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The paper studies the interaction of a longitudinal wave with transverse waves in general isotropic and
unconstrained hyperelastic materials, including the possibility of dissipation. The dissipative term chosen is
similar to the classical stress tensor describing a Stokesian fluid and is commonly used in nonlinear acoustics.
The aim of this research is to derive the corresponding general equations of motion, valid for any possible form
of the strain energy function and to investigate the possibility of obtaining some general and exact solutions to
these equations by reducing them to a set of ordinary differential equations. Then the reductions can lead to
some exact closed-form solutions for special classes of materials �here the examples of the Hadamard, Blatz-
Ko, and power-law strain energy densities are considered, as well as fourth-order elasticity�. The solutions
derived are in a time-space separable form and may be interpreted as generalized oscillatory shearing motions
and generalized sinusoidal standing waves. By means of standard methods of dynamical systems theory, some
peculiar properties of waves propagating in compressible materials are uncovered, such as for example, the
emergence of destabilizing effects. These latter features exist for highly nonlinear strain energy functions such
as the relatively simple power-law strain energy, but they cannot exist in the framework of fourth-order
elasticity.
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I. INTRODUCTION

Nonlinear elastic wave propagation is a subject of consid-
erable interest for many natural and industrial applications
such as seismology �1�, soft tissue acoustics �2�, or the dy-
namics of elastomers �3�. A detailed study of the theoretical
issues associated with wave phenomena forms the basis of
our understanding of important nondestructive and noninva-
sive techniques of investigation such as for instance, the
technique of transient elastography for the analysis of soft
solids �4�. The mathematics of wave phenomena is still an
active subject of research where many outstanding problems
are waiting for a definitive systematic treatment. Many pa-
pers are devoted to the study of nonlinear elastic wave propa-
gation and a recent summary on the status of contemporary
research on the subject can be found in the authoritative re-
view by Norris �5�, while an account of the mathematics of
hyperbolic conservation laws can be found in a book by
Dafermos �6�.

It is important to note that in most studies of nonlinear
acoustics, the investigation is usually restricted to weakly
nonlinear waves. Indeed, for materials such as metals, rocks,
or ceramics, the ratio of the dynamic displacement to the
wavelength is a small parameter and so, the theories of third-
order elasticity or of fourth-order elasticity seem to be suffi-
cient to account for the nonlinear effects observed in experi-
mental tests. The situation is however completely different

when we consider elastomeric materials such as those used
for vibration isolators or automobile tires, and when we con-
sider biological materials such as arterial walls or glands,
under physiological or pathological conditions. The deforma-
tion rates occurring in these materials are so large that their
behavior will differ significantly not only from the behavior
predicted by the linear theory of elasticity, but also from the
behavior predicted by the weakly nonlinear theories. It
should therefore be important to be able to derive and to
investigate the general equations governing the propagation
of finite amplitude longitudinal and transverse waves in the
context of full nonlinear elasticity, which recovers the
weakly nonlinear case as a special case. Moreover, recent
researches in the constitutive behavior of rubberlike material
indicate that the stiffening effect, a peculiar but real phenom-
enon occurring at very large strains, cannot be described ac-
curately when the full polynomial strain energy function is
approximated; also, high order polynomial theories may give
rise to numerical difficulties in the fitting of the material
parameters with the experimental data and to artificial insta-
bility phenomena �see Pucci and Saccomandi �7� and Ogden
et al. �8��.

These considerations have led to the present paper which
is devoted to the study of the interaction of a longitudinal
wave with transverse waves in general isotropic and uncon-
strained hyperelastic materials and this also when dissipation
is taken into account. The aim of our research is first, to
derive the corresponding general equations of motion, valid
for any possible form of the strain energy function; second,
to investigate the possibility of obtaining some general and
exact solutions to these equations by reducing the specific
field equations to a set of ordinary differential equations; and

*Electronic address: destrade@lmm.jussieu.fr
†Electronic address: giuseppe.saccomandi@unile.it

PHYSICAL REVIEW E 72, 016620 �2005�

1539-3755/2005/72�1�/016620�12�/$23.00 ©2005 The American Physical Society016620-1

http://dx.doi.org/10.1103/PhysRevE.72.016620


third, to provide, using these reductions, some exact closed-
form solutions for special classes of materials.

To the best of our knowledge, previous studies taking sys-
tematically into account the full nonlinear equations of mo-
tion have generally been restricted to the formal theory of
singular surfaces and of acceleration waves. These studies
stem from the fundamental researches initiated by Hadamard
�9� in 1903 and were advanced mainly by Ericksen, by Tho-
mas, and by Truesdell in the 1950s and 1960s �see for ex-
ample Truesdell �10� and the review by Chen �11��. They
show that the conjunction of the nonlinearity in the material
response and of the hyperbolic nature of the governing equa-
tions �in the purely elastic case� leads inevitably to shock
formation. The results obtained are general and exact but
they are formal results: in effect, no solution is found explic-
itly but rather, conditions are given that have to be fulfilled
by solutions, if they exist.

In contrast, the present article focuses on the explicit de-
termination of solutions. Our investigation is directly related
to the celebrated finite amplitude elastic motions discovered
by Carroll �12–18�. His exact solutions are versatile in their
fields of application because they are valid not only for non-
linearly elastic solids, but also for general viscoelastic solids
�17�, Reiner-Rivlin fluids �17,18�, Stokesian fluids �17�,
Rivlin-Ericksen fluids �18�, liquid crystals �19�, dielectrics
�20�, magnetic materials �21�, etc. They also come in a great
variety of forms, such as, circularly-polarized harmonic pro-
gressive waves, as motions with sinusoidal time dependence,
as motions with sinusoidal space dependence, etc. Recently
the present authors �22� extended Carroll’s solutions to the
case of an incompressible hyperelastic body in rotation, by
considering a new synthetic and very effective method based
on complex variables. In doing so, they discovered a striking
analogy between the equations of motion obtained for a mo-
tion general enough to include all of the above motions, and
the equations obtained for the motion of a nonlinear string,
as considered by Rosenau and Rubin �23�. The method used
by Rosenau and Rubin shows in a simple and direct way that
all �and more� of the different results obtained by Carroll are
a direct consequence of material isotropy and of the Galilean
invariance of the field equations. This is indeed an explana-
tion for their ubiquity and versatility.

The paper is organized in the following manner: In Sec. II
we lay out the general field equations of nonlinear elasticity.
Because dissipation cannot be neglected for most problems
in the dynamics of elastomeric materials and of soft tissues,
we add a simple inelastic tensor of differential type to the
hyperelastic Cauchy stress tensor. This additional term is
similar to the classical stress tensor describing a Stokesian
fluid; it is the dissipative term introduced by Landau and
Lifshitz in their monograph on elasticity theory �24� and it is
commonly used in nonlinear acoustics �see Norris �5��. We
point out that this term is different from the one used in
continuum mechanics as a first approximation of dissipative
effects or as a regularization of the hyperbolic equations of
nonlinear elastodynamics for example in numerical compu-
tations �25�. Then we specialize the equations of motion to
the case of one longitudinal wave and two transverse waves.
In Sec. III we seek solutions in time/space separable form
and derive nonlinear systems of ordinary differential equa-

tions for generalized oscillatory shearing motions and for
generalized sinusoidal standing waves. In Sec. IV, different
classes of materials are considered �Hadamard, Blatz-Ko,
power-law, fourth-order elasticity� and some exact solutions
are provided. Concluding remarks are made in Sec. V, which
recaps the main results. In particular, it is emphasized there
that a weak nonlinear elasticity theory �up to the fourth or-
der� cannot account for some wrinkling phenomenon found
in the fully nonlinear theory �power-law strain energy�.

II. PRELIMINARIES

A. Equations of motion

Consider a hyperelastic body with strain energy density
�. Let the initial and current coordinates of a point of the
body, referred to the same fixed rectangular Cartesian system
of axes, be denoted by X and x, respectively. Hence a motion
of the body is defined by

x = x�X,t� . �1�

The response of a homogeneous compressible isotropic elas-
tic solid to deformations from an undistorted reference con-
figuration is described by the constitutive relation �26�,

TE = 2� I2

�I3

��

�I2
+ �I3

��

�I3
�1 +

2
�I3

��

�I1
B − 2�I3

��

�I2
B−1,

�2�

where TE is the �elastic� Cauchy stress tensor, 1 is the unit
tensor, B is the left Cauchy-Green strain tensor defined by

B ª FFT, �3�

Fª�x /�X being the deformation gradient tensor, and I1, I2,
I3 are the first three invariants of B,

I1 ª tr B, I2 ª
1
2 �I1

2 − tr�B2��, I3 ª det B . �4�

To describe the simultaneous effects of thermal and vis-
coelastic dissipation, we introduce the following viscouslike
stress tensor �24�:

TD = 2��Ė − 1
3 �tr Ė�1� + �� + ���tr Ė�1 , �5�

where E is the Green-Lagrange strain tensor,

E ª

1
2 �FTF − 1� , �6�

and the dot indicates the time derivative. In Eq. �5�, the con-
stant � ��0� is the shear viscosity coefficient, the constant
� ��0� is the bulk viscosity coefficient, and the constant
� ��0� is the coefficient related to the thermal properties of
the solid �that is, ambient temperature, thermal expansion
coefficient, and specific heat�.

Let � and �0 denote the mass densities of the body mea-
sured in the current configuration and in the reference con-
figuration, respectively. Then the equation of motions, in the
absence of body forces, are: div�TE+TD�=�ẍ in current
form, or equivalently,
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Div��I3�TE + TD��F−1�T� = �0ẍ ,
�7�

�

�Xj
��I3�Tik

E + Tik
D�Fjk

−1� = �0
�2xi

�t2 ,

in referential form.
Remark on the dissipative stress tensor: For incompress-

ible solids, det F=1 at all times �so that I3=1 at all times�
and an arbitrary spherical pressure term, to be determined
from initial and boundary conditions, is introduced so that

TE + TD = − p1 + 2
��

�I1
B − 2

��

�I2
B−1 + 2�Ė , �8�

where p= p�x , t� is a Lagrange multiplier. We note that in
order to study the propagation of finite amplitude motions in
viscoelastic incompressible materials, some authors �27–30�
chose to add to the elastic Cauchy stress tensor a viscous
term linear in the stretching tensor D, which is the symmetric

part of the velocity gradient tensor ḞF−1. In other words,
they chose to write

TE + TD = − p*1 + 2
��

�I1
B − 2

��

�I2
B−1 + 2�D , �9�

for some Lagrange multiplier p* and for some constant �.
However it must be recalled �e.g., Chadwick �31�, p. 146�
that Ė=FTDF�D in general. Thus we remark, for the time
being, that the assumptions �8� and �9� are not equivalent a
priori. We discuss these issues further at the end of the next
section.

B. Finite amplitude longitudinal and transverse plane waves

Now we consider the following class of motions:

x = u�X,t�, y = Y + v�X,t�, z = Z + w�X,t� , �10�

which describes the superposition of a transverse wave, po-
larized in the �YZ� plane and propagating in the X-direction
with a longitudinal wave propagating in the X-direction.
Then,

�F�ij = �uX 0 0

vX 1 0

wX 0 1
	, �F−1�ij =

1

uX�
1 0 0

− vX uX 0

− wX 0 uX
	 ,

�11�

and

�Ė�ij =
1

2��uX
2 + vX

2 + wX
2�t vXt wXt

vXt 0 0

wXt 0 0
	 . �12�

Here and hereafter, a subscript letter denotes partial differen-
tiation �thus uX=�u /�X, vtt=�2v /�t2, etc.� It follows from the
definitions �4� that the first three invariants of B are given by

I1 = 2 + uX
2 + vX

2 + wX
2 , I2 = 1 + 2uX

2 + vX
2 + wX

2 , I3 = uX
2 ,

�13�

and consequently that the strain-energy density �
=��I1 , I2 , I3� is here a function of uX

2 and vX
2 +wX

2 alone,

� = ��uX
2 ,vX

2 + wX
2� . �14�

With the expressions �11� and �12� substituted into the
Cauchy stress �2� and into the viscouslike tensor �5�, the
equation of motions �7� reduce to

�0utt = ��Q1 + Q2�uX + 1
2 �� + � + 4

3���uX
2 + vX

2 + wX
2�t�X,

�0vtt = �Q1vX + �vXt�X,

�0wtt = �Q1wX + �wXt�X, �15�

where the functions Q1=Q1�uX
2 ,vX

2 +wX
2� and Q2=Q2�uX

2 ,vX
2

+wX
2� are defined by

Q1 ª 2� ��

�I1
+

��

�I2
�, Q2 ª 2� ��

�I2
+

��

�I3
� . �16�

Equations �15� form a system of two coupled nonlinear par-
tial differential equations, generalizing the system derived by
Carroll in �12� for an elastic compressible material.

The mathematical treatment of initial-boundary-value
problems for equations such as �15� is not trivial at all. There
is a considerable literature on the subject and the most up-
dated reference is the recent paper by Antman and Seidman
�32�, to which we refer for further information. Here we use
a semi-inverse method and we shall consider the possibility
to use our explicit results to solve initial-boundary-value
problems only a posteriori. Obviously, the possibility of gen-
eral uniqueness theorems �such as those established in �32��
is quite valuable to give a clear and definitive status of the
solutions found by a semi-inverse method.

Now we differentiate �15� with respect to X, and we recast
the resulting equations in the form

�0Utt = ��Q1 + Q2�U�XX + 1
2 �� + � + 4

3���U2 + V2 + W2�XXt,

�0Vtt = �Q1V�XX + �VXXt,

�0Wtt = �Q1W�XX + �WXXt, �17�

where we have introduced the new functions: UªuX, V
ªvX, WªwX.

Further, these equations can be rewritten in an even more
compact form, by introducing the complex function 	, with
modulus 
 and argument �, defined by

	�X,t� = 
�X,t�ei��X,t�
ª V + iW , �18�

so that

V = Re�	� = 
 cos �, W = Im�	� = 
 sin � ,

V2 + W2 = 
2. �19�

Then the three equations �17� are
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�0Utt = ��Q1 + Q2�U�XX + 1
2 �� + � + 4

3���U2 + 
2�XXt,

�0	tt = �Q1	�XX + �	XXt. �20�

Now also, the invariants I1, I2, I3 found in �13� are written as

I1 = 2 + U2 + 
2, I2 = 1 + 2U2 + 
2, I3 = U2, �21�

so that Q1=Q1�U2 ,
2� and Q2=Q2�U2 ,
2� or, more explic-
itly,

Q1 = 2
��

��
2�
, Q2 = 2� ��

��U2�
−

��

��
2�
� . �22�

These equations have been developed in the purely elastic
case of a single shear wave by Carman and Cramer �33�, who
determined some numerical and asymptotic solutions.

Remark on finite amplitude motions in incompressible ma-
terials: In incompressible solids, det F=1 at all times and so
by �11�1, uX=1. Then we find

�Ė�ij =
1

2��vX
2 + wX

2�t vXt wXt

vXt 0 0

wXt 0 0
	 , �23�

and

�D�ij =
1

2� 0 vXt wXt

vXt 0 0

wXt 0 0
	 . �24�

It then follows that

Div��− p1 + 2�Ė��F−1�T� = − Grad p̂ + �vXXtj + �wXXtk ,

�25�

where p̂ªp− �vX
2 +wX

2�t, and that

Div��− p*1 + 2�D��F−1�T� = − Grad p* + �vXXtj + �wXXtk .

�26�

Now we see that the equations of motion �7� are the same
whether the choice �8� or the choice �9� is made. The two
approaches in modeling the dissipative effects are reconciled,
at least as far as finite amplitude motions in incompressible
materials are concerned.

III. SOLUTIONS IN SEPARABLE FORM

The general solution of �20� may be found only via nu-
merical methods. To obtain some simple analytical informa-
tion here, we look for reductions of the governing equations
�20� to a set of ordinary differential equations. The underly-
ing idea is to search for 	�X , t�, defined in �18�, in a sepa-
rable form such as


�X,t� = 
1�X�
2�t�, ��X,t� = �1�X� + �2�t� , �27�

where 
1, �1 are functions of space only and 
2, �2 are
functions of time only. Some lengthy computations, not re-
produced here, show that in only two general cases can Eqs.
�20� be separated in such way for any material response.

The results of this section generalize the results of Carroll
�13,16� by considering more general types of displacement
fields and by including viscoelastic effects. We also acknowl-
edge that the solutions presented here are a generalization of
the nonlinear three-dimensional motions of an elastic string
found by Rosenau and Rubin �23� �see �22� for a different
generalization, to finite amplitude waves in rotating incom-
pressible elastic bodies.�

A. Generalized oscillatory shearing motions

The first general type of separable solution is of the form,

	�X,t� = ���t� + i
�t��kei�kX−��t��, �28�

where k is a constant and �, 
, � are arbitrary real functions
of time. Here 	 is indeed of the separable form given by
�18�, with


1�X� = k = const., 
2�t� = �
�t�2 + ��t�2�1/2,

�1�X� = kX, �2�t� = ��t� + tan−1�
�t�/��t�� . �29�

Separating real and imaginary parts, we find that the trans-
verse displacement field �v ,w� derived from �28� is

v�X,t� = 
�t�cos�kX − ��t�� + ��t�sin�kX − ��t�� ,

w�X,t� = 
�t�sin�kX − ��t�� − ��t�cos�kX + ��t�� . �30�

In this case,


2 = k2�
2�t� + �2�t�� , �31�

is a function of time only.
Now the first equation of motion �20�1 reduces to

�0Utt = ��Q1 + Q2�U�XX + 1
2 �� + � + 4

3���U2�XXt, �32�

where

Q1 = Q1�U2�X,t�,
2�t��, Q2 = Q2�U2�X,t�,
2�t�� .

�33�

On the other hand, the second equation of motion �20�2 re-
duces to

�0	tt = Q1	XX + �	XXt. �34�

Using the separable form �28� for 	, factoring out the expo-
nential term, and separating the real and imaginary parts
yields

�0�
�� − ���2 + 2
��� + ��� + k2Q1� + k2��
�� + ��� = 0,

�0�
� − 2���� − 
��2 − ���� + k2Q1
 + k2��
� − ���� = 0.

�35�

This is a nonlinear system of two ordinary differential equa-
tions in the three unknowns 
�t�, ��t�, and ��t� either: when
Q1 is a constant independent of its arguments U2�X , t� and

2�t�, or when Q1=Q1�t�. By �16�1, this latter condition is
satisfied if and only if U�X , t�=U�t�, a function of time only.
It then follows by �33�2 that Q2=Q2�t� also. By substitution
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into the first equation of motion �20�1, we obtain �0U�=0.
Then the longitudinal displacement field is given by

U�t� = C1t + C2 = uX, �36�

so that

u�X,t� = �C1t + C2�X + C3, �37�

where C1, C2, C3 are constants. This is a homogeneous ac-
celerationless motion.

Hence we showed that for any compressible elastic mate-
rial with viscoelastic dissipative part defined as in �5�, main-
tained in a state of longitudinal simple extension, the special
transverse waves �30� may always propagate.

Because �35� is a system of only two equations in three
unknowns, there is a certain freedom in considering special
classes of solutions. One such class of special solutions is
obtained by considering �ª0 in �30�, leading to

v�X,t� = 
�t�cos�kX − ��t�� ,

w�X,t� = 
�t�sin�kX − ��t�� , �38�

a direct generalization of the classical damped harmonic
circularly-polarized wave solution,

v�X,t� = Ae−ht cos�kX − �t� ,

w�X,t� = Ae−ht sin�kX − �t� , �39�

where A, h, and � are suitable constants. For these special
motions at �ª0, the system �35� reduces to

�0�
�� + 2
���� + �k2
�� = 0,

�0�
� − 
��2� + k2Q1
 + �k2
� = 0. �40�

The equation �40�1 admits the first integral


2�� = Ee−��k2/�0�t, �41�

where E is a constant of integration.
If E=0, then ��t�=�0, a constant. We end up with standing

waves,

v�X,t� = 
�t�cos�kX − �0�, w�X,t� = 
�t�sin�kX − �0� ,

�42�

where, according to �40�2, 
 is a solution to

�0
� + k2�
� + k2Q1�k2
2,t�
 = 0, �43�

which is the equation of a damped nonlinear oscillator.
If E�0, then solving �41� for ��, we end up with the

single equation �40�2, which reduces to

�0
� + k2�
� + k2Q1
 −
�0E2


3 e−�2�k2/�0�t = 0. �44�

In the elastic case ��=0�, this equation describes the plane
motion of a particle in a central force field. In general ��
�0�, it is a nonlinear and nonautonomous differential equa-
tion.

For harmonic wave propagation, ��t� is taken as ��t�

=�t. By �41�, 
 is proportional to e−��k2/2�0�t and describes
the usual linear damping function. However by substitution
in �40�2, we see that this situation is possible only if the
material response is such that Q1 is a constant,

Q1 = 2� ��

�I1
+

��

�I2
� = const. = �0

�2

k2 +
�2k2

4�0
. �45�

In this section we analyzed the solutions �38� which are
the analog of the Class I solutions presented by Rosenau and
Rubin �34� for purely elastic strings. Qualitatively the solu-
tions describe particles moving in a helical path which lies
on a cylindrical surface of time-varying radius.

B. Generalized sinusoidal standing waves

We now consider the second class of solutions in sepa-
rable form, namely

	�X,t� = 
�i
�X� + ��X�����X� + �
��X� − i���X���ei��t+��X��,

�46�

where k is a constant and ��X�, 
�X�, ��X� are arbitrary
functions of space. Here 	�X , t� is indeed of the separable
form �18�, with


1�X� = ��
� + ����2 + �
�� − ���2�1/2, 
2�t� = 1 = const.,

�1�X� = � + tan−1��
�� − ���/���� + 
���, �2�t� = �t .

�47�

The transverse displacement field �v ,w� corresponding to
�46� is

v�X,t� = 
�X�cos��t + ��X�� + ��X�sin��t + ��X�� ,

w�X,t� = 
�X�sin��t + ��X�� − ��X�cos��t + ��X�� .

�48�

In this case, 
=
1�X�, a function of X only, and the first
equation of motion �20�1 reduces to

�0Utt = ��Q1 + Q2�U�XX + 1
2 �� + � + 4

3���U2�XXt, �49�

where

Q1 = Q1�U2,
1
2�X��, Q2 = Q2�U2,
1

2�X�� . �50�

Now, introducing �46� into the second equation of motion
�20�2 and separating the real part from the imaginary part, we
obtain

− �0�2���� + 
�� = ���� + 
���Q1�XX + 2�2���� + ��� + 
�

− 
��2��Q1�X + �3���� + 3���� + ���

− ���3 − 3
���2 − 3
���� + 
��Q1

− ���3
��� + 3
��� + 
�� − 
��3

+ 3����2 + 3����� − ��� , �51�

and

FINITE AMPLITUDE ELASTIC WAVES PROPAGATING… PHYSICAL REVIEW E 72, 016620 �2005�

016620-5



− �0�2�
�� − ��� = �
�� − ����Q1�XX + 2�2
��� + 
�� − ��

+ ���2��Q1�X + �3
��� + 3
��� + 
��

− 
��3 + 3����2 + 3����� − ���Q1

+ ���3���� + 3���� + ��� − ���3

− 3
���2 − 3
���� + 
�� . �52�

A sufficient condition for Eqs. �51� and �52� to compose a
nonlinear system of two ordinary differential equations in
the three unknowns 
, �, and � is that the longitudinal field
depends only on X: U�X , t��U�X�. In this case, Q1=Q1�X�,
Q2=Q2�X� and �49� reduces to


�Q1�X� + Q2�X��U�X��� = 0. �53�

Further progress is made by fixing one of the three un-
known functions, �ª0, say. Then the governing Eqs. �51�
and �52� reduce to

�Q1
��� + �0�2
 = − ����, �Q1���� + �0�2� = ��
�.

�54�

At �=0, these equations are formally equivalent to the equa-
tions derived by Carroll �14�, with the difference that the
materials response functions Q1 and Q2 depend not only on

2 �the amount of shear� but also on U. In Carroll �18� �see
system 5.12 in that reference�, the attention is restricted to
incompressible fluids and solids, for which U�X� must be
constant.

The solutions considered in this section contain the Class
II solutions of Rosenau and Rubin �34�.

IV. SPECIFIC MATERIALS

Now that we have established the possibility of reducing
the general nonlinear partial differential equations to ordi-
nary differential equations, we must specify constitutive re-
lations in order to make progress.

A. Hadamard materials

Finite amplitude motions in elastic Hadamard materials
have been thoroughly studied, see John �35� and Boulanger
et al. �36�. The analysis conducted in this paper allows for a
treatment of a dissipative Hadamard solid.

The Hadamard strain energy function is defined by

2� = C�I1 − 3� + D�I2 − 3� + G�I3� , �55�

where G�I3� is a material function and C, D are material
constants such that �36� C�0, D�0, or C�0, D�0. The
connection with the Lamé constants � and � of the linear
theory of isotropic elasticity is made through the relations:

C = 2� + G��1�, D = − � − G��1�, 2G��1� = � + 2� .

�56�

For this material, the functions Q1 and Q2 defined in �16�
are

Q1 = C + D, Q2 = D + G��U2� , �57�

and the equations of motion �20� reduce to

�0Utt = 
�C + 2D + G��U2��U�XX

+ 1
2 �� + � + 4

3���U2 + 
2�tXX,

�0	tt = �C + D�	XX + �	tXX. �58�

We point out that the equation governing the propagation
of the transverse waves �58�2 is always linear, for all Had-
amard materials, elastic or dissipative. Hence we see at once
that classical harmonic �damped and attenuated� transverse
waves are always possible for these materials.

The material function G�I3� accounts for the effects of
compressibility. For example, Levinson and Burgess �37�
proposed the following explicit form:

G�I3� = �� + ���I3 − 1� − 2�� + 2����I3 − 1� . �59�

This function leads here to a remarkably simple system of
equations:

�0Utt = �� + 2��UXX + 1
2 �� + � + 4

3���U2 + 
2�tXX,

�0	tt = �	XX + �	tXX. �60�

Now we take a look at some of the solutions investigated
in the previous section. Classical damped harmonic circu-
larly polarized waves such as �39� are possible in a dissipa-
tive Hadamard material because then 
=kAe−ht, a function
of time only, and Q1=C+D=�, a constant. The correspond-
ing dispersion equation �45� is here

� = �0
�2

k2 +
�2k2

4�0
. �61�

The associated longitudinal motion may be either the homo-
geneous accelerationless motion �36� or any solution to the
nonlinear equation �58�1, here:

�0Utt = 
�G��U2� − G��1��U�XX + 1
2 �� + � + 4

3���U2�tXX,

�62�

which for the Levinson and Burgess choice �59� of G is

�0Utt = �� + 2��UXX + 1
2 �� + � + 4

3���U2�tXX. �63�

Now consider the sinusoidal standing waves of Eq. �48� at
��X�=0. When the longitudinal field U depends on X only,
their behavior is governed by Eqs. �54�, here:

�
� = �0�2
 + ����, ��� = �0�2� − ��
�, �64�

or equivalently, by the single complex equation

�� − i����
 + i��� = ��2�
 + i�� . �65�

This equation possesses the following class of attenuated so-
lutions:


�X� = e−�X�k1 sin��X� + k2 cos��X�� ,

��X� = e−�X�k3 cos��X� + k4 sin��X�� , �66�

where k1, k2 are disposable constants and
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�,� =� �0�2

2��2 + �2�2�
���2 + �2�2 ± �� . �67�

These solutions may be used to solve some simple boundary
value problems. For example, consider the case of semi-
infinite body bounded by a vibrating rigid plate at X=0, and
take the velocity components of the plate as

ẋ = 0, ẏ = V� cos��t�, ż = V� sin��t� . �68�

Then 
�0�=0, ��0�=V, and the associated transverse dis-
placements are

v�X,t� = e−�X�sin��X�cos��t� + V cos��X�sin��t�� ,

w�X,t� = e−�X�sin��X�sin��t� − V cos��X�cos��t�� .

�69�

The associated longitudinal displacement independently sat-
isfies �53�, here:


�G��U2� − G��1��U�� = 0, �70�

which for the Levinson and Burgess choice �59� of G is
simply: U�=0. Then the basic displacement �69� may be su-
perimposed upon an axial static stretch or a homogeneous
motion in the axial direction. In a similar way, it is possible
to solve the case of a slab fixed at X=0 and oscillating at
X=L, or it is possible to use the various integration constants
to fix the stress traction or shear stress at the boundary of a
vibrating half-space or of a slab.

B. Blatz-Ko materials

Experiments on compressible polyurethane rubber lead
Blatz and Ko �38� to propose some strain energy functions
which have since received much attention, see for instance,
Beatty �26�. In particular, two reduced forms of the Blatz-Ko
general constitutive equation were deemed appropriate to
model certain polyurethane rubber samples. One is the
Blatz-Ko strain energy function for a solid, polyurethane
rubber,

� =
�

2
�I1 − 3 + ��I3

1/� − 1�� , �71�

where � and � are constants. Direct comparison with �55�
shows that this material is a special Hadamard material, with
the identifications: C=�, D=0, G�I3�=−��I3

1/�. The other is
the Blatz-Ko strain energy function for a foamed, polyure-
thane elastomer,

� =
�

2

 I2

I3
− 3 + ��I3

1/� − 1�� , �72�

where � and � are constants. The continuity with linear elas-
ticity requires that � is the infinitesimal shear modulus and
that �= �1−2�� /�, where � is the infinitesimal Poisson ratio.
Blatz and Ko’s experiments showed that typically, �=1/4
�and so, �=2�.

For this latter material, the functions Q1 and Q2 defined in
�16� are

Q1 = �U−2, Q2 = − �U−2 − ��1 + 
2�U−4 + �U�2��−1�/��,

�73�

and the equations of motion �20� reduce to

�0Utt = − ���1 + 
2�U−3 − U�3�−2�/��XX

+ 1
2 �� + � + 4

3���U2 + 
2�tXX,

�0	tt = ��	U−2�XX + �	tXX. �74�

Here, and in contrast with the case of Hadamard materials,
the transverse wave is coupled to the longitudinal wave.

First, consider the generalized oscillatory shearing mo-
tions of Sec. III A. As seen there, they are governed by non-
linear ordinary differential equations when the longitudinal
displacement u is the homogeneous accelerationless motion
of �36�2. Then the standing waves of �42� are governed by

�0
� + �k2
� +
�k2

�C1t + C2�2
 = 0. �75�

At C1=0, this is the classical equation of a damped oscil-
lator, whose type of motion �exponential and/or sinusoidal� is
decided by the sign of the quantity: ��kC2�2−4�0�; hence
the nature of the transverse motion depends on the longitu-
dinal extension via the parameter C2.

At C1�0 �linear stretch rate�, we perform the change of
variables �=C1t+C2, so that �75� reduces to

�2d2


d�2 + 2��2d


d�
+

�

4

 = 0, �76�

where the quantities �, � are defined by

� ª

�k2

2�0C1
, � ª

4�k2

�0C1
2 . �77�

In the purely elastic case ��=0�, � vanishes and the solution
to this equation is quite simple: we find that for

� � 1, 
��� = k1��+ + k2��−, where �± = �1 ± �1 − ��/2;

� = 1, 
��� = k1
�� + k2

�� ln �;

� � 1, 
��� = k1
�� cos��� − 1 ln ��

+ k2
�� sin��� − 1 ln ��; �78�

where k1 and k2 are integration constants. We note that all
these solutions blow up as t→� �equivalent to �→��; that
for ��1, the solutions are monotonic increasing; and that
for ��1, the solutions have a slight oscillatory character. In
the viscoelastic case ���0�, Eq. �76� is solvable in terms of
special functions and a richer variety of solutions emerges,
because now the solutions are not necessarily unbounded.
Moreover, although they are damped solutions, they do not
necessarily vanish with time. In order to solve Eq. �76� ex-
plicitly, we introduce the function f defined by


��� = e−��f�2��� , �79�

and we find that it satisfies a Whittaker equation:
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f��2��� + �−
1

4
+

�

4�2���2� f�2��� = 0. �80�

It follows that the solution to �76� is expressed in terms of
Whittaker’s functions as


��� = e−���k1W0,�1/2��1−��2��� + k2M0,�1/2��1−��2���� ,

�81�

where k1 and k2 are integration constants. To illustrate the
influence of the stretch rate in the X-direction �through the
constant C1� upon the behavior of the solutions, we consider
that the material is unstretched at t=0 �so that C2=1 and

�t=0�=0�; we take 
��t=0�=1, �k2 /�0=1, �=� /10 �so
that �=1/ �20C1� and �=4/C1

2�; and we let C1=0.2,1 ,1.5.
Figure 1 shows that for a “small” rate, the solution undergoes
a few oscillations before it vanishes completely; as C1 in-
creases, the oscillations disappear but the solution tends to an
increasing finite asymptotic value. We argue that this behav-
ior can be related to the problem of a tensile impact; when
the material is plucked at “low” speed, then a few oscilla-
tions take place before the material returns to its original
state; when the material is plucked at “high” speed, then the
material can accomodate an asymptotic transverse wave.

Now, consider the generalized sinusoidal standing waves
of Sec. III B. As seen there, they are governed by nonlinear
ordinary differential equations when the longitudinal dis-
placement u is such that uX=U=U�X�, a function of X only.
This condition leads to �53�, here integrated twice as

�
�2 + ��2 − 1�U−3 + U��−2�/� = C3X + C4, �82�

where C3, C4 are disposable constants. Taking the typical
value �=2 corresponding to Poisson ratio �=1/4, we find

U = 

�2 + ��2 − 1

C3X + C4 − 1
�1/3

. �83�

Hence for this material, the governing equations �54� for the
transverse solutions of type �48� at ��X�=0 are, using �83�
and �73�1,


��
�2 + ��2 − 1

C3X + C4 − 1
�−�2/3�


���
+ �0�2
 = − ����,


��
�2 + ��2 − 1

C3X + C4 − 1
�−�2/3�

����
+ �0�2� = ��
�. �84�

The final governing equations are highly nonlinear, even
with the choice �=2. The possibility of solving them in
closed form seems quite remote. Of course, numerical and
qualitative analyses may be performed with the usual meth-
ods of dynamical systems theory.

C. A separable strain energy density

Recall that the strain energy function of an incompressible
material, �inc say, corresponds to the restriction to the sub-

space �I1 , I2 ,1� of a strain-energy �̃ say, defined in the full
space �I1 , I2 , I3�:

�inc�I1,I2� ª �̃�I1,I2,1� . �85�

Hence the classical incompressible neo-Hookean form,

�inc = ��I1 − 3�/2, �86�

may be associated for example with the full-space strain en-
ergy

�̃ =
�

2
�I1 − 3 − 2 ln J�, J ª �I3, �87�

often used in the classical molecular theory of rubber �39�.
Now, constitutive equations for compressible hyperelastic

materials come in many formulations. One of them consists
in adding a purely volumetric term �vol�J� say, to a basic

strain energy density function �̃, whose restriction �85� is the
strain energy function of an incompressible material �inc.
Then the final strain energy density for a compressible hy-
perelastic material can be written as

� = �̃�I1,I2,I3� + �vol�J� . �88�

Several models have have been proposed in the literature
for this pure volumetric part �or bulk term� of the strain
energy function. Ogden �40� proposed the form:

�vol
I �J� = ��−2�� ln J + J−� − 1� , �89�

where � is the first Lamé modulus and ���0� is an empirical
parameter. Flory �41� proposed the form

FIG. 1. Influence of the stretch rate C1 in the X-direction on the
shearing motion solutions for a Blatz-Ko material �foamed, poly-
urethane elastomer�.

M. DESTRADE AND G. SACCOMANDI PHYSICAL REVIEW E 72, 016620 �2005�

016620-8



�vol
II �J� = �c/2��ln J�2, �90�

and Simo and Pister �42�, the form

�vol
III �J� = �c/2���J2 − 1� − ln J� , �91�

which is �89� at �=−2. Recently Bischoff et al. �43� pro-
posed the form

�vol
IV �J� =

c

�2 �cosh ��J − 1� − 1� . �92�

In this manner, several strain energy functions may be
constructed. As an example, consider the power-law function
of Knowles �44�,

�inc =
C

b

�1 +

b

n
�I1 − 3��n

− 1� , �93�

where C, b, and n are constitutive parameters, all three as-
sumed positive. This simple strain energy captures several
important features of rubberlike materials. At n=1, it recov-
ers the neo-Hookean form �86�; at n�1 it describes strain-
stiffening materials; at n�1, strain-softening materials.
These hyperelastic properties prove crucial to the under-
standing of complex phenomena such as dynamic fracture, as
shown recently by Buehler et al. �45�. Then, using the for-
mulation exposed above, we may construct the following
compressible strain energy function

� =
C

b

�1 +

b

n
�I1 − 3��n

− 1� − C ln J + �vol�J� . �94�

Turning back to the finite amplitude motions of Sec. II,
we find that J=�I3=uX=U, so that �vol�J�=�vol�U�, and the
functions Q1, Q2 defined in �16� are here,

Q1 = 2C
1 +
b

n
�U2 + 
2 − 1��n−1

,

Q2 = U−1�vol� �U� − CU−2. �95�

In general, the corresponding equations of motion are
coupled and rather involved. Consider the special case of the
standing waves �42�, with the choice U�t�=C2 �C1=0 in
�36��. Then 
�t� satisfies �43�, which is here


� +
k2�

�0

� + 2

k2C

�0

1 +

b

n
�C2

2 − 1 + k2
2��n−1


 = 0.

�96�

We notice that this equation may admit not only the static
solution: 
ª0, but also the nontrivial static solutions:


 = ± �1/k��1 − C2
2 − n/b . �97�

These solutions are real if and only if b�1−C2
2�−n�0: when

the body is compressed in the X-direction �u=C2X ,C2�1�,
then the solution is real if b�n / �1−C2

2��0; when the body
is stretched �u=C2X ,C2�1�, the solution is not real �recall
that Knowles �44� assumed that b�0 in �93��.

Another important general property of Eq. �96� is that it
can be derived �46� from Lagrangian

L = 1
2e�k2�/�0�t�
�2 − V�
�� , �98�

where

V�
� = 2
k2C

�0
�

0


 
1 +
b

n
�C2

2 − 1 + k2�2��n−1

�d�

=
C

�0b

1 +

b

n
�C2

2 − 1 + k2
2��n

. �99�

As an example we consider a strain-stiffening material,
by taking n=2 in �94�. Then �96� is a Duffing equation with
damping,


� + �
� − �
 + �
3 = 0, �100�

where

� ª

k2�

�0
, � ª

k2C

�0
�b�1 − C2

2� − 2�, � ª b
k4C

�0
.

�101�

Clearly, ��0, ��0. To make the connection with results by
Holmes �47�, we impose ��0 also, which happens only
when the body is compressed in the X-direction �u
=C2X ,C2�1� and when b�2/ �1−C2

2�. As seen for �100�,
this equation possesses three fixed points in the phase plane,
namely, �0,0�, which is a saddle, and �±�� /� ,0�, which are
two sinks. Holmes �47� showed that Eq. �101� is locally and
globally stable. It follows that as t→�, our standing waves
must approach one of the four wrinkled configurations

lim
t→�

v�X,t� = ± ��/� cos�kX − �0� ,

lim
t→�

w�X,t� = ± ��/� sin�kX − �0� , �102�

for almost any initial conditions. As any one of the four final
configurations is equivalent to another, we conclude that the
material is destabilized by the waves �only some special
choices of the initial conditions will lead to the unstressed
deformation corresponding to the saddle point �0,0�; these
special initial conditions are found by computing the corre-
sponding stable manifold in the phase plane, and we refer to
Holmes �47� for the details.�

The situation described here can be extended to all posi-
tive integers n, because the leading of nonlinearity of the
potential V�
� in �99� is 
2n so that the leading order of
nonlinearity in the resulting differential equation is always to
an odd integer power. We also point out that for a given b, an
increasing n requires a decreasing C2 for the appearance of
the fixed points �97� that is, a greater compressive stretch in
the X-direction. This is in agreement with the “physical” ex-
pectation that the stiffer a material is, the harder it is to
destabilize it.

For noninteger powers n, the situation is more complex
because destabilizing configurations may or may not appear
in the case of strain-hardening materials �n�1� and in the
case of strain-softening materials �n�1�. Obviously the dy-
namical systems uncovered here are susceptible to a more
complete and more careful analysis than the one provided,
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which may reveal even richer behaviors than those already
described, such as for example the appearance of parametric
resonance; these aspects are however beyond the scope of
the present paper.

Finally, we note that the instability evoked in this Subsec-
tion is somewhat reminiscent of the buckling of an elasticita
under a compressive load, but we point out several differ-
ences. The buckling of an elastica is a phenomenon related to
geometrical nonlinearities, whereas our instability is due to
constitutive nonlinearities; in an elastica, more than one in-
flexion may occur whereas here, we could multiply instabili-
ties only by considering a multiple well strain energy func-
tion �and such a strain energy is not usual for the modeling of
soft tissues and elastomers�; for an elastica, the stability of
the various fixed points must be examined thoroughly,
whereas here, the stability of such points comes out directly
from our dynamical approach.

D. Fourth-order elasticity

In the linearized theory of “small-but-finite” amplitude
waves, the strain energy function must be expanded up to the
fourth order in the strain, in order to reveal nonlinear shear
waves �48�. In that framework, Murnaghan’s expansion �49�
is often used �see for instance Porubov �50��:

� =
� + 2�

2
i1
2 − 2�i2 +

l + 2m

3
i1
3 − 2mi1i2 + ni3 + �1i1

4 + �2i1
2i2

+ �3i1i3 + �4i2
2, �103�

where �, � are the Lamé moduli, l, m, n are the third-order
moduli, and �1, �2, �3, �4 are the fourth-order moduli �other
notations exist: see Norris �45� for the connections�. In this
expansion, we used the first three principal invariants i1, i2, i3
of E, the Green-Lagrange strain tensor; they are related to
the first three principal invariants I1, I2, I3 of B defined in �4�
by the relations �26�,

I1 = 2i1 + 3,

I2 = 4i1 + 4i2 + 3,

I3 = 2i1 + 4i2 + 8i3 + 1. �104�

By chain rule differentiation, we find that the functions Q1
and Q2 defined in �16� are here,

Q1 = � + �� + 2� + m�i1 + �l + 2m −
�2

2
�i1

2 − �2m + �4�i2

+ 4�1i1
3 + 2�2i1i2 + �3i3,

Q2 = − � − mi1 +
�2

2
i1
2 + �4i2, �105�

where now i1, i2, i3 are found from �104� and �21� as

i1 = �U2 + 
2 − 1�/2, i2 = − 
2/4, i3 = 0. �106�

Several comments are in order at this point. First of all,
we recall that the equations corresponding to �15� for third-

order elasticity �without dissipation� were first derived by
Gold’berg �51� in 1960.

Then we note that recently there has been a renewed in-
terested in fourth-order elasticity following experiments on
the nonlinear acoustic properties of soft tissuelike solids
�40�. Hence Hamilton et al. �52� proposed the following re-
duced version of the expansion �103�, suitable when the rela-
tive portion of energy stored in compression is negligible, as
is expected for shear deformations and motions of soft tis-
sues,

� = − 2�i2 + ni3 + �4i2
2. �107�

In this case, the functions Q1 and Q2 defined in �16� simplify
to

Q1 = − Q2 = � − �4i2 = � + �4
2/4, �108�

and we check at once that the longitudinal equation of mo-
tion �15�1 becomes a trivial identity in the purely elastic case
��=�=�=0�, because here Q1+Q2=0.

Finally, we also notice that the theories of third-and
fourth-order elasticity have been used to study bulk solitons
propagation in elastic materials. For instance, Hao and Mar-
ris �53� discuss the issue of acoustic solitons from both ex-
perimental and theoretical points of view; they consider the
possibility to produce KdV solitons by adding a fourth-order
spatial derivative to the longitudinal wave equation and by
performing some ad hoc approximations.

The general expressions �103�, �105�, and �106� yield
quite complicated equations of motion. If for example we
restrict our attention to the standing waves �42�, we find that
the polynomial nonlinearity of the resulting ordinary differ-
ential equation is of the fifth order for third-order elasticity,
and of seventh order for fourth-order elasticity. If we further
restrict our attention to the reduced expansion �107� we find
that Eq. �43� reduces to a damped Duffing equation,


� +
�k2

�0

� +

k2

4�0
�4� + k2�4
2�
 = 0. �109�

This equation is characterized by a positive linear stiffness
and therefore the peculiar behavior found in the previous
subsection for some power-law materials is ruled out. For
completeness, we point out that Holmes and Rand �54� com-
puted an approximate solution of Eq. �109�, using the
method of averaging.

V. CONCLUDING REMARKS

We studied the propagation of finite amplitude waves in a
general nonlinear elastic material, with dissipation taken into
account by means of a simple mechanism of differential
type. We showed that the general equations of motion admit
some beautiful and most interesting reductions to ordinary
differential equations, using a direct method based on com-
plex functions. Clearly, these reductions are a consequence
of the inherent symmetrical structure of the balance and con-
stitutive equations and may therefore be recovered also by
the standard methods of group analysis; we argue however
that our direct method is more simple and more revealing
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from a mechanical point of view. Moreover, our results
complement and generalize the well-known results of Carroll
in various directions, as already pointed out in the Introduc-
tion; they also emphasize the analogy between Carroll’s so-
lutions and some exact solutions proposed for nonlinear
strings by Rosenau and Rubin �33�.

The solutions provided here can be used not only as
benchmarks for the more complicated numerical analysis re-
quired in “real life” applications, but also for a better under-
standing of the mechanical properties and of the mathemati-
cal structure of various usual models. These advantages were
highlighted in the discussion on standing waves solutions
conducted in Sec. III. There, we focused much of the discus-
sion on the special case of standing waves for the sake of
simplicity and brevity, but it is clear that our general methods
of investigation can be applied to all the ordinary differential
equations that were derived.

One of the important findings uncovered by the analysis
of our solutions is the possibility to predict the appearance of
highly symmetric wrinkles in an elastic medium compressed
longitudinally. This phenomenon has been observed experi-
mentally by several researchers when, for example, a hard
film is deposited on a soft material and put under compres-
sive strain �55�. Our analysis showed that these wrinkles may
indeed appear when the compression parameter satisfies
some simple inequalities; it also showed that the detailed
viscoelastic behavior of the material is unimportant because
of the highly attracting nature of the wrinkled states of de-
formations. We note of course that our solutions have a
higher symmetry than the patterns usually observed in ex-
periments, probably because our solutions are characterized
by strong invariance and because they are bulk solutions, in
contrast to the half-space geometry generally used in experi-
ments. Despite these limitations, we found that these solu-
tions are compatible with the relatively simple nonlinear
power-law strain energy density whereas weak nonlinear
theories �up to the fourth-order� are not adequate to predict
these features.

Our approach allowed a direct and complete comparison
of the models used in nonlinear acoustics and in continuum
mechanics. It was seen that although the popular weak non-

linear theories are often used to study some special features
of wave propagation, a consequence of their polynomial na-
ture is that they cannot contain all the necessary information
of the general constitutive theory.

Last but not least, we gave some explicit solutions to
some models of compressible hyperelasticity. New exact so-
lutions are always welcomed and valuable additions to the
short list of exact solutions found in the literature.

We conclude by pointing out that several generalizations
of our results are possible in principle. For instance, the con-
sideration in polar coordinates of a wave propagating in the
radial direction coupled to two shear waves in the axial and
azimuthal direction is one of such possible generalizations.
In this case the following class of motions is considered:

r = r�R,t�, � = � + g�R,t�, z = Z + u�R,t� , �110�

where �R ,� ,Z� are cylindrical polar coordinates associated
with the undeformed configuration and �r ,� ,z� are cylindri-
cal polar coordinates associated with the deformed configu-
ration. It is possible to show that from �110� and the corre-
sponding kinematical quantities of interest, the equations of
motion may be reduced to a set of three partial differential
equations, similar to what we did for the motions �10� in
�15�. Unfortunately, it seems that in this case the equations of
motion do not allow general solutions in separable form, as
was the case in Sec. III for Eq. �15�. Of course, we do not
exclude that for special classes of materials, it is possible to
find some classes of wave solutions �see, for example �56�
for compressible materials and �57� for incompressible ma-
terials, and Refs. �58,59��.
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