
Weierstrass’s criterion and compact solitary waves

Michel Destrade*
Institut Jean Le Rond d’Alembert, UMR 7190, CNRS, Université Pierre et Marie Curie, 4 place Jussieu, case 162,

75252 Paris Cedex 05, France

Giuseppe Gaeta†

Dipartimento di Matematica, Università di Milano, Via Saldini, 50, 20133 Milano, Italy

Giuseppe Saccomandi‡

Sezione di Ingegneria Industriale, Dipartimento di Ingegneria dell’Innovazione, Università degli Studi di Lecce, 73100 Lecce, Italy
�Received 19 December 2006; published 17 April 2007�

Weierstrass’s theory is a standard qualitative tool for single degree of freedom equations, used in classical
mechanics and in many textbooks. In this Brief Report we show how a simple generalization of this tool makes
it possible to identify some differential equations for which compact and even semicompact traveling solitary
waves exist. In the framework of continuum mechanics, these differential equations correspond to bulk shear
waves for a special class of constitutive laws.
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I. INTRODUCTION

A compact wave is a robust solitary wave with a compact
support, outside of which it vanishes identically. A compac-
ton is to a compact wave what a soliton is to a solitary wave
with an infinite support; that is, a compacton is a compact
wave that preserves its shape after colliding with another
compact wave. Rosenau and Hyman �1� introduced these
concepts over a decade ago and a substantial number of dif-
ferential equations supporting compact waves has since been
identified and studied.

From the mathematical point of view, the emergence of
such solutions is related to the degeneracy of the differential
equations of motion at certain points, and to the correspond-
ing failure of the uniqueness theorem at these. Indeed, com-
pact waves are a patchwork made by pasting together at de-
generate points the different possible solutions �unique in
between degenerate points� and hence by patching together
nonunique solutions; it follows that they are not analytic so-
lutions, and in this respect they are substantially different
from standard soliton solutions.

Compact waves are weak solutions of differential equa-
tions, which are continuous—in contrast to shock waves—
but have discontinuous derivatives, similarly to acceleration
waves. A simple introduction to compact waves and to com-
pactons can be found in a recent article by Rosenau �2�.

The main objection facing compact waves is that the link
between an adequate partial differential equation and a con-
stitutive law is often tenuous. Indeed, the generic affirmation
that compact waves emerge from a balance between higher
nonlinearity and nonlinear dispersion remains vague and eso-
teric if it is not supported by a clear and rigorous mechanical
derivation of the right equations.

Destrade and Saccomandi �3,4� recently proposed a gen-
eral theory of dispersive nonlinear acoustics and showed
how it is possible to derive exact equations governing the
propagation of compact shear waves in solids with an inher-
ent characteristic length. By applying standard asymptotic
procedures to these exact equations, it is then possible to
justify evolutions equations which are similar to the compac-
ton factory known as the K�m ,n� Korteweg–de Vries
equation.

From the mechanical point of view, these results were
obtained by a careful modeling of the dispersive part of the
Cauchy stress tensor. The corresponding constitutive equa-
tions unify and explain in depth several theories of weakly
nonlocal continuum mechanics, such as the Lagrangian Av-
eraged Navier-Stokes-� theory of turbulence, or the Rubin et
al. �5� theory of inherent characteristic length.

From the mathematical point of view, the emergence of
compact waves is investigated by a simple modification of
Weierstrass’s theory �a useful qualitative tool for single de-
gree of freedom equations in classical mechanics�.

In this Brief Report we show how another class of con-
stitutive assumptions can cause the emergence of compact
waves and even of semicompact waves, which are traveling
solitary waves with a semi-infinite support.

II. A GENERALIZATION OF WEIERSTRASS’S
DISCUSSION

One of the most elegant and powerful tools for the quali-
tative analysis of one-dimensional Lagrangian conservative
motions is Weierstrass’s theory. When an integral of energy
�in a generalized sense� exists, Weierstrass’s theory allows us
to understand whether the motion of our Lagrangian system
is periodic or nonperiodic, simply by looking at the roots of
the potential function.

Let us imagine that our natural Lagrangian system can be
described by a single holonomic parameter q, say. Further-
more, suppose that it is time independent. The energy inte-
gral of such a system is

*Electronic address: destrade@lmm.jussieu.fr
†Electronic address: Giuseppe.Gaeta@mat.unimi.it
‡Electronic address: giuseppe.saccomandi@unile.it

PHYSICAL REVIEW E 75, 047601 �2007�

1539-3755/2007/75�4�/047601�4� ©2007 The American Physical Society047601-1

http://dx.doi.org/10.1103/PhysRevE.75.047601


T�q, q̇� − U�q� = E , �1�

where T is the kinetic energy, U is minus the potential energy
�note the unconventional choice of sign�, and the constant E
is determined by initial conditions.

Recall that, for natural Lagrangian systems, the most gen-
eral form of the kinetic energy is T=a�q�q̇2 /2, where a
=a�q� is a positive function of q only; also, T=0 only if q̇
=0. We will thus assume that �1� is in the form

1

2
a�q�q̇2 − U�q� = E . �2�

It follows that our motion is confined to those configura-
tions where U�q�+E�0. The special configurations q̄ �say�
where U�q̄�+E=0 and U��q̄��0 are called barriers because
they cannot be crossed by the motion of q�t�: they split the
range of possible values for q into allowed and prohibited
intervals. Points with U�q̄�+E=0 and U��q̄�=0 are soft bar-
riers and separate two allowed intervals �see below�.

Solving first �2� for q̇, and then differentiating with re-
spect to t, we find in turn

q̇2 = 2
U�q� + E

a�q�
, �3a�

q̈ =
1

a�q�
U��q� −

a��q�
a2�q�

�U�q� + E� . �3b�

Hence at a barrier q̄ which is a simple root of U+E=0 �that
is, such that U�q̄�+E=0 and U��q̄��0�, we have q̈�0. Such
a barrier is called an inversion point, because the motion
reverses its course after reaching it.

We now separate the variables in �3a� and integrate to find

t = ±�� a�q�
2�U�q� + E�

dq . �4�

At a �soft� barrier which is a double root of U+E=0 �that is,
such that U�q̄�+E=U��q̄�=0�, the integral diverges. Thus a
soft barrier is also called an asymptotic point because it takes
an infinite time to reach it.

III. WAVE PROPAGATION

Now we turn to wave propagation. Consider the case of
semilinear wave equations in the unknown field u=u�x , t�,

utt − c2uxx = F�u� , �5�

where c is a constant and F a nonlinear function of u. Then
for traveling waves of speed v, i.e., for u in the form

u�x,t� = ��z�, z ª x − vt , �6�

we obtain the second-order differential equation

�v2 − c2��� − F��� = 0. �7�

Multiplying by �� and integrating, we find an equation of the
same form as Eq. �3a�, where a is the constant v2−c2 and U
is the antiderivative of F; note that E is now related to the
integration constant.

Weierstrass’s theory tells us that a periodic wave corre-
sponds to the existence of two consecutive inversion points;
that a pulse solitary wave with infinite tails corresponds to
the existense of an asymptotic point followed by an inversion
point; and that a kink solitary wave with infinite tails corre-
sponds to two consecutive asymptotic points; see Peyrard
and Dauxois �6� or Kichenassamy and Olver �7� for similar
discussions.

Consider the case of the following fully nonlinear wave
equations,

utt − c2uxx − cNL
2 �ux

3�x = F�u� , �8�

where cNL is a constant. The traveling wave reduction �6�
yields

�v2 − c2��� − cNL
2 �����3�� = F��� . �9�

Here Weierstrass’s discussion must be modified, sometimes
to dramatic effect.

Take, for instance, the degenerate case v2=c2. In that
case, the first integral of �9� is

����4 = 2
U��� + E

a
, �10�

where U����−�F, E is a constant of integration, and a
=3cNL

2 /2.
We can still conduct an analysis in the manner of Weier-

strass, but we find that the fourth-order power above intro-
duces some new features, not present in mechanical conser-
vative Lagrangian systems. Indeed, now the barriers �̄ are
attainable not only when they are simple roots of U+E=0,
but also when they are double roots. This is the case because
the analog to �4� is here

z = ±��4 a

2�U��� + E�
d� , �11�

and the integral converges for double roots.
Saccomandi �8� gives a detailed discussion on this possi-

bility and explains its consequences by the failure of the
Lipschitz condition, leading to a possible lack of uniqueness,
and eventually to the possibility of compact waves; see De-
strade and Saccomandi �3,4� for examples.

In the present note we study yet another possibility for
Weierstrass’s theory, touched upon by Ferrari and Moscatelli
�9�, Rosenau �10�, and Gaeta et al. �11�; namely, the case of
barriers which are roots of noninteger order to the equation
U+E=0.

For a first glimpse at what may happen in this case, we
consider in turn two examples with roots of fractionary
order.

Example 1. In the first example, we take E=0, a=2, and

U�q� = �q�1 − �q� . �12�

Here we record two barriers: q̄1=0 and q̄2=1. The integral in
�4� yields
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t = − 2��q − q + arcsin�2�q − 1� . �13�

Clearly, both barriers can be reached in finite times: with our
choice of the integration constant, these are t=−� /2 for q̄1
and t=0 for q̄2. From �3� the acceleration is

q̈ =
1 − 2�q

2�q
. �14�

At q̄2=1 the acceleration is not zero, and the motion re-
verses; at q̄1=0, however, the acceleration blows up.

Example 2. In the second example, we take E=0, a=2,
and

U�q� = q4/3�1 − q1/3� . �15�

Here we record two barriers as well, again q̄1=0 and q̄2=1.
We perform the integral in �4� for t� �−3�2,3�2� and solve
it explicitly for q as

q�t� = 	1 −
t2

18

3

. �16�

Clearly, again, the barriers are reached in finite times: q̄1=0
at t= ±3�2 and q̄2=1 at t=0. We also find that the accelera-
tion is given by

q̈ =
1

3
q1/3�4 − 5q1/3� , �17�

making it clear that the barrier q̄2=1 is a configuration asso-
ciated with a finite force, whereas the barrier q̄1=0 is asso-
ciated with an equilibrium. Furthermore, note that the right-
hand side of �17� does not satisfy the Lipschitz condition at
q= q̄1=0. This allows nonuniqueness of the solution, and in
fact we can patch together a compact solitary kink: this is
equal to 1 for t�0, then for 0� t�3�2 it is accelerated to
negative velocity and decreases to reach zero at time t
=3�2, and then stays there for t�3�2; see Fig. 1.

These two examples highlight the complexity and the
richness of the situations arising when considering noninte-
ger barriers.

Let us now turn to a more general �nonfractional� case.
We take E=0, a=2, and

U�q� = q2rV�q2� , �18�

where V, and thus U, has a barrier q̄�0 �V�q̄2�=0�. Then by
Eq. �3b�, the acceleration is

q̈ = rq2r−1V�q2� + q2r+1V��q2� . �19�

We should consider several cases, depending on the value of
r�0.

If 2r�1, then q blows up at the barrier q→0, similarly to
the first example above. For this case we conclude that sub-
linear �2r�1� roots correspond to singular points which can-
not be reached in any way.

If 2r=1 or 2r=2, we recover the already discussed cases
of simple and double roots.

If 2r�2, the integral in �4� diverges and the barrier at
zero cannot be reached in a finite time—it is an asymptotic
point.

If 1�2r�2, however, the integral is finite and the barrier
zero is reached in a finite time. Also, by �19�, q̈=0 at that
barrier, and we thus arrive at an equilibrium configuration
with null velocity, a situation that gives rise to a predica-
ment: will the motion settle on this equilibrium configuration
ad infinitum or will it reverse its course?

In fact, the Cauchy problem is ill posed here, and the
accompanying lack of uniqueness gives us some latitude to
patch together compact waves �similarly to the second ex-
ample above� or semicompact waves, as is seen in the next
section.

IV. SEMICOMPACT SHEAR STRAIN WAVES

Destrade and Saccomandi �3,4� show that the motion of
transverse strain waves in nonlinear dispersive solids is gov-
erned by the equation

�	W�xx + ��Wtt�xx = 
Wtt, �20�

where x is the direction of propagation, W is the transverse
strain, and 
 is the mass density. The constitutive parameters
are 	=	�W2�, the generalized shear modulus of nonlinear
elasticity, and �, the dispersion parameter of Rubin et al. �5�.
For simplicity here, � is taken constant and the strain wave is
linearly polarized, traveling with speed v; see �6�. Then W
=W�x−vt� and �20� leads to
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FIG. 2. Shear stress response obtained by varying the constitu-
tive parameters in �27�. The plots cross the linear stress shear re-
sponse �thin straight line� at K=0, �rJm / �r+n� �indicated by dashed
lines on left graph�, and �Jm.
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FIG. 1. Example 2. Compact solitary kink wave, patched to-
gether using fractional roots in Weierstrass’s discussion, with a po-
tential of the form U�q�=q4/3�1−q1/3�.
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	W + �v2W� = 
v2W . �21�

Next we write 	 in the form

	�W2� = 	0 − ��	0/
��rW2r−1V�W2� + W2r+1V��W2�� ,

�22�

where 	0 is the ground state shear modulus, r�1/2, and V is
an as yet arbitrary function. For bulk waves, v is arbitrary
and here we fix it at the sonic speed v��	0 /
. Then �21� is
exactly of the same form as �19�.

We are thus entitled to consider the possibility of barriers
of noninteger order for the wave. For instance, take V in the
form

V�W2� = �



�
�Jm − W2�n, �23�

where ��0, Jm�0, and n�1 are constants. Integrating �22�
with this choice gives

W�2 = �



�
W2r�Jm − W2�n. �24�

Then the following change of variables and rescaling of the
function

� � ��



�
Jm

r+n−1�1/2

z, 
��� � W�z����/�Jm �25�

give the following nondimensional version of the governing
equation:


̇2 = 
2r�1 − 
2�n. �26�

Now we briefly discuss whether �22� and �23� constitutes
a reasonable shear response for a nonlinear solid. We recall
that the shear stress � �say� necessary to maintain a solid in a
static state of finite shear with amount of shear K �say� is �
=	�K2�K, given here by

�

	0
= K − ��rK2r�Jm − K2�n − nK2r+2�Jm − K2�n−1� . �27�

First we see that K must not be allowed to go too far
beyond �Jm for � to remain positive. In practice, this means
that for a given material we must fix Jm beyond the maximal
shear allowed before its rupture. Note that the actual value of
Jm has no bearing on the existence and characteristics of the
shear wave because it does not appear in �26�.

Second, we remark that the graph of ��K� and the graph
of 	0K �corresponding to a material with a linear shear re-

sponse� cross—independent of �—for K=0, �rJm / �r+n�,
and �Jm. The slopes of the ��K� graph at K=0 and at K
=�Jm are defined �and equal to 	0� when

2r � 1 and n � 2. �28�

�Of course these slopes are also defined at 2r=1 and n=2,
but we leave those special cases aside because they lead to
simple and double roots in Weierstrass’s discussion, already
treated above.� The slope of the ��K� plot at K
=�rJm / �r+n� is always greater than 	0. It follows that be-
tween K=0 and �rJm / �r+n�, the solid is strain softening in
shear, and that between K=�rJm / �r+n� and �Jm, the solid is
strain hardening in shear.

Third, we make sure that the shear response is a mono-
tonically increasing function of K, by taking � small enough
so that the equation ���K�=0 has no root in the �0,�Jm�
interval. Note that the actual value of � does not affect the
nondimensional equation of motion �26�.

Figure 2 displays some examples of shear stress responses
satisfying the requirements just evoked.

Having checked that the shear response is sound, we may
now look for solutions to the nondimensional equation �26�
describing solitary wave solutions to the original equation
�20�; these are homoclinic or heteroclinic solutions to �26�.

Owing to �28�, the barrier 
̄=1 is necessarily an
asymptotic point. Taking r�1 also creates an asymptotic
point barrier 
̄=0, leading to a solitary kink with tails of
infinite extend. However, taking 1/2�r�1 gives a barrier
reachable in a finite time. The result is a semicompact wave,
coming from value 1 at −� and decreasing to zero, which it
reaches in a finite time with zero speed and zero acceleration.
It may then remain at this zero value. For Fig. 3 we took the
case r=3/4, n=3, and chose 
�0�=0 to fix the value of the
integration constant.
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FIG. 3. Semicompact solitary kink wave in a dispersive nonlin-
ear solid with shear stress response given by �27� at r=3/4, n=3.

BRIEF REPORTS PHYSICAL REVIEW E 75, 047601 �2007�

047601-4


