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We show that a model proposed by Rubin, Rosenau, and Gottlieb �J. Appl. Phys. 77, 4054 �1995�� for
dispersion caused by an inherent material characteristic length belongs to the class of simple materials. There-
fore, it is possible to generalize the idea of Rubin, Rosenau, and Gottlieb to include a wide range of material
models, from nonlinear elasticity to turbulence. Using this insight, we are able to fine-tune nonlinear and
dispersive effects in the theory of nonlinear elasticity in order to generate pulse solitary waves and also bulk
traveling waves with compact support.
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The emergence of significant solitary waves from the
equations governing the motion of solids usually requires a
fine balance between nonlinearity and dispersion. The first
ingredient finds its natural source in the theory of finite, fully
nonlinear, elasticity, but the source for the second is more
elusive. Often, specific boundary conditions �such as a thin
film coated on a substrate, the finite interface between phases
in an elastic composite material, the lateral dimensions of a
rod with free surfaces, etc.� are used because they introduce
a characteristic length, to be compared with the wavelength.
For homogeneous infinite �bulk� solids, the presence of a
microstructure is invoked, recording the presence of inherent
material characteristic lengths due to, for instance, the
atomic lattice cells in a metal, the grain size in an alloy, the
persistence and contour length in a polymer, etc. �It is worth
noting that a similar situation also occurs in fluid dynamics,
when inherent characteristic lengths may not be ignored in
models of turbulence.� Although the standard constitutive
equations of continuum mechanics can accommodate large
strains and nonlinear material responses, they do not in gen-
eral include the effects of characteristic material lengths �1�.
The introduction of such information in models of material
behavior is a subtle and difficult problem �2�. Over the years,
several authors addressed these issues with integral-type
nonlocal models, which appear formally to be a continuum
version of atomistic models �3�. However, the mathematical
complexity of such integral-type theories usually restricts
their use to special linear contexts. For more general prob-
lems, the constitutive equations must be approximated by
truncated polynomial expansions of the nonlocal kernels.
The resulting strain-gradient theories �4� are often unsatisfac-
tory because they lead to unphysical short-wave instabilities
�5�. They also introduce higher-order space derivatives; these
require additional boundary conditions, whose physical
meaning is sometimes not obvious �6�. Finally, finding a
simple connection between nonlinear and dispersive effects

in material modeling is an interesting problem per se, be-
cause the balance between these two effects is at the origin
of many fascinating phenomena, and in particular the propa-
gation of solitons and compactons �7�.

In 1987 Rosenau �5� proposed a regularized functional
expansion of the equations for the dynamics of dense lattices
in order to yield the leading effect of dispersion due to a
characteristic length, via a physically reasonable and math-
ematically tractable differential equation. One of the advan-
tages of this equation over other micromechanical or nonlo-
cal approaches is that it models dispersion without increasing
the number of initial or boundary conditions of the usual
wave equation. On the same lines, a three-dimensional phe-
nomenological continuum model of the Rosenau approach
was proposed by Rubin, Rosenau, and Gottlieb �RRG� in
1995 �8�. One aim of this Rapid Communication is to put in
perspective that latter model by showing that it is a special
case of the theory of simple materials in the sense of Trues-
dell and Noll �9�, hence generalizing the original idea of
Rosenau to a large class of material behavior, from nonlinear
elasticity to fluid turbulence. Another objective is to find a
clear and direct way to balance nonlinearity and dispersion in
order to generate solitary waves with compact support in
solids. This balance is attained by relying solely on constitu-
tive arguments, without any resort to reductive asymptotic
expansions; it is then compared �favorably, as it turns out�
with the results obtained by such methods.

Let the motion of a body be described by a relation x
=x�X , t�, where x denotes the current coordinates of a point
occupied by the particle of coordinates X in the reference
configuration at time t. The deformation gradient F�X , t� and
the spatial velocity gradient L�X , t� associated with the mo-
tion are defined by F=Grad X and L=grad v �v=�x /�t�, re-
spectively. �In this paper, grad and div denote, respectively,
the gradient and divergence operators with respect to the
current position x, and Grad and Div denote the correspond-
ing operators with respect to X.� The mathematical theory of
simple materials is well grounded from the mathematical and
thermomechanical points of view �9�; there, the Cauchy
stress T is determined by the whole history of the deforma-
tion gradient,
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T = Gs=0
� �F�t − s�� , �1�

where G is the constitutive functional. We now summarize
the RRG model, which itself follows the axiomatic approach
to continuum mechanics introduced by Green and Naghdi
�11�. Let us introduce the specific entropy per unit mass �,
the specific rate of internal production of entropy �, the en-
tropy flux per unit of present area p, and the specific Helm-
holtz free energy �. The set �� ,� ,p ,� ,T� must satisfy, for all
possible thermomechanical processes, the restrictions com-
ing from the balance of angular momentum, the energy equa-
tion, and a suitable statement of the second law of thermo-
dynamics. The central idea of Rubin et al. �8� is to add terms
��2 ,T2�, modeling material dispersion, to the Cauchy stress
tensor and the free energy, T=T1+T2, �=�1+�2, say, while
the other quantities �� ,� ,p� and the associated constitutive
equations stay unchanged. They show that the balance of
angular momentum and the energy equation then lead to
T2=T2

T and

��̇2 − T2 · D = 0, �2�

respectively, where � is the mass density per unit volume, an
overdot denotes the material time derivative �at X fixed�, and
D= �L+LT� /2 is the stretching tensor. Further, the RRG
model considers that �2 is a single-valued function, �2
=�2���, where ��D ·D is an isotropic invariant; then from
�2� it follows that

T2 = ��2�����grad v̇ + �grad v̇�T + 2LTL − 4D2� . �3�

Our first result is to show that T2 is a special case of the
Cauchy stress � associated with those non-Newtonian
simple fluids denoted in the literature as second-grade fluids
�9,10�,

� = �A1 + 	1A2 + 	2A1
2, �4�

where � is the classical Newtonian viscosity, 	1, 	2 are the
microstructural coefficients �which may be taken as con-
stants or as functions, for example of ��, and the first two
Rivlin-Ericksen tensors A1, A2 are defined by A1=2D, A2

= Ȧ1+A1L+LTA1. Indeed, recall that L= �Grad v�F−1= ḞF−1,
from which it follows that

L̇ = �Grad v̇�F−1 + LF�F−1˙ � = grad v̇ − L2 �5�

�where the last equality comes from the material time deriva-

tive of the identity FF−1=1�. Substituting into Ȧ1= L̇+ L̇T

and into the definition of A2, we find that the tensors �3� and
�4� coincide when �=0 and 	1 �
0�=−	2=��2�. We con-
clude that when T1 is in the material class �1� then the total
Cauchy stress tensor T=T1+T2 of the corresponding RRG
model is also that of a simple material. This observation has
many interesting consequences. For example, if p is the
Lagrange multiplier associated with the constraint of incom-
pressibility �det F=1, tr D=0�, then the classical choice of
the Navier-Stokes stress tensor T1=−p1+�D for the RRG
model leads to those incompressible homogeneous fluids of
second grade for which 	1+	2=0. We note that the equa-
tions of motion associated with those fluids, in the general

and some special cases, have been found �12� to coincide
with the equations derived by other means �asymptotic ex-
pansions, Lagrangian means, average Euler equation, etc.� in
several models of turbulence and shallow water theory �13�.
It is now clear that the presence of the RRG characteristic
length is the reason for such connections.

Let us consider the case of the RRG model when T1
corresponds to a hyperelastic, incompressible, isotropic
solid �9�,

T1 = − p1 + 2���/�I1�B − 2���/�I2�B−1. �6�

Here B=FFT, and �=��I1 , I2� is the strain energy density, a
function of the invariants I1=tr B and I2=tr B−1. Thus the
RRG model is a special case of the so-called solid of second
grade �14,15�. A rectilinear shearing motion is defined by

x = �X + u�Y,t��e1 + Ye2 + Ze3, �7�

where �e1 ,e2 ,e3� is a fixed orthonormal triad. Then B=1
+uY

2e1 � e1+uY�e1 � e2+e2 � e1�, B−1=1+uY
2e2 � e2−uY�e1

� e2+e2 � e1�, A1=uYt�e1 � e2+e2 � e1�, and A2=uYtt�e1 � e2

+e2 � e1�+2uYt
2 e2 � e2. Also, I1= I2=3+uY

2 and �=uYt
2 . The

equations of motion in the absence of body forces �div T
=�v̇� reduce to the three scalar equations �15�

−
�p

�X
+

�T12

�Y
= �

�2u

�t2 ,
�T22

�Y
= 0, −

�p

�Z
= 0, �8�

for which we used �3�, or its equivalent form T2=��2��A2

−A1
2�. The third equation gives p= p�X ,Y , t� and then the

cross differentiation of the first and second equations leads to
p�X ,Y , t�=−2�2uY

2 +��2�uYt
2 + p1�t�X+ p0�t�, where p0, p1 are

arbitrary functions of t alone and �i is the partial derivative
of � with respect to Ii. We are left with a single determining
equation for the displacement u�Y , t�, p1+ �2��1+�2�uY

+��2�uYtt�Y =�utt or, taking the derivative with respect to Y, a
single equation for the strain U�uY,

��̂U + 
̂Utt�YY = �Utt, �̂ = 2��1 + �2�, 
̂ = ��2�. �9�

Here �̂= �̂�U2��0 is the generalized shear modulus of non-
linear elasticity �16,17�; it is a constant �Lamé’s second con-
stant� in linear elasticity, and also in nonlinear elasticity for
the special cases of the neo-Hookean �“geometric” nonlin-
earity� and of the Mooney-Rivlin �“geometric” and “physi-
cal” nonlinearities� forms of the strain energy W �=C10�I1

−3� and C10�I1−3�+C01�I2−3�, respectively�. However, in
general, a nonlinear constitutive equation for the solid yields
a nonconstant �̂; similarly, a general dispersive material be-

havior is attested by a nonconstant function 
̂= 
̂�Ut
2��0

�the case where �̂ and 
̂ are both constants is considered
elsewhere �15��. To illustrate some features of the RRG
model, we make the following constitutive choices: �̂�U2�
=�0+�1U2 and 
̂�Ut

2�=��
0+
1Ut
2�, where �0�0 is the in-

finitesimal shear modulus of the solid. We seek a traveling
wave solution U=V���, �=Y −ct, with vanishing behavior at
infinity, V�n��±� �=0, n
0. Then successive integrations of
the reduced governing equation lead to
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�c4
1�V��4 + 2�c2
0�V��2 + ��1V2 − 2��c2 − �0��V2 = 0.

�10�

For a linear variation of the dispersion free energy �2 with
the isotropic invariant �=D ·D, we have 
1=0 and the fol-
lowing solitary wave solution:

V��� =�2
�c2 − �0

�1
sech��c2 − �0

�c2

� − �0

�
0

, �11�

where �0 is arbitrary. This wave is supersonic with respect to
the speed of an infinitesimal shear wave but c is otherwise
arbitrary. Figure 1 shows its profile for several values of
�c2 /�0.

Now, we know from previous results �18� that �10� has no
compactlike solutions when 
0
1�0. On the other hand,
when 
0=0, 
1�0, it is of the form

�V��4 = ��0 − �1V2�V2 �12�

�where �0=2��c2−�0� / ��c4
1� and �1=�1 / ��c4
1��, the
right-hand side of which has a double zero �at V=0� and two
simple zeros �at V= ±��0 /�1�. This observation alone is suf-
ficient to conclude that �12� admits a compact wave solution.
As it happens, �12� can be integrated in terms of special
functions. Indeed, introducing the hypergeometric function

2F1�a ,b ,c ,z� as solution to the second-order linear differen-

tial equation z�1−z�y�+ �c− �a+b+1�z�y�−aby=0, we find
the following identity:

	 �u2 − u4�−1/4du = 2�u2�1/4
2F1
1

4
,
1

4
,
5

4
,u2� . �13�

We call that function I�u� and observe that it is defined on
the interval 0�u�� /�2, where it increases in a monotonic
way from 0 to 1. Then we manipulate �12� to give

��1/�0V��� = I−1��1
1/4�� − �0�� , �14�

where �0 is arbitrary. Hence we can build a weak solution
with finite support measure �2��1

−1/4, defined by

��1/�0V��� = �I−1��1
1/4�� on �0,�/a� ,

I−1��1
1/4��2� − ��� on ��/a,�2�/a� ,

�15�

and zero everywhere else �see Fig. 2�. �Here a= �4�1�1/4�.
This wave shares some characteristics with the solitary wave
�11�: it is supersonic, its amplitude is proportional to
��0 /�1=�2��c2−�0� /�1, growing with the speed; in con-
trast, its width evolves as �1

−1/4, which is proportional to c.
We emphasize that this compact wave is derived solely on
the basis of constitutive arguments, by taking the generalized
shear modulus �̂ linear in the squared shear �nonlinear ef-
fect� and the free energy density �2 proportional to �2 �dis-
persive effect�. Previous attempts at finding compact waves
relied on ad hoc asymptotic reductive approaches �19� and to
the best of our knowledge, a bulk compact wave has never

FIG. 1. Profile of the solitary wave when �c2 /�0=1.1 �thick
curve�, 2 �thin curve�, and 3 �dashed curve�.

FIG. 2. Profile of the compact wave.
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been generated in the framework of nonlinear elasticity
��1�, p. 91�.

Finally we look at reductive asymptotic expansions of the
strain equation of motion �9�. We consider that the general-
ized shear modulus is slightly nonlinear, �̂=�0�1+�U2�,
where � is a small parameter, and that the dispersion is also

of order �: for instance, when �2 is linear in �, we take 
̂
=2��a2��, where a is a constant with the dimensions of
length. With the standard semicharacteristic variable stretch-
ing transformation �20� U�Y , t�=v�� ,���, where �
= ��0 / ��a2��1/2t and �=Y /a−� are dimensionless variables,
we find that at order �, �9� is the modified Korteweg–de Vries
�KdV� equation

v� + 1
2 �v3�� + v��� = 0, �16�

for which the solitonic solution is a sech wave as in �11�.
When �2 is proportional to �2, we take 
̂ in the form 
̂
=2��2a4 /�0��Ut

2, and find

v� + 1
2 �v3�� + 1

3 �v�
3��� = 0, �17�

an equation similar to the K�3,3� KdV equation �7,21�. Al-
though �16� and �17� might have rich implications, we do not
study them further because the generality of �9� has clearly
been lost in the process of deriving them. In particular, the
traveling equation �10� is just as rewarding, and is obtained
exactly, without the need for a time-stretching variable, a
moving frame, and an asymptotic expansion where higher-
order terms are simply ignored.

In conclusion, we believe that this investigation demon-
strates the usefulness, the versatility, and ultimately the
beauty of the RRG model. Although the RRG model origi-
nates from a microstructural model �5�, it can now be appre-
hended as a purely phenomenological approach to disper-
sion, applicable to the whole class of simple materials. It
overcomes the usual problems of nonlocal theories, it unifies
several results in the literature, and it provides a natural and
detailed study of localization of traveling waves in elastic
materials. Yet several topics raised here merit further scru-
tiny: Is the solitary wave exhibited a soliton? Is the compact
wave a compacton? Also, the analysis relied on specific con-
stitutive equations. Hence for the nonlinear elasticity, the
generalized shear modulus was that of a solid having strain
energy density in the form �17� �=C10J1+C01J2+C20J1

2

+C11J1J2+C02J2
2 where J1= I1−3 and J2= I2−3 �so that �0

=2�C10+C01� and �1=4�C20+C11+C02��. Although this, and
higher-order truncation of the polynomial expansion of � are
highly popular in experimental nonlinear elasticity, in curve
fitting, and in finite element packages, it should be acknowl-
edged that the determination of the “best” Cij is a messy
procedure �22�. Eventually, it might be of greater interest
�and safer� to consider other types of nonlinear strain energy
densities, such as those arising in biological soft tissues,
which incorporate the effect of strain hardening. Similar re-
marks hold for the nonlinear dispersion, for which the free
energy was taken as �2=
0�+ �
1 /2��2.
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