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Summary
Conditions on the elastic stiffnesses of anisotropic crystals are derived such that circularly polarized longitudinal
inhomogeneous plane waves with an isotropic slowness bivector may propagate for any given direction of the
normal to the sagittal plane. Once this direction is chosen, then the wave speed, the direction of propagation,
and the direction of attenuation are expressed in terms of the mass density, the elastic stiffnesses, and the angle
between the normal to the sagittal plane and the normals (also called “optic axes”) to the planes of central circular
section of a certain ellipsoid. In the special case where this angle is zero, and in this special case only, such waves
cannot propagate.
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1. Introduction

In classical linearized elasticity theory, a special role is
played by infinitesimal longitudinal homogeneous plane
waves. For such waves the amplitude vector is parallel
to the propagation direction n (say) so that all the parti-
cles oscillate along that direction n and the motion is one-
dimensional. Such waves may propagate in every direction
in an isotropic compressible elastic material, but this is no
longer the case for elastic anisotropic materials such as
crystals. Possible directions of propagation of longitudinal
homogeneous plane waves, called “specific directions” by
Borgnis [1] may be as few as three in an elastic anisotropic
crystal. By assuming certain restrictions on the elastic con-
stants, Hadamard [2] created a special model anisotropic
elastic material in which longitudinal plane waves may
propagate in every direction.

Here, we consider inhomogeneous plane waves. These
waves are attenuated in a direction different from the prop-
agation direction. They may be described in terms of
bivectors [3] – complex vectors – the amplitude bivector,
A (say), and the slowness bivector, S (say), which may be
written [4] S = NC, where the “directional bivector” C is
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written C = mm̂ + in̂ (m̂ · n̂ = 0, m ≥ 1, |m̂| = |n̂| = 1)
and N is called the “complex scalar slowness”. Once the
directional bivector C is prescribed, the slowness S and
amplitude A are determined from the equations of motion.
To prescribe C is equivalent to prescribing an ellipse with
major semi-axis mm̂ and minor semi-axis n̂; this so-called
“directional ellipse” for inhomogeneous plane waves is the
analogue to the direction of propagation n for homoge-
neous plane waves [4]. The inhomogeneous plane wave is
said to be “longitudinal” if A and S (and therefore also
C) are “parallel”: A ∧ S = 0. What this means is that [3]
the ellipses of A and of S (and C) are all “parallel”, being
similar – same aspect ratio – and being similarly situated
– parallel major axes and parallel minor axes. In particular
we consider “circularly polarized longitudinal inhomoge-
neous plane waves” (CPLIPW). For such waves both C
and A are isotropic, that is C · C = 0, A · A = 0; the el-
lipses corresponding to C and A are coplanar circles, the
normal to the plane being a = m̂ ∧ n̂.

Here we seek to determine restrictions on the elastic
constants such that for any choice of a, the normal to the
plane of C and A (which is the plane of the motion), a
CPLIPW may propagate. We call the corresponding mate-
rials “special”.

Starting with the constitutive equation for a general
anisotropic elastic crystal (which involves twenty-one in-
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dependent elastic constants), we obtain necessary and suf-
ficient conditions on the constants in order that CPLIPWs
may propagate in every plane. It turns out that nine lin-
ear relations among the elastic constants must be satisfied
so that the special model material has at most twelve inde-
pendent elastic constants. For such materials we determine
the general structure of the (symmetric) acoustical tensor.
The complex slowness N of the CPLIPW is determined
for all choices of isotropic C. Because the wave is circu-
larly polarized, one eigenvalue of the acoustical tensor is
double [4]. The remaining simple eigenvalue corresponds
to a “transverse” inhomogeneous plane wave that is trans-
verse in the sense that its amplitude bivector B (say) is
“orthogonal” to C: B · C = 0, which means that the or-
thogonal projection of the ellipse of B upon the plane of C
is a circle.

The equation giving the complex slowness N for the
CPLIPW is of precisely the same structure as the equation
giving the complex slowness of the transverse wave. Both
are of the form C ·ΘC = N−2, C · C = 0, where Θ is a
real symmetric tensor. An ellipsoid E (say) may be asso-
ciated with Θ [3]. It is seen that the slowness bivectors are
obtained by first determining the central ellipsoidal section
E (say) of the ellipsoid E by the central plane with normal
a. Then m̂ and n̂ are chosen to lie along the principal axes
of E . This fixes C, and then N , and therefore S (= NC)
is determined. For choices of a along the normals to the
planes of central circular sections of the ellipsoid E, there
is no propagating wave.

Finally, we briefly consider the possibility of having
CPLIPWs propagating in crystals of various classes: tri-
clinic, monoclinic, etc. It is seen that CPLIPWs may not
propagate in trigonal, tetragonal, and cubic crystals, nor
in isotropic materials. It is seen that they may propa-
gate in triclinic, monoclinic, orthorhombic, and hexago-
nal crystals, provided the linear relations among the elas-
tic constants evoked above (or their specialization to those
classes of symmetry) are satisfied. As kindly pointed out
by a referee, we must ensure that the crystals are purely
elastic so that mechanical fields are not coupled to electri-
cal fields. Hence in what follows, we restrict our attention
to the following crystal classes: 1̄, 2/m, mmm, 3̄m, 4/m,
4/mmm, 6/m, 6/mmm, 432, m3, m3m.

2. Basic equations

The constitutive equations relating stress components σij
with strain components eij for a homogeneous anisotropic
elastic crystal are given by Hooke’s law:

σij = dijklekl. (1)

Here dijkl the elastic constants, or stiffnesses, have the
symmetries,

dijkl = djikl = dklij, (2)

so that there are at most 21 independent stiffnesses. Also,

2eij := ∂ui/∂xj + ∂uj/∂xi, (3)

where ui are the displacement components: ui := xi −Xi.
Here x is the current position of a particle initially at X.

The equations of motion, in the absence of body forces,
are given by

dijkl∂
2uk/∂xl∂xj = ρ∂2ui/∂t

2, (4)

where ρ is the mass density of the crystal.
We consider displacements of the form

u =
�

Aeiω(S·x−t)�+

= e−ωS−·x�A+ cosω(S+·x − t) (5)

− A− sinω(S+·x − t)
�
,

where S = S+ + iS− is the slowness bivector (complex
vector) [4, 3] and A = A+ + iA− is the amplitude bivector
(complex vector). When A is parallel to S, that is when
A = αS, where α is some complex number, the inhomo-
geneous wave is said to be “longitudinal” [5, 6]. When A
is isotropic, that is when A · A = 0, the wave is circularly
polarized, the ellipse associated with the bivector A being
a circle [3].

Circularly polarized longitudinal inhomogeneous waves
are those waves for which A and S are both isotropic and
parallel. For such waves,

S · S = 0, (6)

or equivalently,

S+ · S+ = S− · S−, S+ · S− = 0. (7)

Thus, the planes of constant phase are orthogonal to the
planes of constant amplitude; the waves propagate in the
direction of S+ whilst the amplitude decays in the direc-
tion of S−. The particle paths are circles in the plane of A+

and A−, or equivalently, because A = αS, in the plane
of S+ and S−. The sense of description of the circle is
from S+ towards S−, retrograde, similar to the sense of
Rayleigh waves propagating close to the free surface of a
semi-infinite isotropic elastic material.

Inserting (5) into (4) gives the propagation condition,

Qik(S)Ak = ρAi, Qik(S) = dijklSjSl, (8)

where Qik(S) is the acoustical tensor corresponding to the
slowness bivector S. A systematic procedure for obtaining
all solutions A, S of (8) has been introduced by Hayes
[4] and is called the “directional ellipse method” or “DE-
method”. It consists in writing S as

S = NC, (9)

where N is a complex number and C is any bivector of the
form C = mm̂+ in̂, with m̂, n̂, two unit orthogonal vectors
and m ≥ 1. We call N the complex scalar slowness and
C the directional bivector. Inserting (9) into (8) yields the
eigenvalue problem,

Qik(C)Ak = ρN−2Ai, (10)
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for the complex symmetric tensor Qik(C). All solutions of
the propagation condition may then be obtained by pre-
scribing C arbitrarily and solving (10) for N−2 and A,
which gives the slowness bivector through (9), and the am-
plitude bivector A (up to a complex scalar factor). When,
for some eigenvalue N−2, the corresponding eigenbivec-
tor A is parallel to the directional bivector C, the corre-
sponding inhomogeneous plane wave is said to be longitu-
dinal. Thus, for longitudinal inhomogeneous plane waves
the propagation condition becomes

Qik(C)Ck = ρN−2Ci, (11)

for some N−2. Hence, these waves are only possible for
directional bivectors C such that Q(C)C is parallel to C,
or equivalently,

C × Q(C)C = 0, (12)

or
Q1k(C)Ck

C1
=

Q2k(C)Ck

C2
=

Q3k(C)Ck

C3
. (13)

Here we seek particular classes of materials which are
such that longitudinal inhomogeneous plane waves are
possible for any choice of C satisfying C · C = 0 (so that
C is of the form C = m̂ + in̂). That is, we wish to de-
termine under which conditions on the stiffnesses dijkl are
CPLIPWs possible for all choices of the plane of C, or
equivalently of the normal a = m̂ × n̂.

3. Crystals for which longitudinal circu-
larly polarized waves are possible in all
planes

3.1. Necessary and sufficient conditions

Here we seek under which conditions on the stiffnesses
dijkl, we have: C × Q(C)C = 0 for all C = m̂ + in̂, or
equivalently, for all C satisfying C · C = 0.

For convenience we adopt the Voigt [7] contracted no-
tation for the elastic stiffnesses,

d12 = d1122, d33 = d3333,

d45 = d2313, d66 = d1212, etc. (14)

With these notations,

Q11(C) = d11C
2
1 + d66C

2
2 + d55C

2
3 + 2d16C1C2

+ 2d15C1C3 + 2d56C2C3,

Q22(C) = d66C
2
1 + d22C

2
2 + d44C

2
3 + 2d26C1C2

+ 2d64C1C3 + 2d24C2C3,

Q33(C) = d55C
2
1 + d44C

2
2 + d33C

2
3 + 2d45C1C2

+ 2d35C1C3 + 2d34C2C3, (15)

and

Q12(C) = d16C
2
1 + d26C

2
2 + d45C

2
3

+ (d12 + d66)C1C2 + (d14 + d56)C1C3

+ (d25 + d46)C2C3,

Q23(C) = d56C
2
1 + d24C

2
2 + d34C

2
3

+ (d25 + d46)C1C2 + (d36 + d45)C1C3

+ (d23 + d44)C2C3,

Q31(C) = d15C
2
1 + d46C

2
2 + d35C

2
3

+ (d14 + d56)C1C2 + (d13 + d55)C1C3

+ (d36 + d45)C2C3. (16)

Consider first C = (0, 1, i). It is isotropic. For this C, con-
ditions (13) become Q1kCk = 0 and iQ2kCk = Q3kCk,
which read, explicitly,

(d36 + 2d45 − d26) − i(d25 + 2d46 − d35) = 0,

4(d34 − d24) + i(d22 + d33 − 2d23 − 4d44) = 0. (17)

Hence,

d26 = d36 + 2d45, d35 = d25 + 2d46,

d24 = d34, 4d44 = d22 + d33 − 2d23. (18)

We then consider in turn C = (i, 0, 1) and C = (1, i, 0).
These choices yield conditions of the type (18), which
may be read off from (18) on cycling the indices 1 → 2 →
3 → 1, 4 → 5 → 6 → 4. The complete set of conditions
obtained in this way is

d16 = d26 = d36+ 2d45, d35 = d15 = d25+ 2d46,

d24 = d34 = d14+ 2d56, 4d44 = d22+ d33− 2d23, (19)

4d55 = d33+ d11− 2d13, 4d66 = d11+ d22− 2d12.

We refer to materials whose stiffnesses satisfy these con-
ditions as “special”. It follows that “special” materials
have at most twelve independent elastic stiffnesses. For in-
stance, they are

d11 d12 d13 d14 d15 d16

d22 d23 d24 d25 •
d33 • • d36

• • •
• •

•

(20)

and the remaining elastic constants (denoted by “•”
above) are determined from those 12 as

d34 = d24, d44 = 1
4 (d22 + d33 − 2d23),

d45 = 1
2 (d26 − d36), d35 = d15,

d55 = 1
4 (d11 + d33 − 2d13), d56 = 1

2 (d34 − d14)

d26 = d16, d66 = 1
4 (d11 + d22 − 2d12),

d46 = 1
2 (d35 − d25). (21)

We note that out of the nine conditions (19), six are “struc-
turally invariant” [8] for some rotations of the coordinate
system. In particular, if the two conditions

d16 − d26 = d11 + d22 − 2d12 − 4d66 = 0, (22)

are satisfied in the coordinate system linked to the crystal-
lographic axes (Ox1x2x3), then they are also satisfied by
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the stiffnesses d∗ij obtained from the dij after any rotation
of the coordinate system about the x3 axis. These invari-
ants are Type 1B in Ting’s classification [8]. Similarly, the
conditions

d15 − d35 = d11 + d33 − 2d13 − 4d55 = 0, (23)

are invariants under rotation of the coordinate system
about the x2 axis, and

d24 − d34 = d22 + d33 − 2d23 − 4d44 = 0, (24)

are invariants after rotation of the coordinate system about
the x1 axis.

When the relations (19) hold, it may be checked by di-
rect calculation, using (15), (16), and taking into account
the relation C2

1 + C2
2 + C2

3 = 0, that

Qik(C)Ck = ρN−2
L (C)Ci, (25)

for all isotropic bivectors C, with N−2
L (C) given by

ρN−2
L (C) = 1

2

"
d11C

2
1 + d22C

2
2 + d33C

2
3

&
(26)

+ 2
"
d16C1C2 + d35C1C3 + d24C2C3

&
.

It follows that the relations (19) between the elastic stiff-
nesses are the necessary and sufficient conditions for
CPLIPWs to propagate for all choices of isotropic direc-
tional bivectors, or, equivalently, for all choices of the po-
larization plane.

The expression (26) may also be written

ρN−2
L (C) = C ·ΨLC, (27)

where ΨL is given by

ΨL =

 1
2d11 d16 d35

d16
1
2d22 d24

d35 d24
1
2d33

 . (28)

Associated with ΨL is the “ΨL-ellipsoid”: x·(ΨL+p1)x =
1, where p is chosen such that (ΨL + p1) is positive defi-
nite. If C is chosen to lie on either plane of central circular
section of the ΨL-ellipsoid, then C · ΨLC = 0 and thus
N−2

L (C) = 0: the corresponding waves do not propagate.
In the next section, we derive the general structure of

the acoustical tensor for “special” materials.

3.2. Acoustical tensor

From the previous section, we know that the acoustical
tensor Qik(C), with C · C = 0, of “special” materials ad-
mits ρN−2

L (C) given by (26) as an eigenvalue. The corre-
sponding eigenvector C is isotropic, and so [4] this eigen-
value is a double eigenvalue. It follows that the other (sim-
ple) eigenvalue ρN−2

∗ (C), say, is given by ρN−2
∗ (C) =

trQ(C) − 2ρN−2
L (C), that is,

ρN−2
∗ (C) = (d55 + d66)C2

1 + (d44 + d66)C2
2

+ (d44 + d55)C2
3 + 2d45C1C2

+ 2d46C1C3 + 2d56C2C3. (29)

The expression (29) may also be written

ρN−2
∗ (C) = C ·ΨTC, (30)

where ΨT is given by

ΨT =

d55 + d66 d45 d46

d45 d44 + d66 d56

d46 d56 d44 + d55

 . (31)

Associated with ΨT is the “ΨT -ellipsoid”: x·(ΨT +p1)x =
1, where p is chosen such that (ΨT + p1) is positive defi-
nite. If C is chosen to lie on either plane of central circu-
lar section of the ΨT -ellipsoid, then C · ΨTC = 0 and so
N−2

∗ (C) = 0: there is no corresponding transverse circu-
larly polarized propagating wave.

Now we compute the components of the matrix Γ(C) :=
Q(C)−ρN−2

∗ (C)1. We find, using the conditions (19) and
C2

1 + C2
2 + C2

3 = 0, that

Γ11(C) = (µ + ν − λ)C2
1 + 2γC1C2 + 2βC1C3,

Γ22(C) = (ν + λ − µ)C2
2 + 2αC2C3 + 2γC1C2,

Γ33(C) = (λ + µ − ν)C2
3 + 2βC1C3 + 2αC2C3, (32)

and that

Γ12(C) = −γC2
3 + νC1C2 + αC1C3 + βC2C3,

Γ23(C) = −αC2
1 + λC2C3 + βC1C2 + γC1C3,

Γ31(C) = −βC2
2 + µC1C3 + γC2C3 + αC1C2, (33)

where

λ := 1
2 (d22 + d33 − 2d44), µ := 1

2 (d11 + d33 − 2d55),

ν := 1
2 (d11 + d22 − 2d66), α := d14 + d56,

β := d25 + d46, γ := d36 + d45. (34)

Let M be the real symmetric matrix defined as

M :=

 λ −γ −β
−γ µ −α
−β −α ν

 . (35)

It can be checked that

Γ(C) = (λ + µ + ν)C ⊗ C
− MC ⊗ C − C ⊗ MC. (36)

Alternatively, introducing M̂ := 1
2 (λ + µ + ν)1 − M, the

matrix Γ(C) may be written as

Γ(C) = M̂C ⊗ C + C ⊗ M̂C, (37)

where, explicitly,

M̂ =

 1
2 (d11+d44−d55−d66) d36 + d45

d36+d45
1
2 (d22+d55−d44−d66)

d25+d46 d14+d56

· · ·
d25+d46

d14+d56
1
2 (d33+d66−d44−d55)

 . (38)
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Hence, noting that C · C = 0 and recalling the definition
of Γ(C), we find that the acoustical tensor may be put in
the form,

Q(C) = ρN−2
∗ (C)1 + M̂C ⊗ C + C ⊗ M̂C. (39)

This decomposition of the acoustical tensor shows directly
that the isotropic bivector C is an eigenvector of Q(C),
whose eigenvalue ρN−2

L (C) given by (26), can equiva-
lently be written

ρN−2
L (C) = ρN−2

∗ (C) + C · M̂C. (40)

Also, the eigenvector corresponding to the eigenvalue
ρN−2

∗ (C) is C × M̂C. We call the corresponding wave the
“transverse” inhomogeneous plane wave, because its am-
plitude bivector A is orthogonal to C: C ·A = 0. In general
it is elliptically polarized because (C × M̂C)·(C × M̂C) =
−(C · M̂C)2  = 0. Of course C · [C × M̂C] = 0, which
means [4] that the orthogonal projection, upon the plane
of C, of the ellipse associated with the amplitude bivector
C × M̂C, is a circle.

Let C̃ be a choice of C for which C̃ · M̂C̃ = C̃ · C̃ =
0, so that C̃ is parallel to C̃ × M̂C̃ and there is a triple
eigenvalue ρN−2

L (C̃) = ρN−2
∗ (C̃). This special case occurs

when the plane of C̃ is one of the two planes of central
circular section of the the “M̂-ellipsoid”: x·(M̂+p1)x = 1,
where p is chosen such that (M̂ + p1) is positive definite.

Remark: A relationship between the scalar slownesses of
certain waves
The form (40) of the relation triggers the following re-
mark. Let the matrix M̂ have eigenvalues p1, p2, p3 and
corresponding unit orthogonal eigenvectors a1, a2, a3 so
that

M̂ = p1a1 ⊗ a1 + p2a2 ⊗ a2 + p3a3 ⊗ a3,

ai · aj = δij. (41)

Then consider the following isotropic bivectors C1, C2,
C3,

C1 := a2 + ia3, C2 := a3 + ia1,

C3 := a1 + ia2. (42)

Clearly,

C1·M̂C1 = p2 − p3, C2·M̂C2 = p3 − p1,

C3·M̂C3 = p1 − p2, (43)

so that

30
i=1

Ci·M̂Ci = 0. (44)

Then, from (40) and (44), we have the relation

30
i=1

N−2
L (Ci) =

30
i=1

N−2
∗ (Ci), (45)

for the Ci given by (42).

Example
To illustrate the results of this section, we work out a sim-
ple example. Let C = i+ij. Then the corresponding acous-
tical tensor Q(i + ij) is d11 − d66 + 2id16 i(d66 + d12)

i(d66 + d12) d66 − d22 + 2id26

d15 − d46 + i(d56 + d14) −(d56 + d14) + i(d15 − d46)

· · ·
d15 − d46 + i(d56 + d14)

−(d56 + d14) + i(d15 − d46)
d55 − d44 + 2id45

 . (46)

Computing Q(C)C and using the conditions (19), we find
that C is indeed an eigenvector of the acoustical tensor,
with eigenvalue given by (26),

Q(C)C = ρN−2
L C,

ρN−2
L = 1

2 (d11 − d22) + 2id16. (47)

Further, computing C× M̂C and then Q(C)(C× M̂C) and
using the conditions (19), we find that C × M̂C is also an
eigenvector of the acoustical tensor, with eigenvalue now
given by (29),

Q(C)(C × M̂C) = ρN−2
∗ (C × M̂C),

ρN−2
∗ = d55 − d44 + 2id45. (48)

In this simple example, we prescribed the normal to the
plane of the isotropic slowness bivector (or equivalently,
to the plane of the amplitude bivector) to be k. Then, we
chose C to be i+ij, leading to a complex eigenvalue. In the
next section, we show that it is always possible to choose
C such that the corresponding eigenvalue is a real positive
number.

Remark: General form of the acoustical tensor for the
“special” materials
Using the relations (19) in the expressions Qij(C) given
by (15) and (16), it may be seen that without any restric-
tions on C, the acoustical tensor Q(C) for the “special”
materials may be written as

Q(C) = ρN−2
∗ (C)1 + M̂C ⊗ C

+ C ⊗ M̂C + (C · C)Δ. (49)

Here the expression for ρN−2
∗ (C) is given by (29) and Δ

is defined by

Δ =

−d44 d45 d46

d45 −d55 d56

d46 d56 −d66

 . (50)

Comparing (31) and (50), we note that ΨT = Δ − (trΔ)1,
so that by (30),

ρN−2
∗ (C) = C · ΔC − (trΔ)C · C. (51)

It follows that

Q(C) =
�
C · ΔC − (trΔ)C · C

�
1 (52)

+ M̂C ⊗ C + C ⊗ M̂C + (C · C)Δ,
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which is an expression for the acoustical tensor Q(C) for
“special” materials, given in terms of only two matrices, Δ
and M̂.

We note for “special” materials that dijkl may be written

dijkl = Δjlδik + Δikδjl + Δilδjk + Δjkδil

− Δijδkl − Δklδij − (trΔ)(δikδjl (53)

+ δjkδil − δijδkl) + M̂ijδkl + M̂klδij.

Remark: Homogeneous plane waves in “special” materi-
als

For homogeneous plane waves propagating in the direction
n in the “special” materials, let u = A exp iω(Sn · x − t).
The corresponding propagation condition is then

Q(n)A = ρS2A, (54)

where Q(n) is given by (52) with n1, n2, n3 replacing C1,
C2, C3, respectively. Thus

Q(n) =
�
n · Δn − (trΔ)

�
1

+ M̂n ⊗ n + n ⊗ M̂n + Δ. (55)

We note a special solution.
Let the Hamiltonian decomposition of Δ be given by [3]

Δ = µ1 + κ(h+ ⊗ h− + h− ⊗ h+), (56)

where µ, κ are constants and h± are constant unit vectors.
Choose n = n∗ such that

(n∗ × M̂n∗) × (h+ × h−) = 0. (57)

(It is always possible to do this.) A solution for a homoge-
neous plane wave propagating along n∗ is

u = (h+ × h−) exp iω(N−1n∗ · x − t), (58)

where

ρN−2 = µ + n∗ · Δn∗ − (trΔ).

4. Description of the waves

Before proceeding, we note that the two equations (26)
and (29), giving the complex scalar slowness of the lon-
gitudinal circularly polarized wave and of the transverse
elliptically polarized wave, respectively, have the same
form,

C ·ΨC = ρN−2, C · C = 0, (59)

where Ψ is a real symmetric tensor given by Ψ = ΨL (see
equation 28) for the longitudinal wave and by Ψ = ΨT

(see equation 31) for the transverse wave. Accordingly, we
determine the details of the slowness of the corresponding
wave solutions. The results may be adapted either to the
longitudinal wave or to the transverse wave by replacing
Ψ with either ΨL or ΨT .

4.1. Construction of the slowness bivector

Let Ψ1, Ψ2, Ψ3 be the eigenvalues of Ψ and e1, e2, e3 the
corresponding orthogonal unit eigenvectors. We assume
that the eigenvalues are ordered as Ψ1 > Ψ2 > Ψ3. We
note that the pair (59) is equivalent to the pair

C · (Ψ + p1)C = ρN−2, C · C = 0, (60)

where p is an arbitrary constant. By choosing p suitably
large and positive, so that Ψ3 + p > 0, we may define the
positive definite matrix (Ψ+p1) and associate the ellipsoid

x · (Ψ + p1)x = 1, (61)

with Ψ. We call this the “Ψ-ellipsoid”. The planes of cen-
tral circular section of the Ψ-ellipsoid have unit normals
h± given by [3]

(Ψ1 −Ψ3)
1
2 h± = (Ψ1 −Ψ2)

1
2 e1

± (Ψ2 −Ψ3)
1
2 e3. (62)

We call these normals h±, the “optic axes” of the Ψ-
ellipsoid and note that they are independent of p.

To describe the slownesses of the waves corresponding
to (59), we recall that

S = NC, C = m̂ + in̂,
m̂ · m̂ = n̂ · n̂ = 1, m̂ · n̂ = 0. (63)

Here C is such that C · C = 0 and thus S · S = 0. Also
(m̂, n̂) is any pair of orthogonal unit vectors in the plane of
S, or equivalently in the plane with unit normal a := m̂×n̂.
In (63), N is a scalar to be determined from the equations
(59).

Because we are at liberty to choose for (m̂, n̂) any or-
thogonal unit pair in the plane with normal a, we choose
(m̂, n̂) along the principal axes of the elliptical section of
the Ψ-ellipsoid by the central plane a · x = 0. Specifically,
we take m̂ as the unit vector along the minor axis of this
ellipse and n̂ along the major axis. In that event,

m̂ ·Ψn̂ = 0, (64)

and using (63) and (64), the pair (59) give

ρN−2 = m̂ ·Ψm̂ − n̂ ·Ψn̂ > 0, (65)

in general, so that N−1 is purely real: N−1 = v, say. Also,

S+ = v−1m̂, S− = v−1n̂, (66)

so that the planes of constant phase (amplitude) are:
m̂ · x = constant (n̂ · x = constant).

Of course, if m̂ ·Ψm̂ = n̂ ·Ψn̂, so that the radii to the
Ψ-ellipsoid along the orthogonal unit vectors are equal,
then the plane a · x = 0 is a plane of central circular sec-
tion of the Ψ-ellipsoid, and from (65) there is no propa-
gating solution: ρN−2 = 0.
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Thus, in general, the slowness bivectors corresponding
to (59) are obtained by first determining the central ellipti-
cal section of the Ψ-ellipsoid by the plane a · x = 0. Then
m̂ and n̂ are chosen along the principal axes of the ellipse,
and S+ and S− are given by (65), (66).

To complete the picture we recall the results [3] for the
determination of the principal axes of the central elliptical
section of the Ψ-ellipsoid by the plane a · x = 0.

In the determination there are three cases to be consid-
ered:
Case(i) Normal a not coplanar with the optic axes.
Case(ii) Normal a coplanar with the optic axes but not par-
allel to either optic axis.
Case(iii) Normal a parallel to an optic axis.
We can dispose of Case (iii) immediately because we have
just seen that there is no propagating circularly polarized
solution when a · x = 0 is a plane of central circular sec-
tion of the Ψ-ellipsoid.

In Case (i), a · h+ × h−  = 0, it has been shown [3] that
m̂, n̂ are in the direction of r± given by

r± =
�
h+ − (cosφ+)a

�
/(sinφ+)

± �
h− − (cosφ−)a

�
/(sinφ−), (67)

where φ± is the angle between a and the optic axis h±.
Essentially, m̂ and n̂ are along the internal and external
bisectors of the angle between the orthogonal projections
of h+ and h− onto the plane a · x = 0 (this is the Fresnel
construction of Optics.)

In Case (ii), a · h+ × h− = 0, a × h±  = 0, it has been
shown [3] that

m̂ =
�
h+ − (cosφ+)a

�
/(sinφ+),

n̂ = (h+ × a)/(sinφ+). (68)

Essentially, m̂ is along the orthogonal projection of h+ (or
h−) onto the plane a · x = 0, and n̂ is orthogonal to that
plane.

This means that as the direction of the unit normal a is
varied, the corresponding m̂ and n̂ are given by (67) and
(68). Also, as shown by Boulanger and Hayes [3], in Cases
(i) and (ii), m̂ ·Ψm̂ − n̂ ·Ψn̂ = (Ψ1 − Ψ3) sinφ+ sinφ−,
so that from (65),

ρN−2 = ρv2 = (Ψ1 −Ψ3) sinφ+ sinφ−, (69)

where φ± are the angles that the normal a to the plane of
S makes with the optic axes.

We summarize the situation.
To determine all S+ and S− corresponding to (59), the

“optics axes” h± are first determined. Then the plane of
C = m̂ + in̂ is chosen; it has unit normal a. If a is not
coplanar with the two optic axes, then the corresponding
m̂ and n̂ are in the directions of r± given by (67) and N is
given by (65). If a is coplanar with the optic axes h± but
not along either of them, then the corresponding m̂ and n̂
are given by (68) and N is given by (69). If a is along h+

or h−, there is no propagating wave.

4.2. Example: Crystal with a plane of symmetry

To illustrate the method described above, we take a “spe-
cial” material with a symmetry plane at x3 = 0, say. Then
the tensor ΨL defined in (28) for the longitudinal wave is
given by

ΨL =

 1
2d11 d16 0
d16

1
2d22 0

0 0 1
2d33

 . (70)

Its eigenvalues are

Ψ1,3 =
�
d11 + d22 ±

(
(d11 − d22)2 + 16d2

16

�
,

Ψ2 = 1
2d33. (71)

Here we assume that the stiffnesses of the material are such
that these eigenvalues are ordered Ψ1 > Ψ2 > Ψ3. The
corresponding unit eigenvectors are

e1 =
1
δ

 1
2d22 −Ψ1

−d16

0

 , e2 =

0
0
1

 ,

e3 =
1
δ

 −d16
1
2d11 −Ψ3

0

 , (72)

where δ is the positive quantity given by

δ2 = 1
8 (d11 − d22)2 + 2d2

16 (73)

+ 1
4 (d11 − d22)

(
(d11 − d22)2 + 16d2

16.

With this choice, the optic axes defined by (62) lie in the
symmetry plane x3 = 0.

For simplicity, we now focus on waves polarized in the
symmetry plane, that is, we choose the normal a to the
plane of S to be along e2. Then a is obviously not coplanar
with the optic axes (Case (i) of the previous subsection).
Specifically, the angles between a and the optic axes are
φ+ = φ− = π/2. It follows from (67) that m̂ and n̂ are in
the directions of h+ ± h−, i.e.

m̂ = e1, n̂ = e3. (74)

We conclude that the following CPLIPW may propagate
in a monoclinic crystal with symmetry plane at x3 = 0 and
with stiffnesses satisfying (19),

u = e−ke3·x�e1 cos k(e1·x − vt)

− e3 sin k(e1·x − vt)
�
, (75)

where the orthogonal unit vectors e1, e3 are defined in
(72), k is an arbitrary real wave number, and the real speed
v is given by

ρv2 = Ψ1 −Ψ3 = 1
2

(
(d11 − d22)2 + 16d2

16. (76)
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5. Crystals with symmetries

In this section we investigate how the conditions (19) for
an anisotropic crystal to admit a CPLIPW for all choices
of the polarization plane are affected when the crystal
presents certain symmetries.

5.1. Monoclinic crystals

Here we consider crystals with a plane of symmetry, at
x3 = 0 say. For that class of materials,

d14 = d15 = d24 = d25 = d34

= d35 = d46 = d56 = 0. (77)

It follows that four out of the nine equations (19) reduce
to trivial identities, automatically satisfied. The nine con-
ditions (19) reduce to a set of five equations,

d16 = d26 = d36 + 2d45,

4d44 = d22 + d33 − 2d23,

4d55 = d33 + d11 − 2d13,

4d66 = d11 + d22 − 2d12. (78)

5.2. Orthorhombic crystals

Orthorhombic crystals possess three symmetry planes, at
x1 = 0, x2 = 0, x3 = 0. In addition to (77), the relations

d16 = d26 = d36 = d45 = 0, (79)

also hold. The set of nine conditions (19) now reduces to
a set of three equations,

4d44 = d22 + d33 − 2d23,

4d55 = d33 + d11 − 2d13,

4d66 = d11 + d22 − 2d12. (80)

5.3. Trigonal, tetragonal, and cubic crystals

For trigonal crystals, d24 = −d14 = −d56  = 0, and one of
the conditions (19), namely: d24 = d14 + 2d56, cannot be
satisfied.

For tetragonal crystals, d11 = d22, d13 = d23, d44 = d55,
and the condition: 4d66 = d11 + d22 − 2d12 reduces to:
d66 = (d11 − d12)/2, which would mean that the crystal is
in fact hexagonal (transversally isotropic).

For cubic crystals, d11 = d22 = d33, d12 = d23 = d13,
d44 = d55 = d66, and the condition: 4d66 = d11+d22−2d12

reduces to: d66 = (d11 − d12)/2, which would mean that
the material is in fact isotropic.

We conclude that there are no trigonal, no tetragonal,
and no cubic crystals in which CPLIPWs may propagate
for all orientations of the slowness plane.

5.4. Hexagonal crystals

For hexagonal crystals, the following relations hold for the
stiffnesses,

d11 = d22, d13 = d23,

d44 = d55, d66 = (d11 − d12)/2, (81)

in addition to (77) and (79). The nine equations (19) re-
duce to a single equation,

d44 = 1
4

"
d11 + d33 − 2d13

&
. (82)

5.5. Isotropic materials

For isotropic materials, the following relations hold for the
stiffnesses,

d11 = d22 = d33, d12 = d23 = d13,

d44 = d55 = d66 = (d11 − d12)/2, (83)

in addition to (77) and (79). Then, the nine equations (19)
are all identically satisfied. However, the propagation con-
dition (26), giving the complex scalar slowness NL now
simplifies to

ρN−2
L (C) = 1

2d11(C2
1 + C2

2 + C2
3 ) = 0, (84)

for isotropic slownesses. It follows that CPLIPWs may
not propagate in an isotropic material, for any choice of
isotropic slowness.

On the other hand, this analysis shows that “longitudi-
nal” static exponential solutions with an isotropic slow-
ness bivector always exist for linear isotropic elastic mate-
rials. This result may be checked directly in the following
manner. Recall the classical equations of equilibrium of an
isotropic material,

(λ + µ)uj,ij + µui,jj = 0, (85)

where λ and µ are the Lamé constants. Then it is easy to
check that the field

ui = Sie iωSjxj , SkSk = 0, (86)

is indeed an exact solution.
We sum up the situation. There are no isotropic, cubic,

trigonal, or tetragonal elastic crystals such that CPLIPWs
may propagate in every plane. However, the propagation
of CPLIPWs is theoretically possible for all planes of
some triclinic, monoclinic, or orthorhombic elastic crys-
tals provided some relations among the elastic stiffnesses
are satisfied. We note that there is unfortunately insuffi-
cient data for such crystals available at present to enable
us present an explicit example, but we recall that the val-
ues of the elastic stiffnesses change with pressure, tem-
perature, prestress, etc. and that they may consequently be
adjusted to produce an adequate crystal.
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