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Abstract

Functionally Graded Materials are inhomogeneous elastic bodies whose properties vary continuously with space. Hence con-
sider a half-space (x2 > 0) occupied by a special Functionally Graded Material made of an hexagonal (6 mm) piezoelectric crystal
for which the elastic stiffness c44, the piezoelectric constant e15, the dielectric constant ε11, and the mass density, all vary propor-
tionally to the same “inhomogeneity function” f (x2), say. Then consider the problem of a piezoacoustic shear-horizontal surface
wave which leaves the interface (x2 = 0) free of mechanical tractions and vanishes as x2 goes to infinity (the Bleustein–Gulyaev
wave). It turns out that for some choices of the function f , this problem can be solved exactly for the usual boundary conditions,
such as metalized surface or free surface. Several such functions f (x2) are derived here, such as exp(±2βx2) (β is a constant)
which is often encountered in geophysics, or other functions which are periodic or which vanish as x2 tends to infinity; one fi-
nal example presents the advantage of describing a layered half-space which becomes asymptotically homogeneous away from
the interface. Special attention is given to the influence of the different inhomogeneity functions upon the characteristics of the
Bleustein–Gulyaev wave (speed, dispersion, attenuation factors, depth profiles, electromechanical coupling factor, etc.)
© 2006 Elsevier SAS. All rights reserved.
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1. Introduction

The wireless communication industry (mobile phones, global positioning systems, pagers, label identification tags,
etc.) fuels most of the current mass production of Surface Acoustic Wave devices (more than 1 billion units/year)
where SAW-based interdigital transducers are used as high-frequency filters. In the race for miniaturization, devices
based on Bleustein–Gulyaev waves (pure shear-horizontal mode) technology have proved more apt for downsizing
than those based on Rayleigh waves (two- or three-partial modes) technology, according to Kadota et al. (2001).

Can the so-called “Functionally Graded Materials”, whose properties vary continuously in space, be used to im-
prove the efficiency of Bleustein–Gulyaev waves? For a 6 mm piezoelectric homogeneous substrate, the classic
solution of Bleustein (1968) and Gulyaev (1969) is quite simple to derive; for a functionally graded substrate, the
corresponding wave solution is in general impossible to determine analytically. In order to make progress, and with
a view to use the eventual results as benchmarks for more complicated simulations, this paper strikes a compro-
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mise between these two extreme situations, and aims at finding in a simple way certain types of functionally graded
substrates for which analytical Bleustein–Gulyaev type of solutions are easily derived. Such a task can be achieved
by making the assumption that for the functionally graded material, the elastic stiffness c44, the piezoelectric con-
stant e15, the dielectric constant ε11, and the mass density ρ, all vary in the same proportion with a single space
variable. This assumption is often encountered in the literature, see for example the recent articles (Jin et al., 2003;
Kwon and Lee, 2003; Wang, 2003; Chen et al., 2004; Kwon, 2004; Ma et al., 2004; Chen and Liu, 2005a, 2005b;
Guo et al., 2005a, 2005b; Ma et al., 2005a, 2005b; Pan and Han, 2005; Sladek et al., 2005; Sun et al., 2005;
Feng and Su, 2006). It is a strong assumption, which can be envisaged to hold for c44, e15, ε11 in certain contexts
(pre-stressed laminae (Cohen and Wang, 1992), elastic bodies subjected to a thermal gradient (Saccomandi, 1999),
continuously twisted structurally chiral media (Lakhtakia, 1994), etc.), but is unlikely to hold for ρ as well. However,
this assumption proves crucial for the derivation of analytical results in terms of “simple” functions such as the poly-
nomial, sinusoidal, and hyperbolic functions. Previous studies have indeed shown that if ρ behaves differently from
the other material quantities, then analytical solutions of the shear-horizontal wave problem involve special func-
tions such as Bessel functions (Wilson, 1942; Bhattacharya, 1970; Maugin, 1983), Hankel functions (Deresiewicz,
1962), Whittaker functions (Deresiewicz, 1962; Bhattacharya, 1970), hypergeometric functions (Bhattacharya, 1970;
Viktorov, 1979; Maugin, 1983), etc. (see the review by Maugin (1983) for some pointers to the wide literature on the
subject); otherwise, numerical and approximate methods are necessary to solve the problem, such as those based on
Laguerre series (Gubernatis and Maradudin, 1987), on a combination of Fast Fourier Transforms and modal analysis
(Liu and Tani, 1994), on Legendre polynomials (Lefebvre et al., 2001), on the WKB approximation (Liu and Wang,
2005), etc.

In short, some generality is lost by taking ρ to behave in the same manner as the other quantities, but some
simplicity and insights are gained, because the resulting exact solutions may serve as benchmarks for more realistic
situations, where for instance a perturbation boundary element method can be used (Azis and Clements, 2001). The
governing equations derived in the course of this paper can also be specialized to the consideration of anti-plane
deformations in the context of piezo-elastostatic problems, where the density plays no role and its eventual spatial
variations need not be specified.

The paper begins the analysis in Section 2 with the derivation of the equations governing the propagation of a
Shear–Horizontal wave in the type of Functionally Graded Material just discussed. In Section 3, a change of unknown
functions leads to the decoupling of the four first-order governing equations into two separate pairs of second-order
differential equations. For certain choices of inhomogeneity, the differential equations have constant coefficients and
the consequences of such choices on the propagation of Bleustein–Gulyaev waves are fully analyzed and are illustrated
numerically by two examples: one where the inhomogeneity is a decreasing exponential function, the other where it
is an inverse quadratic function. The last two sections show that other inhomogeneity functions leading to explicit
results can be generated, not necessarily by seeking differential equations with constant coefficients. Section 4 focuses
on an inhomogeneity function for which the material parameters vary smoothly from a value at the interface to an
asymptotic value at infinite distance from the interface. Section 5 presents one method, presumably among many
others, to generate an infinity of inhomogeneity functions leading to exact Bleustein–Gulyaev solutions.

2. A certain type of functionally graded materials

The Bleustein–Gulyaev wave is a shear horizontal wave, traveling over the surface of a semi-infinite piezoelectric
solid for which the sagittal plane is normal to a binary axis of symmetry. Now consider a half-space x2 � 0 (say),
made of a piezoelectric crystal with 6 mm symmetry (see e.g. Royer and Dieulesaint, 2000) and with continuously
varying properties in the x2-direction. Specifically, the elastic stiffness c44, the piezoelectric constant e15, the dielectric
constant ε11, and the mass density ρ, all vary in the same proportion with depth x2:{

c44(x2), e15(x2), ε11(x2), ρ(x2)
} = {

c◦
44, e

◦
15, ε

◦
11, ρ

◦}f (x2), (2.1)

where c◦
44, e◦

15, ε◦
11, ρ◦ are constants, and f is a yet unspecified function of x2, henceforward called the inhomogeneity

function. Without loss of generality, f is normalized as f (0) = 1.
Now take two orthogonal directions x1, x3 in the plane x2 = 0 such that the symmetry axis is along x3 and consider

the propagation of a Bleustein–Gulyaev wave, traveling with speed v and wave number k in the x1-direction. The as-
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sociated quantities of interest are: the mechanical displacement component u3, the electric potential φ, the mechanical
traction components σ13, σ23, and the electric displacement components D1, D2. They are taken in the form

{u3, φ,σj3,Dj }(x1, x2, t) = {
U3(x2), ϕ(x2), itj3(x2), idj (x2)

}
eik(x1−vt), (2.2)

where U3, ϕ, tj3, dj (j = 1,2) are unknown functions of x2 alone, to be determined from the piezoacoustic equations
and from the boundary conditions.

In the present context, the classical equations of piezoacoustics written in the quasi-electrostatic approximation,

∂σij

∂xj

= ρ
∂2ui

∂t2
,

∂Dj

∂xj

= 0, (2.3)

decouple entirely the anti-plane stress and strain from their in-plane counterparts. The anti-plane equations can be
written as a first-order differential system,[

u′
v′

]
= i

[
0 1

f (x2)
N2

k2f (x2)K 0

][
u

v

]
, where u :=

[
U3
ϕ

]
, v :=

[
t23
d2

]
, (2.4)

and N2, K are the following constant symmetric matrices,

N2 := 1

c◦
44ε

◦
11 + e◦2

15

[
ε◦

11 e◦
15

e◦
15 −c◦

44

]
, K :=

[
ρ◦v2 − c◦

44 −e◦
15−e◦

15 ε◦
11

]
. (2.5)

3. Some simple inhomogeneity functions

In this section, attention is restricted to some inhomogeneity functions for which the piezoacoustic equations turn
into linear ordinary differential equations with constant coefficients.

3.1. Further decoupling of the piezoacoustic equations

With the new vector functions û and v̂, defined as

û(x2) := √
f (x2)u(x2), v̂(x2) := v(x2)/

√
f (x2), (3.1)

the system (2.4) becomes[
û′
v̂′

]
=

[ p
2 1 iN2

ik2K −p
2 1

][
û

v̂

]
, where p := f ′

f
. (3.2)

Now, by differentiation and substitution, an entirely decoupled second-order system emerges:[
û′′
v̂′′

]
= −

[
k2N2K − (

p2

4 + p′
2 )1 0

0 k2KN2 − (
p2

4 − p′
2 )1

][
û

v̂

]
, (3.3)

and two simple ways of finding exact solutions for shear-horizontal wave propagation appear naturally.

• Either (i) solve

p2

4
+ p′

2
= c0, (3.4)

where c0 is a constant. Then the solution û to the second-order equation (3.3)1 with (now) constant coefficients
is easily found. Finally, u follows from (3.1)1 and v from the inversion of (2.4)1,

• Or (ii) solve

p2

4
− p′

2
= c0, (3.5)

where c0 is a constant. Then the solution v̂ to the second-order equation (3.3)2 with (now) constant coefficients
is easily found. Finally, v follows from (3.1)2 and u from the inversion of (2.4)2.
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Table 1
Some simple inhomogeneity functions

c0 p(x2) f (x2)

P0 β2 ±2β exp(±2βx2)

P1 0 2β/(βx2 + 1) (βx2 + 1)2

P2 β2 2β tanh(βx2 + δ)
cosh2(βx2 + δ)

cosh2 δ

P3 β2 2β/ tanh(βx2 + δ)
sinh2(βx2 + δ)

sinh2 δ

P4 −β2 −2β tan(βx2 + δ)
cos2(βx2 + δ)

cos2 δ

P5 −β2 2β/ tan(βx2 + δ)
sin2(βx2 + δ)

sin2 δ

P6 0 −2β/(βx2 + 1)
1

(βx2 + 1)2

P7 β2 −2β tanh(βx2 + δ)
cosh2 δ

cosh2(βx2 + δ)

P8 β2 −2β/ tanh(βx2 + δ)
sinh2 δ

sinh2(βx2 + δ)

P9 −β2 2β tan(βx2 + δ)
cos2 δ

cos2(βx2 + δ)

P10 −β2 −2β/ tan(βx2 + δ)
sin2 δ

sin2(βx2 + δ)

Of course the two possibilities (3.4) and (3.5) do not exhaust the classes of solutions. The last section of this article
shows how infinitely more inhomogeneous profiles can be generated.

Clearly now, if p is solution to (3.4), then −p is solution to (3.5); so that if f is solution to (3.4), then 1/f is
solution to (3.5). The resolution of these two equations is straightforward, and the results are collected in Table 1:
according as to whether c0 is positive, negative, or equal to zero (second column), several functions p(x2) (third
column) and f (x2) (fourth column) are found. The inhomogeneity profile P0 is common to the resolution of (3.4)
and (3.5); profiles P1–P5 result from (3.4) and P6–P10 from (3.5). The quantities β (inverse of a length) and δ (non-
dimensional) are arbitrary, so that the inhomogeneity functions f (x2) in P4 and P5 are essentially the same functions,
and so are the inhomogeneity functions in P9 and P10.

Some of these inhomogeneity functions are often encountered in the geophysics literature, such as the exponential
function P0 or the quadratic function P1. Dutta (1963) used P2 for Love waves; Erdogan and Ozturk (1992) and
Hasanyan et al. (2003) derived P0–P5 in a different (purely elastic) context; P6–P10 appear to be new, presumably
because the preferred second-order form of the equations of motion is usually (3.3)1 rather than (3.3)2 (see Destrade,
2001, for a discussion on this latter point).

The functions found present the advantages of mathematical simplicity and familiarity. Each of them however
presents the inconvenience of describing a somewhat unrealistic inhomogeneity, because each either blows up or
vanishes as x2 → ∞, or blows up or vanishes periodically. These problems can be overcome by considering that they
occur sufficiently far away from the interface, and by focusing on the near-the-surface localization of the wave.

3.2. Exact solution

Here the emphasis is on the complete resolution for the Bleustein–Gulyaev wave in Case (i) (profiles P0–P5). In
Case (ii), the resolution is very similar, and the corresponding results are summarized at the end of this subsection.

First, solve the decoupled, second-order, linear, with constant coefficients, differential equation (3.3)1 for û:

û′′ + (
k2N2K − c01

)
û = 0, (3.6)

with a solution in exponential evanescent form,

û(x2) = e−kqx2Û
0
, �(q) > 0, (3.7)
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where Û
0

is constant and q is an attenuation factor. Then Û
0

and q are solutions to[
k2N2K − (

c0 − k2q2)1
]
Û

0 = 0. (3.8)

The associated determinantal equation is the propagation condition, here[
k2(q2 − 1 − (

v/v◦
T

)2 − c0
)][

k2(q2 − 1
) − c0

] = 0, (3.9)

where v◦
T is the speed of the bulk shear wave in the homogeneous (f ≡ 1) material, given by

ρ◦v◦2
T = c◦

44 + e◦2
15/ε

◦
11. (3.10)

The attenuation factors q1, q2 (say) with positive real part are

q1 =
√

1 + c0/k2 − (
v/v◦

T

)2
, q2 =

√
1 + c0/k2, (3.11)

provided the speed belongs to the subsonic interval

0 <
(
v/v◦

T

)2
< 1 + c0/k2. (3.12)

The smallest of these two quantities (q1) is indicative of the penetration depth. Here, the inhomogeneity affects the
penetration depth in the following manners: for the exponential profile P0 and for the hyperbolic profiles (P2, P3, P7,
P8), the wave is more localized than in the homogeneous case (f ≡ 1); for the trigonometric profiles (P4, P5, P9, P10),
the wave penetrates further into the substrate; for the polynomial profiles (P1, P6), the penetration depth is the same as
in the homogeneous case. Note in passing that the inequality (3.12) puts an upper bound on the possible values of β for
the trigonometric profiles P4, P5, P9, P10 (where c0 = −β2), namely: β2 < k2, which means that the wavelength of
the wave must be smaller than the wavelength of those profiles. These remarks are however preliminary and concern
the behavior of the functions û and v̂ with depth. The behavior of the wave itself is dictated by the functions u and v,
see (3.1). In particular, inequality (3.12) ensures that û(∞) = 0 but, because u = (1/

√
f )û, not necessarily that

u(∞) = 0; this latter condition must be tested a posteriori against each different form of f .

Now the constant vectors Û
1
, Û

2
(say) satisfying (3.8) when q = q1, q2, respectively, are easily computed and the

general solution to (3.6) is constructed as: û(x2) = γ1 e−kq1x2Û
1 + γ2 e−kq2x2Û

2
where γ1, γ2 are constant scalars.

Explicitly,

û(x2) = γ1 e−kq1x2

[ 1
e◦

15
ε◦

11

]
+ γ2 e−kq2x2

[
0
1

]
. (3.13)

Then u follows from (3.1)1 as: u = (1/
√

f )û, and v follows from the substitution of this latter equation into the
inverse of (2.4)1, which is: v = −if N−1

2 u′. In the end, it is found that at the interface,

U3(0) = γ1,

ϕ(0) = e◦
15

ε◦
11

γ1 + γ2,

t23(0) = ik

[(
c◦

44 + e◦2
15

ε◦
11

)(
q1 + f ′(0)

2k

)
γ1 + e◦

15

(
q2 + f ′(0)

2k

)
γ2

]
,

d2(0) = −ikε◦
11

(
q2 + f ′(0)

2k

)
γ2.

(3.14)

Now the usual boundary value problems of Bleustein–Gulyaev wave propagation can be solved. For the metalized
boundary condition, ϕ(0) = 0 and t23(0) = 0. These conditions lead to a homogeneous system of two equations for
the set of constants {γ1, γ2}. That set is non-trivial when the following dispersion equation for the metalized boundary
condition is satisfied for v = vm (say),(

vm

v◦
)2

= 1 + c0

k2
−

[
χ2

(√
1 + c0

k2
+ f ′(0)

2k

)
− f ′(0)

2k

]2

, χ2 := e◦2
15

c◦ ε◦ + e◦2
. (3.15)
T 44 11 15
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Here, the positive quantity χ2 is the (bulk) transverse-wave electromechanical coupling coefficient. Recall that the
classic Bleustein–Gulyaev wave is non-dispersive for a homogeneous metalized half-space. Its speed v◦

m is given by(
v◦
m/v◦

T

)2 = 1 − χ4. (3.16)

Hence the effect of an inhomogeneity of the form found in Table 1 is readily seen from the comparison of the last two
equations.

For the free (un-metalized) boundary condition, t23(0) = 0 and d2(0) = ikε0ϕ(0), where ε0 is the permittivity of
vacuum (see for instance Royer and Dieulesaint, 2000, p. 310). These conditions lead again to a homogeneous system
of two equations for the set of constants {γ1, γ2}. The dispersion equation for the free boundary condition, linking the
wave speed vf (say) to the wave number is now:(

vf

v◦
T

)2

= 1 + c0

k2
−

[
χ2

√
1 + c0/k2 + f ′(0)/(2k)

1 + (ε◦
11/ε0)(

√
1 + c0/k2 + f ′(0)/(2k))

− f ′(0)

2k

]2

. (3.17)

Comparison of vf and vm shows that vf > vm, whatever the choice of f in Table 1; so, by (3.11), the wave penetrates
deeper into the substrate when its surface is not metalized, as is the case for a homogeneous substrate. Recall that for
a homogeneous half-space, the classic Bleustein–Gulyaev wave is non-dispersive for “free” boundary conditions, and
that it travels at speed v◦

f given by(
v◦
f /v◦

T

)2 = 1 − χ4/
(
1 + ε◦

11/ε0
)2

. (3.18)

Note that both vf and vm are such that (3.12) is verified.
In Case (ii) (profiles P0 and P6–P10), it is found that the attenuation factors are still given by (3.11), and that at the

interface

U3(0) =
(

q1 − f ′(0)

2k

)
γ1,

ϕ(0) = e◦
15

ε◦
11

(
q1 − f ′(0)

2k

)
γ1 +

(
q2 − f ′(0)

2k

)
γ2,

t23(0) = ik

[(
c◦

44 + e◦2
15

ε◦
11

)(
1 − v2

v◦2
T

)
γ1 + e◦

15γ2

]
,

d2(0) = −ikε◦
11γ2.

(3.19)

For the metalized boundary condition, the dispersion equation is now:

χ2

(√
1 + c0

k2
− v2

m

v◦2
T

− f ′(0)

2k

)
=

(
1 − v2

m

v◦2
T

)(√
1 + c0

k2
− f ′(0)

2k

)
, (3.20)

and for the free (un-metalized) boundary condition, the dispersion equation is now:

χ2

(√√√√1 + c0

k2
− v2

f

v◦2
T

− f ′(0)

2k

)
=

(
1 − v2

f

v◦2
T

)(√
1 + c0

k2
− f ′(0)

2k
+ ε◦

11

ε0

)
. (3.21)

These equations could be rationalized but this process might introduce spurious speeds. It can be checked that they
coincide respectively with (3.15) and (3.17) for the exponential inhomogeneity function P0, and with (3.16) and (3.18)
for the homogeneous substrate.

3.3. Examples

Consider that the substrate is made of a functionally graded material for which the material properties at the inter-
face x2 = 0 are those of a PZT-4 ceramic (Jaffe and Berlincourt, 1965): c◦

44 = 2.56 × 1010 N/m2, e◦
15 = 12.7 C/m2,

ε◦ = 650 × 10−11 F/m, ρ◦ = 7500 kg/m3. The permittivity of vacuum is taken as: ε0 = 8.854 × 10−12 F/m.
11
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Fig. 1. Influence of a decreasing exponential inhomogeneity function on the wave speed (free and metalized boundary conditions) and on the
electromechanical coupling coefficient.

When the substrate is homogeneous, the Bleustein–Gulyaev wave travels with speeds: v◦
m = 2256.85 m/s and

v◦
f = 2592.65 m/s, for metalized and free boundary conditions, respectively. The surface electromechanical coupling

coefficient K2
S is given by (Royer and Dieulesaint, 2000, p. 296),

K2
S = v◦2

f − v◦2
m

v◦2
f + (ε0/ε

◦
11)v

◦2
m

≈ v◦2
f − v◦2

m

v◦2
f

, (3.22)

the latter approximation being justified in the PZT-4 case. Here, K2
S ≈ 0.242.

In the first example, the inhomogeneity function is decreasing exponential: f (x2) = exp(−2βx2), β > 0 (profile
P0 of Table 1). Then the mechanical displacement U3(x2) varies as: (1/

√
f (x2) ) exp−kq1x2 = exp−k(q1 − β/k)x2,

and it is found here that

q1 − β

k
= χ2

(√
1 + β2

k2
− β

k

)
,

χ2√
1 + β2/k2 + β/k + ε◦

11/ε0
, (3.23)

for metalized and free boundary conditions, respectively. Both quantities are clearly positive and the decay is secured.
The dispersion equations (3.15) and (3.17) give the wave speed in terms of the dimensionless quantity β/k. The
range for this quantity is chosen so that the inhomogeneity function decreases with depth in a slower fashion than
the mechanical displacement for the metalized boundary condition — for the free boundary condition, the wave
speed is so close to the body wave speed (v◦

f = 0.9999998vT ) that the displacement hardly decays at all. In other
words, β/k satisfies: 2β/k < q1 − β/k, where the right hand-side is given by (3.23)1. This is equivalent to: β/k <

χ2/(2
√

1 + χ2) = 0.2015. Fig. 1(a) shows the variations of vm (lower curve) and vf (upper curve) with β/k from 0
(homogeneous PZT-4 substrate) to 0.2. In this range, the inhomogeneity function has no noticeable influence on
the speed of the Bleustein–Gulyaev wave with free boundary conditions, whereas it slows down significantly the
Bleustein–Gulyaev wave with metalized boundary conditions, resulting in an increasing electromechanical coupling
coefficient K2

S (Fig. 1(b)), from 0.242 to 0.324.
For the second example, the inhomogeneity function is inverse quadratic: f (x2) = 1/(βx2 + 1)2, β > 0 (profile P6

of Table 1). Then the mechanical displacement U3(x2) varies as: (1/
√

f (x2)) exp−kq1x2 = (βx2 + 1) exp−kq1x2.
Here the decay is secured when (3.12) is satisfied, which is equivalent to: v < vT , the same condition as in the
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Fig. 2. Influence of an inverse quadratic inhomogeneity function on the wave speed (free and metalized boundary conditions) and on the electro-
mechanical coupling coefficient.

homogeneous substrate. For this profile, c0 = 0 and f ′(0) = −2β , so that the dispersion equations (3.20) and (3.21)
are easily solved. The metalized boundary condition gives:(

vm

v◦
T

)2

= 1 − χ4

4(1 + β/k)2

[
1 +

√
1 + 4

χ2

(
1 + β

k

)
β

k

]2

, (3.24)

and the free boundary condition gives:(
vf

v◦
T

)2

= 1 − χ4

4(1 + β/k + ε◦
11/ε0)2

[
1 +

√
1 + 4

χ2

(
1 + β

k
+ ε◦

11

ε0

)
β

k

]2

. (3.25)

For the purpose of comparison with the first example, Figs. 2(a) and 2(b) display the variations of the wave speeds
with the dimensionless quantity β/k over the same range 0 � β/k � 0.2. They show that the influence of each
inhomogeneity functions is very much the same: here, the electromechanical coupling coefficient increases (from
0.242) to 0.310 instead of 0.324 for the decreasing exponential profile. The present inverse quadratic inhomogeneity
is however more satisfying to consider from a “physical” point of view, because it decreases slower with depth than
an exponential inhomogeneity, and it can thus describe a situation where the wave is confined near the surface while
the material parameters (2.1) vanish at a greater distance.

The next section presents a third example of inhomogeneity function, this time yielding a profile for which the
material parameters neither vanish nor blow-up with distance from the interface.

4. An asymptotically homogeneous half-space

Consider the well-known solution [U(x2),V (x2)]T (say) to the piezoacoustic equations (2.4) in a homogeneous
substrate:

[
U(x2)

V (x2)

]
= γ1e−kηx2

⎡⎢⎢⎣
1

e◦
15/ε

◦
11

ikη(c◦
44 + e◦2

15/ε
◦
11)

⎤⎥⎥⎦ + γ2 e−kx2

⎡⎢⎣
0
1

ike◦
15−ikε◦

⎤⎥⎦ , η :=
√

1 −
(

v

v◦
T

)2

. (4.1)
0 11
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These functions satisfy (2.4) when f ≡ 1 that is,

U ′ = iN2V , V ′ = ik2KU . (4.2)

Now seek a solution [u,v]T to the piezoacoustic equations (2.4) for the functionally graded material in the form:

u = u0

k
U ′ + u1U , v = v0

k
V ′ + v1V , (4.3)

where u0, u1, v0, v1 are yet unknown scalar functions of x2. By differentiation and substitution, it is found that if they
satisfy

u0 = v0/f, u′
0/k + u1 = v1/f, v′

0/k + v1 = f u1, u′
1 = 0, v′

1 = 0, (4.4)

then (2.4) is satisfied. The choice

u0 = 1/
√

f , v0 = √
f , u1 = −β

k
tanh δ, v1 = − β

k tanh δ
, (4.5)

(where β , δ are constants) takes care of (4.4)1,4,5. Then (4.4)2,3 both reduce to(√
f

)′ − (β/ tanh δ) = −(β tanh δ)f, (4.6)

a solution of which is

f (x2) = tanh2(βx2 + δ)

tanh2 δ
. (4.7)

This inhomogeneity function has the sought-after property of never vanishing (if δ > 0) nor blowing-up as x2 spans
the whole half-space occupied by the substrate. It describes a material for which the parameters c44(x2), e15(x2),
ε11(x2), ρ(x2) change smoothly from their initial values c◦

44, e◦
15, ε◦

11, ρ◦ at the interface x2 = 0 to a higher asymptotic
value {c◦

44, e◦
15, ε◦

11, ρ◦}/ tanh2 δ, where δ > 0 is an adjustable parameter. The parameter β can also be adjusted to
describe a not only a slow but also a rapid variation with depth, which would confine the inhomogeneity to a thin
layer near the surface. This latter opportunity was excluded with the profiles of Section 3, because of their blow-up or
vanishing behaviors.

Now the substitution of f into (4.5) and then into the solution (4.3), leads to the following expressions for the fields
at the interface,

U3(0) =
(

η + β

k
tanh δ

)
γ1,

ϕ(0) = e◦
15

ε◦
11

(
η + β

k
tanh δ

)
γ1 +

(
1 + β

k
tanh δ

)
γ2,

t23(0) = ik

[(
c◦

44 + e◦2
15

ε◦
11

)
η

(
η + β

k tanh δ

)
γ1 + e◦

15

(
1 + β

k tanh δ

)
γ2

]
,

d2(0) = −ikε◦
11

(
1 + β

k tanh δ

)
γ2.

(4.8)

The dispersion equation for the metalized boundary condition is a quadratic in η = √
1 − (vm/vT

◦)2:

η

(
η + β

k tanh δ

)(
1 + β

k
tanh δ

)
− χ2

(
η + β

k
tanh δ

)(
1 + β

k tanh δ

)
= 0. (4.9)

At β = 0, the function f in (4.7) is that of a homogeneous substrate (f ≡ 1), and this equation gives: η = χ2, which,
once squared, is (3.16).

The dispersion equation for the free boundary condition is also a quadratic, now in η =
√

1 − (vf /v◦
T )2:

η

(
η + β

k tanh δ

)[
1 + (β/k) tanh δ

1 + β/(k tanh δ)
+ ε◦

11

ε0

]
− χ2

(
η + β

k
tanh δ

)
= 0. (4.10)

At β = 0, this equation gives: η(1 + ε◦ /ε0) = χ2, which, once squared, is (3.18).
11
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Fig. 3. Variation of an asymptotically homogeneous profile with depth for four different values of the dispersion parameter β/k.

Fig. 4. Influence of an asymptotically homogeneous profile on the wave speed (free and metalized boundary conditions) and on the electromechan-
ical coupling coefficient.

Each dispersion equation is a quadratic giving a priori two roots: one tends to η = 0 (and so v = vT ) as β → 0
(homogeneous substrate) and can be ruled out.

For the third example, consider an inhomogeneous substrate whose properties increase continuously according to
(4.7) from those of a PZT-4 ceramic at the interface x2 = 0 to asymptotic values which are 10% greater (tanh δ =
1/

√
1.1 ≈ 0.953). Fig. 3 shows the variations of the inhomogeneity function with depth, for several values of the

parameter β/k: clearly for β/k > 2, the inhomogeneity is confined within a layer near the surface whose thickness
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is less than a wavelength. Fig. 4(a) shows the variations of vm (lower curve) and vf (upper curve) with β/k from 0
(homogeneous PZT-4 substrate) to 2. In this range, the inhomogeneity function again has no noticeable influence on
the speed of the Bleustein–Gulyaev wave with free boundary conditions. However here the speed of the Bleustein–
Gulyaev wave with metalized boundary conditions is always greater than in the homogeneous substrate, resulting in
a smaller electromechanical coupling coefficient K2

S (Fig. 4(b)).

5. More inhomogeneity functions

The previous section presented a method to derive an inhomogeneity function for which exact Bleustein–Gulyaev
solutions are possible, but which did not rely on finding governing equations with constant coefficients as in Section 3.
That method is due in essence to Varley and Seymour (1988) (see also Erdogan and Ozturk, 1992) and it can be
generalized to yield an infinity of such inhomogeneity functions.

First, seek a solution [u,v]T to the piezoacoustic equations (2.4) in the form:

u =
p∑

n=0

un

kp−n
U (p−n), v =

p∑
n=0

vn

kp−n
V (p−n), (5.1)

(thus (4.3) corresponds to p = 1), where un, vn (n = 0, . . . , p) are unknown functions of x2. Differentiate once,
substitute into (2.4), and use (4.2) to get

1

kp

(
u0 − 1

f
v0

)
U (p−1) +

p∑
n=1

1

kp−n

(
u′

n−1

k
+ un − 1

f
vn

)
U (p−n−1) + u′

pU = 0, (5.2)

and

1

kp
(v0 − f u0)V

(p−1) +
p∑

n=1

1

kp−n

(
v′
n−1

k
+ vn − f un

)
V (p−n−1) + v′

pV = 0. (5.3)

Both differential equations are satisfied when the following set of equations is satisfied,

u0 = 1/
√

f , v0 = √
f , u′

p = 0, v′
p = 0,

u′
n−1/k + un = vn/f, v′

n−1/k + vn = f un.
(5.4)

Varley and Seymour (1988) found an infinity of f such that this set can be completely solved. Because there is
little value in reproducing their derivations, the reader is referred to their article for explicit examples. It suffices to
notice that in general the solutions are combinations of trigonometric and/or hyperbolic functions, and that a great
number of arbitrary constants are at disposal for curve fitting. For instance at p = 2, Varley and Seymour present at
least 16 possible forms for f , each involving 5 arbitrary constants. As another example, it can be checked directly
here that the polynomial function

f (x2) = (βx2 + 1)2p, (5.5)

where p is an integer, is also suitable; then,

un = bn(βx2 + 1)−(p+n), vn = an(βx2 + 1)p−n (n = 0, . . . , p), (5.6)

where an and bn are determined by recurrence from a0 = b0 = 1 and

an = − β

2kn
(p − n + 1)(p + n)an−1, bn = p − n

p + n
an (n = 1, . . . , p). (5.7)
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