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Abstract

The surface-impedance matrix method is used to study interfacial waves polarized in a plane of symmetry of anisotropic
elastic materials. Although the corresponding Stroh polynomial is a quartic, it turns out to be analytically solvable in quite
a simple manner. A specific application of the result concerns the calculation of the speed of a Stoneley wave, polarized in
the common symmetry plane of two rigidly bonded anisotropic solids. The corresponding algorithm is robust, easy to
implement, and gives directly the speed (when the wave exists) for any orientation of the interface plane, normal to the
common symmetry plane. Through the examples of the couples (Aluminum)–(Tungsten) and (Carbon/epoxy)–(Douglas
pine), some general features of a Stoneley wave speed are verified: the wave does not always exist; it is faster than the
slowest Rayleigh wave associated with the separated half-spaces.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The semiconductor industry makes great use of wafer bonding, a process which allows two different mate-
rials to be rigidly and permanently bonded along a plane interface, thus producing a composite bi-material [1].
Worldwide, there are now several hundreds of wafer bonding patents deposited yearly [2]. A similar process,
fusion bonding, is used by the polymer industry to bring together two parts of different solid polymers, thus
enabling the manufacture of a heterogeneous bi-material with specific properties [3,4]. In the first case, wafers
of two different crystals are stuck together through van der Waals forces, after their surface has been mirror-
polished; in the second context, a fusion process takes place at the interface, followed by a cooling and con-
solidating period. Whichever the process, it seems important to be able to inspect the strength of the bonding,
possibly through non-destructive ultrasonic evaluation. This is where the study of Stoneley waves (rigid
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contact) and of slip waves (sliding contact) is relevant (see [5–7]). In the continuum mechanics literature, great
contributions can be found on the theoretical apprehension of these waves. In particular, Barnett et al. [8] for
Stoneley waves and Barnett et al. [9] for slip waves have provided a rigorous and elegant corpus of results for
their possible existence and uniqueness, based on the Stroh formalism [10,11]. However very few simple
numerical ‘‘recipes’’ exist to compute the speed (and then the attenuation factors, partial modes, and profiles)
of these waves when they exist.

When the two materials have at least orthorhombic symmetry and their crystallographic axes are aligned,
the analysis can be conducted in explicit form as is best summarized in the article by Chevalier et al. [12]. This
explicit analysis is possible because for waves proportional to exp ik(x1 + px2 � vt) where k, p, v are the respec-
tive wave number, attenuation factor, and speed of the wave, and x1, x2 (aligned with two common crystal-
lographic axes) are the respective directions of propagation and attenuation, the equations of motion lead to a
propagation condition which is a quadratic in p2; then the relevant roots p can be found in terms of the stiff-
nesses Cij, C

�
ij for each half-space, of the mass densities q, q*, and of the speed v. After construction of the

general solution to the equations of motion (a linear superposition of the partial modes), the boundary con-
dition at the interface (rigid or sliding contact) yields the secular equation, of which v is a root. If the crystal-
lographic axes of the two orthorhombic materials do not coincide, or when at least one material is monoclinic
or triclinic, then the situation becomes much more intricate. In the very particular case where the bi-material is
made of the same material above and below the plane interface, with crystallographic axes symmetrically mis-
oriented, a Stoneley wave can be found along the bisectrix of the misorientation angle [13–15]. Otherwise, ana-
lytical methods fail because in general the propagation condition is a sextic in p, unsolvable [16] in the Galois
sense.

Now consider the case of a bi-material made of two different anisotropic half-spaces with a common sym-
metry plane Z = 0, orthogonal to the interface, and with only one common crystallographic axis (the Z-axis),
see Fig. 1. Then the in-plane strain decouples from the anti-plane strain [10] and in each half-space, the prop-
agation condition factorizes into the product of a quadratic in p (associated with the anti-plane strain) and a
quartic in p (associated with the in-plane strain). Solving analytically this quartic and identifying the two qual-
ifying roots unambiguously in order to be able to write down the boundary condition may have seemed a for-
midable task. However, it was recently shown in Fu [17] that such a quartic can in fact be solved and the two
qualifying roots identified in quite a simple manner, using results from algebra. Once the roots p are known,
the complete resolution of the problem flows out naturally because the surface-impedance matrices M(v) and
M*(v) for each region are now known explicitly. This knowledge gives in turn an explicit secular equation, in
the form f(v) = 0 for some function f. For Stoneley waves, f is a monotone decreasing function of v, whose only
zero, when it exists, is the wave speed. This latter property is worth emphasizing: therein lies the superiority of
the explicit surface-impedance matrix method above others based on algebraic manipulations which ultimately
lead to a multitude of secular equations [18,19] and/or of spurious roots [15,20–26].
Fig. 1. Plane interface (at x2 = 0) between two different anisotropic materials with a common symmetry plane (at Z = 0).
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This contribution builds on recent advances by Fu and Mielke [27], Mielke and Fu [28], and Fu [17], them-
selves resting on the major works by Barnett and Lothe [29], Chadwick and Smith [30], Ting [11], and Mielke
and Sprenger [31]. We aim at keeping the algebra to a minimum and at delivering a numerical recipe giving the
wave speed in a robust manner. The reader who is keen on implementing such procedures may skip the next
two sections to jump directly to Section 4, where they are summarized and presented for the Rayleigh wave
speed and for the Stoneley wave speed. Section 2 recapitulates the basic equations of motion and presents the
surface-impedance matrices. In Section 3, the quartic evoked above is derived, and then explicitly solved for
the roots which allow for a localization of the wave near the interface. Finally, using the ‘‘recipes’’ of Section 4,
examples of Rayleigh and Stoneley wave speeds computations are presented in Section 5, and the connection is
made with some numerical results of Chevalier et al. [12].

2. Governing equations

Consider a bi-material made of two distinct anisotropic materials with a common symmetry plane, bonded
rigidly along a plane interface, x2 = 0 say. Let q and Cijks be the mass density and elastic stiffnesses of the body
below (x2 P 0) and q* and C�

ijks be those of the body above (x2 6 0). The Cijks and C�
ijks are assumed to satisfy

the symmetry relations
Cijks ¼ Cksij ¼ Cjiks and C�
ijks ¼ C�

ksij ¼ C�
jiks ð1Þ
and the strong convexity conditions
Cijksnijnks > 0 and C�
ijksnijnks > 0; 8 non-zero real symmetric tensors n. ð2Þ
The strong ellipticity conditions are given by
Cijksgigkcjcs > 0 and C�
ijksgigkcjcs > 0; 8 non-zero real vectors g and c ð3Þ
and are implied by the strong convexity conditions (2). Let XYZ and X*Y*Z be along the crystallographic axes
of each material; the X-axis (X*-axis) makes an angle h (h*) with the interface, and Z is normal to their com-
mon symmetry plane and to x2. Finally, let x1 be an axis such that x1x2Z is a rectangular coordinate system
(see Fig. 1).

In this context, an interfacial wave is a two-component [10] inhomogeneous plane wave, whose propagation
is governed by the equations of motion for the mechanical displacement u(x1,x2, t) = [u1,u2]

T,
Cijksuk;sj ¼ q€ui ðx2 P 0Þ; C�
ijksuk;sj ¼ q�€ui ðx2 6 0Þ ð4Þ
and which decays away from the interface,
u ! 0 as x2 ! �1. ð5Þ

Here and henceforward, a comma denotes differentiation with respect to spatial coordinates and a dot denotes
material time derivative. Since the surfaces of the upper half-space and of the lower half-space have unit
normals (d2i) and (�d2i), respectively, the traction vectors on these two surfaces are
ti ¼ �Ci2ksuk;s; t�i ¼ C�
i2ksuk;s; i ¼ 1; 2 ð6Þ
and by (5), they also decay,
ti ! 0 as x2 ! þ1; t�i ! 0 as x2 ! �1. ð7Þ

Without loss of generality, the interfacial wave is assumed to propagate along the x1-direction and to have unit
wave number, so that
u ¼ zðix2Þeiðx1�vtÞ þ c.c., ð8Þ

where v is the propagation speed and ‘‘c.c.’’ denotes the complex conjugate of the preceding term.

Substituting (8) into (4) and (6)1 gives
T z00 þ ðRþ RTÞz0 þ ðQ� qv2IÞz ¼ 0; x2 P 0 ð9Þ
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and
t ¼ �ilðix2Þeiðx1�vtÞ þ c.c., ð10Þ
where
l ¼ T z0 þ RTz; ð11Þ
a prime signifies differentiation with respect to the argument ix2, and the 2 · 2 matrices T, R, Q are defined by
their components,
T ik ¼ Ci2k2; Rik ¼ Ci1k2; Qik ¼ Ci1k1. ð12Þ

Identical results apply for the upper half-space x2 6 0, with each quantity replaced by its starred counterpart,
except that t* is given by
t� ¼ il�ðix2Þeiðx1�vtÞ þ c.c. ð13Þ

Note that satisfaction of the strong ellipticity conditions (3) ensures that T, T*, and Q, Q* are all positive
definite and hence invertible.

The surface-impedance matrices M(v) and M*(v) are defined by
�ilð0Þ ¼ MðvÞzð0Þ; il�ð0Þ ¼ M�ðvÞz�ð0Þ. ð14Þ

In the Stroh [10] formulation, the second-order differential equation (9) is written as a system of first-order
differential equations for the variables z and l. Thus, for the lower half-space (and similarly for the upper
half-space),
n0 ¼ Nn; where n ¼
z

l

� �
; N ¼

N 1 N 2

N 3 þ qv2I NT
1

� �
; ð15Þ
and
N 1 ¼ �T�1RT; N 2 ¼ T�1; N 3 ¼ RT �1RT � Q. ð16Þ

Here I is the 2 · 2 identity matrix.

An important property of the surface impedance matrix is that it is independent of the depth, that is
�lðix2Þ ¼ Mzðix2Þ; ð17Þ

see Ingebrigsten and Tonning [32]. On substituting (17) into (15) and eliminating z 0, we obtain
ðM � iRÞT�1ðM þ iRTÞ � Qþ qv2I
� �

zðix2Þ ¼ 0. ð18Þ
Since z(ix2) is arbitrary, it then follows that
ðM � iRÞT�1ðM þ iRTÞ � Q� qv2I ¼ 0. ð19Þ

This simple matrix equation satisfied byM was seemingly first derived by Biryukov [33], and later rediscovered
by Fu and Mielke [27] who showed how this equation could be exploited to compute the surface speed.

The general solution of (15) can be constructed by first looking for a partial mode solution of the form
nðix2Þ ¼ eipx2f; ð20Þ

say, where p is a constant scalar (attenuation factor) and f is a constant vector to be determined. Substituting
(20) into (15) leads to the eigenvalue problem (N � pI4·4)f = 0. Under the assumption of strong ellipticity, the
eigenvalues of N appear as two pairs of complex conjugates when v = 0 and they remain so until v = vc, where
vc is referred to as the limiting speed. In this paper we are only concerned with the subsonic case, for which
0 6 v < vc. The solution (20) decays as x2 ! 1 only if the imaginary part of p is positive. Thus, denoting
by p1, p2 the two eigenvalues of N with positive imaginary parts, and by f(1), f(2) the corresponding eigen-
vectors, a general decaying solution is given by
nðix2Þ ¼ c1eip1x2f
ð1Þ þ c2eip2x2f

ð2Þ; ð21Þ
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where c1, c2 are disposable constants. Hence at the interface,
nð0Þ ¼ c1f
ð1Þ þ c2f

ð2Þ ¼
A

B

� �
c; ð22Þ
where the 2 · 2 matrices A, B and the column vector c are defined by
A

B

� �
¼ fð1Þjfð2Þ

� �
; c ¼

c1
c2

� �
. ð23Þ
It follows from (22) that
�ilð0Þ ¼ �iBc ¼ �iBA�1zð0Þ ð24Þ

and so from (14) that
MðvÞ ¼ �iBA�1; ð25Þ

which is a well-known representation of the surface-impedance matrix. As is recalled later in the paper, the
surface-impedance matrices are crucial to the determination of the interfacial wave speed. In fact, if their
explicit expressions are found, then an exact secular equation (an equation of which the wave speed is the only
zero) is also found explicitly.

3. Explicit expressions for the surface-impedance matrices

Here it is seen that the relevant roots to the characteristic equation det(N � pI4·4) = 0 can be obtained
explicitly, without the uncertainty which one encounters in, for instance, solving a cubic for p2. Indeed,
because the characteristic equation is a quartic in p, the qualifying roots are those with a positive (negative)
imaginary part to ensure decay with distance from the interface in the lower (upper) half-space. Thus, for the
lower half-space say, they must be of the form a1 + ib1, a2 + ib2, where b1 and b2 are positive real numbers.
This situation is in sharp contrast with the case of a wave propagating in a symmetry plane; then the charac-
teristic equation is a cubic in p2 and the relevant roots for the lower half-space can come in one of two forms:
either as ia1, ia2, ia3, where a1, a2, a3 are positive, or as ia1, ±a + ib, where a1 and b are positive. Although the
roots of a cubic are seemingly easier to obtain analytically than those of a quartic, determining which of these
two forms applies is a tricky matter. Here, once p1, p2 and p�1, p

�
2 are known, M(v) and M*(v) can be con-

structed and the interfacial wave speed can be computed directly. The analysis below is conducted for the
lower half-space (x2 P 0) and indications are given at the end of the section on how to adapt it to the upper
half-space.

First write the four-component vectors f(1) and f(2) as
fð1Þ ¼ að1Þ

bð1Þ

" #
; fð2Þ ¼ að2Þ

bð2Þ

" #
. ð26Þ
The vectors a(1), a(2) are determined from (9), that is from
½p2kT þ pkðRþ RTÞ þ Q� qv2I �aðkÞ ¼ 0; k ¼ 1; 2 ð27Þ

and the vectors b(1), b(2), are computed from (11) according to
bðkÞ ¼ ðpkT þ RTÞaðkÞ; k ¼ 1; 2. ð28Þ

It then follows from (23) that
A ¼ að1Þjað2Þ
� �

; B ¼ bð1Þjbð2Þ
� �

¼ TAXþ RTA; ð29Þ
where
X ¼
p1 0

0 p2

� �
. ð30Þ
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The two eigenvalues p1 and p2 are determined from det(N � pI) = 0, or equivalently, from
det½p2T þ pðRþ RTÞ þ Q� qv2I � ¼ 0. ð31Þ
This characteristic equation, called the propagation condition, is a quartic which can be written as
p4 þ d3p3 þ d2p2 þ d1p þ d0 ¼ 0; ð32Þ
say, where d0, d1, d2, d3 are real constants.
The usual strategy for solving a quartic equation such as (32) is to use a substitution to eliminate the cubic

term; see Bronshtein and Semendyayev [34]. Thus, with the substitution p = q � d3/4, Eq. (32) reduces to
q4 þ rq2 þ sqþ h ¼ 0; ð33Þ
where
r ¼ d2 �
3

8
d2
3; s ¼ d1 �

1

2
d2d3 þ

1

8
d2
3; h ¼ d0 �

1

4
d1d3 þ

1

16
d2d

2
3 �

3

256
d4
3. ð34Þ
The behavior of the roots of (33) depends on the cubic resolvent
z3 þ 2rz2 þ ðr2 � 4hÞz� s2 ¼ 0. ð35Þ

In particular, Eq. (33), and hence Eq. (32), have two pairs of complex conjugate solutions if and only if (35)
has three real roots z1, z2, z3 such that z2 < z3 6 0 6 z1. Then,
p1 ¼
1

2
½signðsÞ ffiffiffiffi

z1
p þ ið ffiffiffiffiffiffiffiffi�z2

p þ ffiffiffiffiffiffiffiffi�z3
p Þ� � d3

4
;

p2 ¼
1

2
½�signðsÞ ffiffiffiffi

z1
p þ ið ffiffiffiffiffiffiffiffi�z2

p � ffiffiffiffiffiffiffiffi�z3
p Þ� � d3

4
;

ð36Þ
where sign(s) equals 1 if s is non-negative and �1 otherwise (this definition overrides the standard definition in
which sign(0) = 0). The three roots of (35) are
2k1=3 cosð/Þ � 2

3
r; 2k1=3 cosð/þ 2p=3Þ � 2

3
r; 2k1=3 cosð/þ 4p=3Þ � 2

3
r; ð37Þ
where
k ¼ 1

27
ð12hþ r2Þ3=2; cos 3/ ¼ 27

2
ð12hþ r2Þ�3=2 2

27
r3 þ s2 � 8

3
rh

� 	
. ð38Þ
Without loss of generality it can be assumed that 0 6 3/ 6 p. It is easy to show that in this interval,
cosð/þ 2p=3Þ 6 cosð/þ 4p=3Þ 6 cos/. ð39Þ

It then follows that the three roots of (35) can explicitly be identified as
z1 ¼ 2k1=3 cosð/Þ � 2

3
r;

z2 ¼ 2k1=3 cosð/þ 2p=3Þ � 2

3
r;

z3 ¼ 2k1=3 cosð/þ 4p=3Þ � 2

3
r.

ð40Þ
Since z2 5 z3, we may further deduce that / 5 0 so that 0 < / 6 p/3.
Now all the ingredients are in place to compute explicitly p1, p2; then A, B; and ultimately,M(v), which is all

that is required to find the speed of the Rayleigh wave propagating at the interface between the lower half-
space and a vacuum. To compute the speed of Stoneley waves and slip waves, M*(v) is needed. For the upper
half-space x2 6 0, the analysis above can be repeated by starring all the quantities involved. Now the quali-
fying roots p�1, p

�
2 must have negative imaginary parts in order to satisfy the decaying condition and so (36)

is replaced by
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p�1 ¼
1

2
½signðs�Þ

ffiffiffiffi
z�1

p
� ið

ffiffiffiffiffiffiffiffi
�z�2

p
þ

ffiffiffiffiffiffiffiffi
�z�3

p
Þ� � d�

3

4
;

p�2 ¼
1

2
½�signðs�Þ

ffiffiffiffi
z�1

p
� ið

ffiffiffiffiffiffiffiffi
�z�2

p
�

ffiffiffiffiffiffiffiffi
�z�3

p
Þ� � d�

3

4
.

ð41Þ
As a result, M*(v) can be obtained from M(v) by first replacing the material constants by their starred coun-
terparts and then taking the complex conjugate.

4. How to find the wave speed

This section presents simple algorithms that can be used to compute directly the surface wave speed and the
interfacial wave speed. They rely on the use of a symbolic manipulation package such as Mathematica. The
algorithm for Rayleigh waves (solid/vacuum interface) is presented in detail, and then modified for Stoneley
waves (rigid solid/solid interface).

4.1. Rayleigh waves

A Rayleigh wave satisfies the traction free boundary condition l(0) = 0. Thus, from (14)1, its speed is given
by
det MðvÞ ¼ detð�iBA�1Þ ¼ � detðTAXA�1 þ RTÞ ¼ 0. ð42Þ
Given a set of material constants Cijkl and q, the unique surface-wave speed is found by using the following
robust numerical procedure:

(i) Enter the values of the stiffnesses into the definitions (12) of T, R, Q, that is
Q ¼
C1111 C1112

C1112 C1212

� �
; R ¼

C1112 C1122

C1212 C2212

� �
; T ¼

C1212 C1222

C1222 C2222

� �
.

(ii) Expand the quartic (31) in p, and obtain the coefficients d1, d2, d3 by comparing it to (32).
(iii) Enter the coefficients r, s, h according to (34) and then enter p1, p2 according to (36) and (40).
(iv) Define a(1) and a(2) according to
aðkÞ ¼
p2kT 12 þ pkðR12 þ R21Þ þ Q21

�p2kT 11 � 2pkR11 � Q11 þ qv2

" #
; k ¼ 1; 2. ð43Þ
(v) Define A from (29)1, X from (30).
(vi) Use (42) and the command FindRoot in Mathematica to solve detM(v) = 0.

To facilitate calculations, the term signðsÞ ffiffiffiffi
z1

p
in (36) may be replaced by s=

ffiffiffiffiffiffiffiffi
z2z3

p
. If necessary, the solution

for M can be checked by substituting the result into the matrix equation (19).

4.2. Stoneley waves

A Stoneley wave must satisfy the continuity conditions
zð0Þ ¼ z�ð0Þ; lð0Þ ¼ l�ð0Þ.
It then follows from (14) that [M(v) + M*(v)]z(0) = 0 and so the Stoneley wave speed is determined by
det½MðvÞ þM�ðvÞ� ¼ 0; ð44Þ
where
MðvÞ ¼ �i½TAXA�1 þ RT�; M�ðvÞ ¼ i½T �A�X�ðA�Þ�1 þ ðR�ÞT�. ð45Þ
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Given two sets of material constants Cijkl, C
�
ijkl and q, q*, the unique Stoneley wave speed, if it exists, is found

by the following robust numerical procedure:

• Follow steps (i)–(iv) of the algorithm described in the preceding subsection twice: once for the lower half-
space, and once for the upper half-space, replacing each quantity but v by their starred counterpart, taking
care in step (iii) that p�1, p

�
2 are defined by (41).

• Use (44), (45) and the command FindRoot in Mathematica to find the speed of the Stoneley wave, when it
exists. If Mathematica is unable to find a root, then the Stoneley wave does not exist.

5. Examples

We now apply the algorithms to specific materials. We use the data and results of Chevalier et al. [12],
where h = h* = 0, as a guideline. By varying these angles, we find that there are situations where a Stoneley
wave does not exist and that, when it does exist, it is faster than the slower Rayleigh wave associated with
either of the two half-spaces; these features were proved for any anisotropic crystal by Barnett et al. [8].
We also compute the smallest imaginary part of the attenuation coefficients, which is Iðp2Þ according to
(36); this quantity is related to the penetration depth of the interfacial wave into the substrates: the smaller
it is, the deeper is the penetration.

5.1. (Aluminum)–(Tungsten) bi-material

For a bi-material made of aluminum above (x2 6 0) and of tungsten below (x2 P 0), Chevalier et al. [12]
found a Stoneley wave propagating at speed 2787 m/s when h = h* = 0. We recovered this result and extended
it to the consideration of the bi-material obtained when the half-spaces are rotated symmetrically about the
Z-axis before they are cut and bonded,
Fig. 2.
and of
0� 6 h 6 90�; h� ¼ �h. ð46Þ

Fig. 2 shows that the Stoneley wave (thick curve) exists for all angles; it is faster than the Rayleigh wave for

a half-space made of tungsten (lower thin curve) and slower than the Rayleigh wave for a half-space made of
aluminum (upper thin curve).

Fig. 3 displays the smallest imaginary part of the attenuation factors for each wave. We find that for the
Stoneley wave, this quantity is intermediate between the corresponding quantities for the Rayleigh waves,
indicating a similar localization.
20 40 60 80
θ

2.7

2.75

2.8

2.85

2.9

v

Rayleigh (thin curves) and Stoneley (thick curve) wave speeds for a bi-material made of aluminum (rotated Y-cut about the Z-axis)
tungsten (symmetrically rotated Y-cut about the Z-axis).
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Fig. 3. Attenuation factors for Rayleigh (thin curves) and Stoneley (thick curve) wave speeds for a bi-material made of aluminum (rotated
Y-cut about the Z-axis) and of tungsten (symmetrically rotated Y-cut about the Z-axis).
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5.2. (Douglas pine)–(Carbon/epoxy) bi-material

For a bi-material made of carbon/epoxy above (x2 6 0) and of Douglas pine below (x2 P 0), Chevalier
et al. [12] found a Stoneley wave propagating at speed 1353.7 m/s when h* = 0 and h = 90�. Here we investi-
gate what happens to this wave when the half-space below is rotated about the Z-axis before it is cut and
bonded, while the half-space above is left untouched,
Fig. 4.
carbon
0� 6 h 6 90�; h� ¼ 0. ð47Þ

Fig. 4 shows that the Stoneley wave indeed exists at h = 90� and in the neighborhood of that angle, approx-

imatively in the range: 72.4� 6 h 6 107.6�. In that range, the Rayleigh wave for a half-space made of carbon/
epoxy cut at an angle h (thin varying curve) is slower than the Rayleigh wave for a half-space made of Douglas
pine cut at an angle h* = 0 (thin horizontal curve). The Stoneley wave, when it exists (thick curve), is always
faster than the former, and either faster (for 72.4� < h < 75.3� and for 104.7� < h < 107.6�) or slower (for
75.3� < h < 104.7�) than the latter.

Finally, Fig. 5 displays the smallest imaginary part of the attenuation factors for each wave. We find that
this quantity is for the Stoneley wave between one sixth and one tenth of that for the Rayleigh waves, indi-
cating a much deeper penetration.
20 40 60 80
θ1.325

1.35

1.375

1.4

1.425

1.45

1.475

1.5

v

Rayleigh (thin curves) and Stoneley (thick curve) wave speeds (km/s) for a bi-material made of Douglas pine (Y-cut) and of
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