

and 5, r, r* — 52, decrease monotonically with v but remain non-negative real numbers, so
that (3.22) is satisfied over the interval [0, v, |. Clearly in this situation, the limiting speed is

v=v, =/a/p.
However, in the situation where 25 — a < 0, we may increase v from O only up to v
(where » = 0) in order to satisfy (3.22), where v is defined by

pv? =2[B —a+/2a(a—p)] < a=pv;. (3.25)
Clearly the limiting speed is then v = .
Conducting a similar analysis for the upper half-space, we conclude that the limiting

speed is

min{v,,v;}, when 2§ > a,28* > a",

. min{v, v} }, when 28 < a,28* > a*, (3.26)
V= min{v, , V" }, when 28 > a,2p* < a*, '
min{v, v*}, when 28 < a,2B* <a*.

Note that the analysis conducted in this section (defining the subsonic interval) and in the
following one (defining the conditions of existence of a Stoneley wave) rely directly upon
the methods developed by Chadwick [7] for compressible materials, with the modifications
required to accommodate the Bell constraint.

3.3. Existence and Uniqueness of Interfacial (Stoneley) Waves; Comparison with Surface
(Rayleigh) Waves

Here we derive the conditions of existence for a Stoneley wave at the interface of two
deformed Bell-constrained half-spaces, using a “matrix reformulation” of the secular
equation (3.19), a method suggested by Chadwick [7] and based on the surface impedance
method of Barnett ef al. [10]. Indeed, introducing the following symmetric 2 X 2 matrices,

o a
4 l4
I )
1- \/En \/Er
4 4

M(v) =
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N i
* I 4

M*(v) =y , (3.27)
fo* o*
—n*—1 —r
A A
we find that the secular equation (3.19) corresponds to
i(v) =det N(v) =0, where N(v) =M(v)+ M*(v). (3.28)

From then on, it is an easy matter to transpose Chadwick’s results [7] for incompressible
materials to Bell materials, and to show inter alia that the eigenvalues of N(v) decrease
monotonically as v increases in /. Then the following results apply (see also Barnett et al.
[10] for Stoneley waves in linear anisotropic elasticity): when an interfacial wave exists, it is
unique; it propagates at a speed which is greater than the speed of the Raleigh wave associated
with either each half-space; it exists if and only if

i(0) >0, i(v)<O0. (3.29)

In the (A1,42,43,4%,45,4%)-space, the curve i(v) = 0 is called the limiting equation and
the curve i(0) = O is the neutral equation. Dowaikh and Ogden [6] refer to this latter
equation as the “exclusion equation” because it rules out the possibility of incremental
inhomogeneous static deformations in homogeneously deformed half-spaces. Biot [8] called
it the “characteristic equation for instability”, because it “corresponds to the spontaneous
appearance of sinusoidal deformations at the interface”. We obtain this equation for Bell
materials by taking # = #* = 1 in the secular equation (3.19):

V27 (B+a)+ 2y (B +a*) £ (Vay — Vary +y* —y) =0. (3.30)

4. UNIFORM PREDEFORMATION AND SPECIFIC STRAIN ENERGY
FUNCTIONS

In the preceding section, we covered some ground on the propagation of Stoneley waves in
deformed Bell materials. We obtained results for general prestrains and unrestricted strain
energy density functions. We now turn our attention to special configurations. First, we
assume that the infinite body made of the two bonded Bell-constrained semi-infinite bodies
is predeformed uniformly in the whole space, so that the principal stretches are the same for
the lower and upper half-spaces:

A=A, A=A, AL =1, (4.1)

This deformation is possible with the application of the following loads:
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Pr = (A —Ap)(—@¢ + Aridsms)/As,

Next, we specialize the analysis to specific forms of the strain energy functions and make
the connection with historical results obtained for incompressible materials.

4.1. Simple Hyperelastic Bell Materials

Here we consider that the lower and upper half-spaces are made of “simple hyperelastic Bell”
materials, for which the strain energy functions are of the form [2]

Weig = Ci1(3— 24142 — Aok —A3d1) + Co(1 — A14243),

The material constants C;, C; satisfy, according to the A-inequalities (2.2),
Ci>0, C,>0, C;>0, C;>0. (4.4)

Now, the expressions (3.10) and (3.18), for a, £, v, and r (and for a*, f*, y*, and »*) reduce
to

P = (CiAz  +C)Ao/(A1+13) >0, a=B=21345% >0, r=n+1. (45)

Because here 28 — a = a > 0, we deduce from the discussion undertaken in §3.2 that the
limiting speed for two bonded simple hyperelastic Bell materials is

b =min{\/a/y,\/a*/y*}. (4.6)

Forv € I = [0, V], the secular equation (3.19) reduces to

ATPAZI) = 9P+t + (L + 227 A0 — 27743
Fy 2 4 (14247 20" — 27247 (4.7)
+yy n+n" )+ )"+ 1)+ 2047 2 —n)(A7 A2 — ")) = 0.

The conditions of existence of a Stoneley wave are (3.29), with the above simplifications.
Explicitly, the neutral condition i(0) > 0 factorizes to
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(By™ + 7)1 — (" = 7)22l[By +9")Ar = (y —y")A2] > 0. (4.8)

The sign of each factor depends on the sign of y — y *. Introducing the quantity ¢ defined by

y*/y = (C; +C343)/(C1 + Cads) when p* <y, '
we write the neutral condition (4.8) as
B+e)ly—(1—€)iy >0, (4.10)

Note that the neutral condition (4.10) gives an implicit relationship between the stretch ratios
A1 and A5 because A3 appearing in € is linked to 4; and 1, through the Bell constraint:
Az = 3 — A1 — Ao (explicitly, the relationship between A, and A4, is quadratic.) However,
for the plane strain A3 = 1 (and 1, = 2 — 4;), € is independent of the stretch ratios and the
critical stretch (4 )., at which the neutral equation is reached, is

1
(A)a = 5(1 —€). (4.11)

Note also that when one half-space is absent (y = O or y* = 0) then ¢ = 0 in (4.10) and
we recover the relative universal surface stability condition 34, — A, > 0 for the remaining
half-space [5].

Finally, we express the limiting condition i(V) > 0 in the case where v; = \/a*/p* <

v, = +/a/p. Then we have

~ * a* e *
Vo= v =\ n()=n; =0,
. o — pvi? a*
n() = mz\/#:\/l—p* , (4.12)
a pra
and the limiting condition i(v) > 0 is
ne(ne + )0 149" /y) = e =27 221 =y /y)]? <0. (4.13)

In the case where v, = \/a/p < Vv; = /a*/p*, the starred and unstarred quantities above
are interverted.

In his seminal paper, Stoneley [11] showed, by means of numerical examples, that the
existence of “waves at the surface of separation of two solids” depended heavily on the
material properties of each half-space. We treat two numerical examples below, choosing
p,a,y,p*,a, y*, such that a connection is made with his results.

Example 1: o* /p* = a/p, withp = 8.2, p* = 3.2.
In this case, we have
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ot pt 32
e =L % P _ 2239024, (4.14)

Important simplifications occur in this special case, as

no= 17*:\/1—pl2:\/1—p*v2

a o
~ * a ar *
vV = vy =y, = ; = Vp_*’ ne =n;, =0. (4.15)

Hence, the limiting condition i(v) > 0 is automatically satisfied, because 7, = 0 in (4.13).
The only condition of existence of a Stoneley wave is the neutral condition (4.10), that is

Ay — 0.1798645 > 0. (4.16)

Finally, the secular equation (4.7) reduces further to
(L+e)?n* +n*+ (L + 207 o)y —A72A5) +4e(n — A7 '29)* = 0, (4.17)

with € given in (4.14). In particular, when the materials are undeformed in the static state
(A1 = A2 = A3 = 1), the constraint of Bell coincides with the constraint of incompressibility
[2], and we recover Stoneley’s result [11]: v = 0.99287V, for linear isotropic incompressible
materials with material parameters matching those of this example.

Figure 1(a) shows the intersection of the triangle A; + A5 + A3 = 3 of possible values
for the stretch ratios in Bell materials with the neutral condition (4.16) for the combination of
simple hyperelastic Bell materials in this example; the visible part of the triangle represents
the configurations where a Stoneley wave exists, and where the interface is stable with respect
to incremental deformations.

Figure 1(b) illustrates the influence of the loads on the Stoneley wave speed (thick curve)
in the case of plane strain 13 = 1. Then 1, = 2 — 44, and the critical load obtained from
(4.16) is (A1) = 0.30488. The speed, scaled with respect to the limiting wave speed
v = /a/p = \Ja*/p*, is the coordinate on the vertical axis; the stretch ratio 4, is the
coordinate on the horizontal axis. In tension (1 < 1; < 2) the Stoneley wave propagates
at a speed which is within less than 1% of the limiting speed; under increasing compression
(1 > A1 > (A1)a), the speed drops rapidly to zero. The figure also shows the scaled Rayleigh
wave speed associated with either half-space [5], computed by taking ¢ = 0 in (4.17) (thin
curve, always below the Stoneley wave speed curve as expected).

Example 2: a* [p* = 3a/p, withp =2, p* = 1.
In this case, we have



240 M. DESTRADE

0.8

0.6
speed

0.4

0.24

0 02 04 06 08 1 12 14 16
stretch ratio

() Region of stability (b) Stoneley wave speed

Figure 1. Simple hyperelastic Bell materials (a* /p* = a/p, p = 8.2, p* = 3.2).

3
=L =— = =-. 4.18
‘ : (4.18)

-3
P =2 < == = 2—“ (4.19)
p p p

and the corresponding # are
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The limiting condition (4.13) (with the starred and unstarred quantities interverted) is
now satisfied for A1, A5 such that

The limiting speed is

( 10+8\/§—\/§),11—,12 <0, or A;—0.317234, < 0. (4.21)



STONELEY WAVES AND INTERFACE STABILITY OF BELL MATERIALS 241

0.8

speedg g -

0.4+

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
stretch ratio

(a) Region of stability (b) Stoneley wave speed

Figure 2. Simple hyperelastic Bell materials (a*/p* = 3a/p, p = 2, p* = 1).

Here we see that no interface wave may propagate when the materials are undeformed in the
static state (1; = A, = A3 = 1), as noted by Stoneley [11] for linear isotropic incompressible
materials with material parameters matching those of this example.

The other condition of existence of a Stoneley wave is the neutral condition (4.10), that
is here

1541 — Ao > 0. (4.22)

Figure 2(a) shows the intersection of the triangle A1 + A5 + A3 = 3 of possible values
for the stretch ratios in Bell materials with the limiting condition (4.21) and with the neutral
condition (4.22) for the combination of simple hyperelastic Bell materials in this example; the
plane of the figure coincides with the plane of the triangle. We see that the range of possible
stretch ratios is far smaller here than in the previous example. For instance, in the case of plane
strain 13 = 1, the stretch ratio 1, must belong to the (compressive) interval ]0.125, 0.48167].
Note that in this plane strain case, the Stoneley wave exists in a range where Rayleigh waves
do not exist (in [5] it is proved that the domain of existence of Rayleigh waves in plane strain
is A, €]0.5,2[.)

Figure 2(b) illustrates the influence of the loads on the Stoneley wave speed (thick curve)
in the case of plane strain 3 = 1. The stretch ratio 4, is the coordinate on the horizontal axis.
The speed, scaled with respect to the limiting wave speed v = \/a/p, is the coordinate on

the vertical axis; it is computed by solving numerically (4.7) fory = v/vwithn = /1 — )2,
n*=4/1— %yQ, andy* = %y . Also represented are the Rayleigh wave speeds (thin curves)
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associated with each half-space, computed by solving numerically (4.7) for y = v/ with
n = 4/1—y%and y* = 0 (lower thin curve, with y = 1 as an horizontal asymptote) or

ko 2 _ . . o 3 .
n* =4/1—5y*andy = 0 (upper thin curve, with y = \/; as an horizontal asymptote).

4.2. Bell’s Empirical Model

For Bell’ s empirical model materials [2], the strain energy functions of each half-space are

2 3
Weem = §V0[2(3 — Ao+ Aok + A341)]1,
2 3
WB*EM = §V3[2(3 — ),1},2 +)~2j,3 +),3j,1)]z, (423)

where v, v, are positive constants. For these models, the material response functions @y,
w2, o} and w} provided by (2.2) are

wy=wy =0, y=i;vo[2(3— i2)]_%, Wy =€wy, € =Vv,/vo, (4.24)

with iy, i3, given by (2.5)3 4. Then a,, f, y, a*, f*, y* are computed as

3 2
o = 11 a)2:)~_1y
A1+ Ao A3’
A2 (A1 —A2) 227,
N DY Gt S D 4.25
p 2 4B —0) |2 (425)
oaf = e, =€fy  =e€y. (4.26)

Although the strain energy function of a “Bell’s empirical model” material depends only
upon one material constant (v o), as opposed to two (C; and C,) for a “simple hyperelastic
Bell” material, the full analysis of the Stoneley wave existence is too cumbersome and lengthy
to be followed here. Indeed, we saw in §3.2 that the definition of the limiting speed depends
on the sign of 2 — a which, for these materials, is equal to

28 — o = w7345 — (12 = 5A9)A1 (A1 + A2) —A3]/[4(3 —ix) (A1 + 42)].  (4.27)

The sign of this quantity (and hence the definition of V) depends heavily on the values
of the stretches A; and 1,. (For instance in the equibiaxial case 1; = A3, we have
28 — o = w2A3(TA1 — 9)/[4(3 — A1)], which changes sign at ; = 2.) Consequently, the
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Figure 3. Neutral curves for “Bell empirical model’materials.

limiting condition is difficult to obtain in general. Moreover, the connection with Stoneley’s
results [11] cannot be made because the parameters w-, w? are singular when the material is
isotropic (then i, = 3), where a different approach must be adopted [2].

Nevertheless, the neutral equation, which is independent of v and takes place away
from isotropy, can be obtained and compared with Biot’s “stability equation” for rubber-
like incompressible materials [8]. We deduce it by specializing (3.30) to the values (4.25) of

a,B,y,a*, B*, y*, as

47, Iy —29)% [1—€]? (A —22)?
SRS T I
114—12 4(3—l2) 1+e€ ),1(&1+/12)
In the case of plane strain 43 = 1, the equation reduces to
R
221 — 1)A; — 2 A1 —1)>=0. 4.29
@ - Dh -2 || G- 17 =0 #29)

Note that when e = 0 in (4.28), only the lower half-space subsists and we recover the surface
bifurcation criterion for Bell’s empirical materials in compression [12]

(A1 —22)

2
— — A7, =0. 4.30
3 4(3 o 12) 1 2 0 ( )

Figure 3 (where the plane of the figure coincides with the plane of the triangle) shows the
intersection between the triangle of possible stretch ratios for Bell materials and the neutral

curve in the cases where ¢ = 0.0 [5] (thickest curve), ¢ = 0.2, ¢ = 0.4, ¢ = 0.6 (thinnest
curve), and e = 0.8 (dotted curve).
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Table 1. Critical stretch ratios for interface instability (13 = 1).

€ Bell empirical rubber simple Bell
0.0 0.6667 0.5437 0.5000
0.2 0.6105 0.4457 0.4000
0.4 0.5625 0.3393 0.3000
0.6 0.5266 0.2257 0.2000
0.8 0.5060 0.1085 0.1000

4.3. Comparison with Neo-Hookean Incompressible Materials

Biot [8] investigated the surface instability of incompressible materials under finite
compression, and obtained the neutral condition, which he called the “characteristic equation
for interfacial instability”. He then discussed the equation in the particular case of a neo-
Hookean strain energy function,

Wan = po(A5 + 45+ 25 — 3), (4.31)

and expressed it, in the case of plane strain A3 = 1, as

1+242]? 1—¢]? o
A2 Ll = =—. 4.32
1{1—1%} L+e] LT (432

He did not mention that the result was also valid for the Mooney—Rivlin energy function,
War = Di(A5 + 23 + 435 — 3) + Do(A1A5 + 4345 + A3AT — 3), (4.33)

by replacing the rigidity ratio € with

DI - D

€ = DD, (4.34)
Table 1 shows the numerical values of the critical stretches for the classes of Bell’s
empirical model (second column), of neo-Hookean and Mooney—Rivlin incompressible
materials (third column), and of simple hyperelastic Bell materials (fourth column) in the
case of plane strain, for different values of the rigidity ratio €. It appears that rubber can be
compressed more than Bell’s empirical model but less than simple hyperelastic Bell materials,

before the neutral equation is satisfied.

APPENDIX. STRONG ELLIPTICITY CONDITIONS FOR THE INCREMENTAL
EQUATIONS OF MOTION IN BELL MATERIALS

For an unconstrained hyperelastic material maintained in a static state of pure homogeneous
deformation, the incremental equations of motion are

Ajilk Uk, ji = PUis (A.D)
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where A is the fourth-order instantaneous linear elasticity tensor. The nonzero components
of A are

Aiil/ = li},j I/Vij 9
Ay = QW =y W))A3 /(0] = 27),
Ag/ji = Aiji/ — AW, (A2

(no sum) when the underlying deformation has distinct principal stretch ratios 11, Ao, A3.
The assumption of strong ellipticity for the equations of motion (A.1) imposes that

.Ajl'[k m;n;mn; > 0, for all nonzero m,n. (A.3)

When the material is incompressible, det V = 1, where V is the left stretch tensor, and

an arbitrary pressure P is introduced [13]. Then the equations of motion are strongly elliptic
for all values of P when the inequalities (A.3) hold subject to

m-n=0. (A4)

When the material is subject to the Bell constraint tr V. = 3, an arbitrary scalar p is

introduced [2]. Then the equations of motion are strongly elliptic for all values of p when the
inequalities (A.3) hold subject to

m-Vn =0. (A.S)
The unit vectors
m = A;%cosfi+A,?sindj,
n = —ll_%sinﬁi—l—/l;%cosﬁj, 0<60 <2m, (A.6)

are two such vectors, and the strong ellipticity condition says that
Acos* @ + 2Bsin® 60 cos? 0 + Csin*0 >0, (A.7)
for all 8, where A, B, C, are given by

4= /11_1/12_1-/41212, C= /11_1/12_1~A21217
B=(4 1_2-/41111 + /12_2-/42222)/2 — /11_1/12_1(-/41122 + Aja21). (A.8)

Choosing § = arctan(4/C)~%, we arrive at B + \/AC > 0, which is equivalent to

B+a>0, (A.9)
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where

= (- W2)/1?/[/12/13(/1% _}“g)]a
IB = (W11+ W22—2W12)11/(2/12/13)—alg/il. (AIO)
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