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CREEP, RECOVERY, AND WAVES IN A NONLINEAR
FIBER-REINFORCED VISCOELASTIC SOLID∗

M. DESTRADE† AND G. SACCOMANDI‡

Abstract. We present a constitutive model capturing some of the experimentally observed
features of soft biological tissues: nonlinear viscoelasticity, nonlinear elastic anisotropy, and nonlinear
viscous anisotropy. For this model we derive the equation governing rectilinear shear motion in the
plane of the fiber reinforcement; it is a nonlinear partial differential equation for the shear strain.
Specializing the equation to the quasi-static processes of creep and recovery, we find that usual
(exponential-like) time growth and decay exist in general, but that for certain ranges of values for
the material parameters and for the angle between the shearing direction and the fiber direction,
some anomalous behaviors emerge. These include persistence of a nonzero strain in the recovery
experiment, strain growth in recovery, strain decay in creep, disappearance of the solution after a
finite time, and similar odd comportments. For the full dynamical equation of motion, we find kink
(traveling wave) solutions which cannot reach their assigned asymptotic limit.
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1. Introduction. Many biological, composite, and synthetic materials must be
modeled as fiber-reinforced nonlinearly elastic solids. Hence, the anisotropy due to the
presence of collagen fibers in many biological materials has been studied extensively
within the constitutive context of fiber-reinforced materials by several authors (see,
for example, Humphrey (2002) and the references therein.) In nonlinear elasticity, the
macroscopic response of an anisotropic material is given in terms of a strain-energy
function, which itself depends on a set of independent deformation invariants. This
formulation captures a great variety of phenomena related to the behavior of fiber-
reinforced materials, e.g., the examination of fiber instabilities, using loss of ellipticity
(see Merodio and Ogden (2002), (2003), and the references therein).

Generally speaking, a reinforcement is added to a given material with the aim of
avoiding a possible failure under operating conditions. Therefore it is important to
develop a detailed study showing how to introduce reinforcements into a material in
order to control the possible development of a boundary layer structure. Our goal here
is to provide a first step in this direction. We make several simplifications and ad hoc
assumptions. First, we limit ourselves to the consideration of only one fiber direction
and second, we consider a one-dimensional motion in the bulk of an infinite body.
Here the motion is linearly polarized in a direction normal to the plane containing the
direction of propagation and the direction of the fibers. We acknowledge that more
complex anisotropies, geometries, and couplings arise in biomechanical applications.
For instance, the mechanics of the aorta involves two families of parallel fibers, tri-
axial motions, and blood flow/arterial wall coupling. However, we argue that some
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major characteristics of biological soft tissues are encompassed in the choices of trans-
verse isotropy, of infinite extent, and of a motion governed by an ordinary differential
equation. Indeed the anisotropy due to the presence of one family of parallel fibers
complicates the governing equations to an extent which is only marginally less than
that due to the presence of two families of parallel fibers. Also, soft biological tis-
sues are nearly incompressible, and a (compressive) longitudinal wave is difficult to
observe; it thus make sense to focus on transverse shear motions, which are useful in
imaging technologies. Our third assumption is that the elastic strain energy is the
sum of an isotropic part and an anisotropic part (called a reinforcing model), in order
to model an isotropic base material augmented by a uniaxial reinforcement in the
fiber direction. Albeit strong, this constitutive assumption is now common and used
by many authors (e.g., Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002)). Finally, we assume that the solid is viscoelastic, and
here we assume not only Newtonian viscosity (proportional to the stretching tensor)
but also fiber-oriented (anisotropic) viscosity. That latter assumption is strong but
can be removed from our calculations by taking a constant to be zero. We believe that
it might be useful in modeling the well-documented physiological effect of stretching
training in sport medicine, which is that it affects the viscosity of tendon structures
but not their elasticity (Taylor et al. (1990); Kubo, Kanehisa, and Fukunaga (2002)).

We divide the article into the following sections. Section 2 presents the constitu-
tive model and the derivation of the equation governing the rectilinear shear motion.
As expected, this equation is nonlinear in the shear strain: it is a second-order partial
differential equation, with cubic nonlinearity. To initiate its resolution, we first look
at the quasi-static experiment of recovery in section 3. Then we have a first-order
ordinary differential equation, and we find that it can lead to unusual behaviors when
certain conditions (strong anisotropy, large angle between the shearing direction and
the fibers) are met. The same is true of the case of creep, treated in section 4. Basi-
cally, it turns out that the nonlinearity introduces ranges of material parameters and
angles for which an expected behavior—say, strain growth in creep—can be turned
on its head, and lead to strain decay with time in creep, say. In the course of the
investigation we develop synthetic tools of analysis which highlight the boundaries of
these ranges. They also guide us for the resolution of the full dynamical equation of
motion, which we tackle in section 5 for traveling wave solutions. Again the solution
may behave in an unexpected way, provided that the anisotropy is strong enough and
the fibers are in compression. Finally, section 6 recaps the results and puts them into
a wider context.

2. Basic equations.

2.1. The viscoelastic anisotropic model. We describe the motion of a body
by a relation x = x(X, t), where x denotes the current coordinates of a point occupied
by the particle of coordinates X in the reference configuration at the time t.

We introduce F = ∂x/∂X, the deformation gradient, and C = FTF, the right
Cauchy–Green strain tensor. We focus on incompressible materials for which all
admissible deformations must be isochoric, or equivalently, for which the relation
detF = 1 must hold at all times.

The body is reinforced with one family of parallel fibers. Our first assumption
is that the unit vector a0, giving the fiber direction in the reference configuration, is
independent of X. The stretch along the fiber direction is

√
a0·Ca0 =

√
a · a, where

a = Fa0.
We may now introduce the elastic part of our constitutive model. We consider
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the so-called standard reinforcing model, which is a quite simple generalization to
anisotropy of the neo-Hookean model (Triantafyllidis and Abeyaratne (1983); Qiu
and Pence (1997)). For the standard reinforcing model, the strain-energy density is
given by

(2.1) W =
μ

2

[
(I1 − 3) + γ0(I4 − 1)2

]
, where I1 = tr C, I4 = a0·Ca0 = a · a.

Here μ > 0 is the infinitesimal shear modulus of the isotropic neo-Hookean matrix,
γ0 > 0 is the elastic anisotropy parameter, and the invariant I4 measures the squared
stretch in the fiber direction. Mechanical tests show that the neo-Hookean strain
energy function μ(I1−3)/2 fits uniaxial data rather well for arteries (Gundiah, Ratcliffe,
and Pruitt (2007)), while the anisotropic term γ0(I4 − 1)2 is adequate to describe a
reinforced material which penalizes deformation in the fiber direction (Merodio and
Ogden (2003)).

The spatial velocity gradient L(X, t) associated with a motion is defined as L =
grad v, where v = ∂x/∂t is the velocity, and the stretching tensor D is defined as
D = 1

2 (L + LT). For incompressible materials, tr D = 0 at all times. Newtonian
viscous fluids possess a constitutive term in the form 2νD, where ν is a constant. For
our special solid, we modulate the Newtonian viscosity with an anisotropic term, by
replacing ν with ν[1+γ1(I4−1)], where γ1 > 0 is the viscous anisotropy parameter. We
show in the course of the paper that this simple choice of anisotropic viscosity captures
the essential characteristics of attenuation in soft biological fibrous tissues. According
to Baldwin et al. (2006), ultrasonic measurements of freshly excised myocardium show
that “the attenuation coefficient was found to increase as a function of frequency in
an approximately linear manner and to increase monotonically as a function of angle
of insonification from a minimum perpendicular to a maximum parallel relative to the
direction of the myofibers.”

We are now ready to give the complete Cauchy stress tensor of our viscoelastic,
transversally isotropic material as

(2.2) T = −pI + μ[B + γ0(I4 − 1)a ⊗ a] + 2ν[1 + γ1(I4 − 1)]D,

where the p is the yet indeterminate Lagrange multiplier introduced by the incom-
pressibility constraint, and B = FFT is the left Cauchy–Green tensor.

2.2. Shear motion. We take a fixed orthonormal triad of vectors (i, j, k), and
call X, Y , Z the reference coordinates; hence X = Xi + Y j + Zk. The triad is such
that the unit vector in the fiber direction lies in the XY plane; hence,

(2.3) a0 = cos θi + sin θj

(say), where θ ∈ [0, π] is the angle between the X-axis and the fibers.
We then consider the rectilinear shearing motion,

(2.4) x = X + u(Y, t), y = Y, z = Z,

where the antiplane displacement u is real and finite. Then the components of the
gradient of deformation F and of its inverse are given by

(2.5) F =

⎡
⎣1 U 0

0 1 0
0 0 1

⎤
⎦ , F−1 =

⎡
⎣1 −U 0

0 1 0
0 0 1

⎤
⎦ ,
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Fig. 2.1. Variations of the squared stretch in the fiber direction: (a) with the angle and (b)
with the shear. When I4 > 1, the fibers are in extension; when I4 < 1, they are in compression.

where U = ∂u/∂Y is the amount of shear. The left and right Cauchy–Green tensors
are thus

(2.6) B =

⎡
⎣U

2 + 1 U 0
U 1 0
0 0 1

⎤
⎦ , C =

⎡
⎣1 U 0
U U2 + 1 0
0 0 1

⎤
⎦ ,

respectively, from which the expressions of the invariants I1 and I4 follow,

(2.7) I1 = 3 + U2, I4 = 1 + U sin 2θ + U2 sin2 θ.

Figure 2.1(a) shows the variations of I4 with θ for several values of U between 0 and 1.
When I4 > 1 the fibers are in extension, and when I4 < 1 they are in compression; the
figure shows that this latter behavior occurs in a smaller and smaller angular range,
but is more and more pronounced, as the amount of shear is increased. Conversely,
Figure 2.1(b) shows the variations of I4 with U for several values of θ; when 0 < θ <
π/2, the fibers are always in extension, and when π− tan−1(2) = 2.034 < θ < π, they
are always in compression for 0 ≤ U ≤ 1. We refer to the paper by Qiu and Pence
(1997) for similar figures and closely related discussions.

In the deformed configuration, we find that a = (cos θ + U sin θ)i + sin θj. The
remaining tensors required to compute the Cauchy stress tensor (2.2) are

(2.8) a ⊗ a =

⎡
⎣ (cos θ + U sin θ)2 (cos θ + U sin θ) sin θ 0

(cos θ + U sin θ) sin θ sin2 θ 0
0 0 0

⎤
⎦

and

(2.9) D =
1

2

⎡
⎣ 0 Ut 0
Ut 0 0
0 0 0

⎤
⎦ ,
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so that the nonzero components of T are T33 = −p + μ and

T11 = −p + μ(1 + U2) + μγ0(I4 − 1)(cos θ + U sin θ)2,

T22 = −p + μ + μγ0(I4 − 1) sin2 θ,

T12 = μU + μγ0(I4 − 1)(cos θ + U sin θ) sin θ + ν[1 + γ1(I4 − 1)]Ut.(2.10)

Now the equations of motion div T = ρxtt reduce to the two scalar equations
−px +T12,y = ρutt and −py +T22,y = ρutt. Differentiating the former with respect to
y and the latter with respect to x, and eliminating pxy, we arrive at a single governing
equation for the rectilinear shear motion:

ρUtt = μUyy + μγ0 sin2 θ [U(2 cos θ + U sin θ)(cos θ + U sin θ)]yy(2.11)

+ νUtyy + νγ1 sin θ [UUt(2 cos θ + U sin θ)]yy .

Using the scalings t̃ = μt/ν and ỹ = y/L (where L is a characteristic length to be
specified later on a case-by-case basis), we write this equation in dimensionless form as

εUt̃t̃ = Uỹỹ + γ0 sin2 θ [U(2 cos θ + U sin θ)(cos θ + U sin θ)]ỹỹ(2.12)

+ Ut̃ỹỹ + γ1 sin θ [UUt(2 cos θ + U sin θ)]ỹỹ ,

where ε = ρμL2/ν2. This is the main equation of our study. For convenience we drop
the tildes in the remainder of the paper. We also introduce the functions

f(γ0, U, θ) = 1 + γ0 sin2 θ(2 cos θ + U sin θ)(cos θ + U sin θ),

g(γ1, U, θ) = 1 + γ1U sin θ(2 cos θ + U sin θ),(2.13)

so that (2.13) is now

(2.14) εUtt = [Uf(γ0, U, θ) + Utg(γ1, U, θ)]yy .

3. Nonlinear anisotropic recovery. Our first investigation is placed in the
quasi-static approximation, where we study the influence of elastic anisotropy and
viscous anisotropy on the classic experiment of viscous recovery. We imagine that the
material is sheared and that at t = 0 the shear stress is removed: T12(0) = 0. Here
the characteristic length L is the displacement at t = 0 from which the material will
relax to the unstressed state.

In the quasi-static case, we neglect the inertia term of (2.13) and may thus inte-
grate it twice to give the following first-order ordinary differential equation:

(3.1) Uf(γ0, U, θ) + Utg(γ1, U, θ) = 0.

Here we take the constants of integration to be zero, according to the context of
recovery, as explained above. We then solve the equation as

(3.2)

∫
g(γ1, U, θ)

Uf(γ0, U, θ)
dU = −t + const.,

where the constant is computed so that U(0) = 1.
When θ = 0, the fibers are not active with respect to the deformation, and we

recover the classical result of isotropic viscoelastic recovery: U(t) = e−t.
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Fig. 3.1. Time recovery function when θ = π/2: (a) γ1 = 0 and γ0 = 1, 5, 100; (b) γ0 = 5 and
γ1 = 0.5, 1.5, 2.5. The recovery function for an isotropic solid is also plotted (dotted curve).

When θ = π/2, the anisotropic effects are at their strongest. In that case the
integral above has a compact expression, and we find

(3.3) U

[
1 + γ0U

2

1 + γ0

] 1
2

(
γ1
γ0

−1
)

= e−t.

We now take γ1 = 0 (no anisotropic viscosity) and γ0 = 1, 5, 100 (recall that the fibers
are inextensible in the limit γ0 → ∞). Figure 3.1(a) shows that as the anisotropic
effect becomes more pronounced, the recovery is quicker; in other words, the influence
of elasticity becomes stronger as γ0 increases. Then we fix γ0 at 5, for instance, and
look at the role played by the anisotropic viscosity, by taking in turn γ1/γ0 = 0.5,
1.5, 2.5. We find in Figure 3.1(b) that, as expected, the viscous recovery is slower as
γ1 increases.

When θ �= 0, θ �= π/2, other behaviors arise, which call for a detailed analysis. In
particular, the exponential, or near-exponential, decay toward zero as t → ∞ is not
necessarily ensured, especially when the anisotropic effects are strong and the fibers
are oriented at a large angle θ > π/2. Clearly, Ut = 0 when f = 0, according to (3.2).
Also, Ut < 0 when f and g are of the same sign, and Ut > 0 when f and g are of
opposite signs. These two functions are quadratic in U . If they have no real roots in
U , then they are both of the positive sign and Ut < 0. (This is clearly the case in the
region 0 < θ < π/2.) If they have real roots, then they may change sign, and U might
be an increasing function of t. This happens for f and for g when π/2 < θ < π and

(3.4) γ0 ≥ 4

cos2 θ sin2 θ
, γ1 ≥ 1

cos2 θ
,

respectively. In Figure 3.2, the region C corresponds to the first inequality, where the
delimiting curve has a vertical asymptote at θ = π/2, a vertical asymptote at θ = π,
and a minimum at θ = π/4, γ0 = 16; we recall that Qiu and Pence (1997) showed that
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Fig. 3.2. Recovery: regions where the sign of Ut may change.

when γ0 > 16, “simple shear at certain fiber orientations involves negative shear stress
in the shearing direction for certain positive shears.” The region B corresponds to the
second inequality, where the delimiting curve has a vertical asymptote at θ = π/2 and
an horizontal asymptote at γ1 = 1. In the region A, neither inequality is satisfied.

3.1. Weak anisotropy. First, we take both γ0 and γ1 in region A. This is the
simplest case because f and g are then both positive, and so Ut is always negative
(damped recovery). We took several representative examples in this region (say,
θ = π/4, γ0 = 20, γ1 = 1) and checked, through integration and implicit plotting,
that the graphs are indeed of the same nature as those in Figure 3.1.

3.2. Strong elastic anisotropy. Second, we take γ1 in region A, by fixing it at
γ1 = 1, say. In that region, g > 0 always, and thus the sign of Ut is the opposite of the
sign of f . Then we take γ0 = 20, which is above the minimum of region C. In Figure
3.3, we plot the locus for the values of U as functions of θ such that f(20, U, θ) = 0.
Outside the resulting oval shape, f > 0, and inside, f < 0. We also plotted the line
U = 1, which intersects the oval at θmin = 2.136 and θmax = 2.221. Recall that
U(0) = 1.

When θ > θmax, U(t) starts at 1 and decreases because f > 0 so that Ut < 0; as
U decreases toward 0, Ut tends to zero according to (3.2)1, but takes an infinite time
to do so, according to (3.2)2; hence U = 0 is a horizontal asymptote and the recovery
is “classical”; see plot (i) in Figure 3.3, traced at θ = 2.4 (notice, however, that the
recovery is not exponential because the second derivative of U clearly changes sign as
t increases, in contrast with e−t, traced in dotted lines).

When θmin < θ < θmax, U(t) starts at 1 and then grows until it hits the upper side
of the oval, taking an infinite time to do so; then this upper bound gives a horizontal
asymptotic value, above the initial value (see plot (ii) in Figure 3.3), traced at θ = 2.2.
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Fig. 3.3. Types of time recovery functions for γ0 = 20, γ1 = 1 (strong elastic anisotropy). The
amount of shear U starts at 1 for t = 0. Outside the oval shape, Ut < 0 and U decreases as in (i)
and (iv): decay toward zero; and in (iii): decay toward a value > 0. Inside the oval shape, Ut > 0
and U increases as in (ii): growth toward a value > 1. The recovery function e−t for an isotropic
solid is also plotted (dotted curves).

When θm < θ < θmin, where θm = 2.124 is the angle at which the oval plot has a
vertical tangent, U(t) starts at 1 and then decreases until it hits the upper side of the
oval, below 1 but above 0; then this lower bound gives a horizontal asymptotic value,
above zero (see plot (iii) in Figure 3.3), traced at θ = 2.125.

Finally, when θ < θm, U(t) starts at 1 and then decreases until zero; then this
lower bound gives zero as a horizontal asymptotic value (see plot (iv) in Figure 3.3),
traced at θ = 2.05. Notice that the second derivative changes signs three times as t
increases.

3.3. Strong viscous anisotropy. Third, we take γ0 outside the C region, by
fixing it at γ0 = 1, say. In that region, f > 0 always, and thus the sign of Ut is
the opposite of the sign of g. Then we allow γ1 to be in region B, and thus allow g
(and Ut) to change sign with increasing θ, by taking γ1 = 3.0, say. In Figure 3.4, we
plotted the values of U as functions of θ such that g(3, U, θ) = 0 and obtained the
thick-line shape. Outside the shape, g > 0, and inside, g < 0. We also plotted the
horizontal line U = 1, which intersects the shape at θmin = 2.356 and θmax = 2.820,
and the vertical line θ = θm = 2.186, which is tangent to the shape.

Now when θ < θm or θ > θmax, U(t) starts at 1 and decreases until zero; as
U → 0, the denominator in the integral tends to zero, indicating that it takes an
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curves).

infinite time to do so; hence, zero is a horizontal asymptote in these cases. To draw
Figure 3.4(i) we took θ = 3.0, and for Figure 3.4(iv) we took θ = 2.1; both graphs
show a somewhat classical decay with time.

However, when θmin < θ < θmax, U(t) starts at 1 and then grows because Ut > 0
inside the thick line shape. Eventually U hits the upper face of the shape, where
g = 0; then by (3.1), either Uf = 0 or Ut → ∞. Clearly, the first possibility is
excluded because U �= 0 when it is larger than 1, and f �= 0 when γ0 is outside the C
region. It follows that U grows and hits the upper face of the shape with a vertical
asymptote after a finite time (and then stops because it cannot increase further since
Ut < 0 outside the shape, it cannot remain constant since Ut �= 0 on the shape, and
it cannot decrease since Ut > 0 inside the shape). Figure 3.4(ii) shows such behavior
for U(t), traced at θ = 2.4.

Finally, when θm < θ < θmin, U(t) decays from 1 until it hits the shape from
above after a finite time; see Figure 3.4(iii), traced at θ = 2.2. Notice how quickly
the final value is reached, compared to the isotropic exponential recovery.
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3.4. Strong elastic and viscous anisotropies. In the case where both γ0 and
γ1 are in the region C, any combination and overlaps of the thick curves presented in
Figures 3.3 and 3.4 may arise. The tools presented in the two previous subsections are
easily transposed to those possibilities. A special situation arises when the locus of
f = 0 intersects the locus of g = 0; then, the numerator and the denominator in (3.2)
may have a common factor so that the integrand simplifies and a regular behavior
may appear. This situation is, however, too special to warrant further investigation,
and we do not pursue this line of enquiry.

4. Nonlinear anisotropic creep. Our second investigation is again placed in
the quasi-static approximation, where we now study the influence of elastic anisotropy
and viscous anisotropy on the classic experiment of viscous creep. As the resulting
analysis is similar to that conducted for recovery, we simply outline the main results.

We imagine that the material is sheared and that the shear stress is maintained:
T12(∞) �= 0. Here the characteristic length L is an asymptotic value of the displace-
ment. We neglect the inertial term of (2.13) and integrate it twice to give the ordinary
differential equation

(4.1) Uf(γ0, U, θ) + Utg(γ1, U, θ) = const.,

where we took the constant of the first integration to be zero and the constant of the
second integration to correspond to the applied (constant) shear stress, as is usual in
the creep problem. More specifically, this constant is taken so that U(∞) = 1, and so
is equal to f(γ0, 1, θ); it follows that the equation above can be written as

(4.2) h(γ0, U, θ)(U − 1) + g(γ1, U, θ)Ut = 0,

where h is defined by

h(γ0, U, θ) = [Uf(γ0, U, θ) − f(γ0, 1, θ)]/(U − 1)

= 1 + γ0 sin2 θ[1 + cos2 θ + (U + 1) sin θ(U sin θ + 3 cos θ)].(4.3)

We then solve the equation as

(4.4)

∫
g(γ1, U, θ)

(U − 1)h(γ0, U, θ)
dU = −t + const.,

where the constant is computed so that U(0) = 0. Hence the equations governing
creep are almost identical to those governing recovery, with the difference that f is
now replaced by h.

Here we are mostly concerned with the question of how, if at all, a state of
shear can be reached such that, once removed, the unusual recovery behaviors of
the previous section emerge. Thus we concentrate on strong anisotropic effects, with
emphasis on strong elastic anisotropy (where the new function h is involved). We
traced the regions where g and h, and thus Ut, may change signs and found that
the resulting graph is similar to that of Figure 3.2, with the main difference that the
minimum of region C is now located at θ = 3π/4 and γ0 = 4. Thus unusual behavior
in creep may occur at much lower levels of elastic anisotropy than in recovery (where
the minimum is at γ0 = 16). We recall that Qiu and Pence (1997) showed that when
γ0 > 4, “simple shear at certain fiber orientations involves a nonmonotonic relation
between the shear stress in the shearing direction and the amount of shear.”
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Fig. 4.1. Types of time creep functions for γ0 = 20, γ1 = 1 (strong elastic anisotropy). The
amount of shear U starts at 0 for t = 0. Outside the thick-line shape, Ut > 0 and U increases as
in (i) and (v): growth toward 1, and as in (ii) and (iv): growth toward a value below 1. Inside the
thick-line shape, U decreases as in (iii): decay toward a negative value. The creep function 1 − e−t

for an isotropic solid is also plotted (dotted curves).

4.1. Strong elastic anisotropy. We begin with the case where h plays a major
role, that is, when γ0 is greater than 4. For the purpose of direct comparison with
the recovery problem, we take γ0 = 20 and γ1 = 1, as in section 3.2. Figure 4.1
displays the curve where h(20, U, θ) = 0. Outside the thick-line curve, Ut > 0, and
inside, Ut < 0. The curve intersects the line U = 0 twice, at θmin = 2.136 and at
θmax = 2.221. These are the values at which f = 0 intersects U = 1 in section 3.2 (see
the thin-line shape), because by (4.3), h(20, 0, θmin) = f(20, 1, θmin) = 0 and similarly
h(20, 0, θmax) = f(20, 1, θmax) = 0. We also display the vertical lines θ = θM = 2.664,
where h = 0 intersects U = 1, and θ = θm = 2.042, where h = 0 has a vertical
tangent. Recall that for creep, U(0) = 0.

When θ > θM, U(t) starts at 0 and grows toward 1; then Ut tends to zero according
to (4.2) but takes an infinite time to do so; hence U = 1 is a horizontal asymptote and
the creep is “classical.” See plot (i) in Figure 4.1, traced at θ = 2.7 (the exponential
creep function of isotropic visco-elasticity (1 − e−t) is shown by the dotted line).

When θmax < θ < θM or when θm < θ < θmin, U(t) starts at 0 and then grows
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until it hits the oval shape, taking an infinite time to do so; then this upper bound
gives a horizontal asymptotic value, below 1; see plot (ii) in Figure 4.1, traced at
θ = 2.5, and plot (iv), traced at θ = 2.05.

When θmin < θ < θmax, U(t) starts at 0 inside the oval shape, and thus it decreases
until it hits the lower side of the shape, taking an infinite time to do so; then this
lower bound gives a horizontal asymptotic value, below 0; see plot (iii) in Figure 4.1,
traced at θ = 2.17.

Finally, when θ < θm, U(t) can again grow toward 1; see plot (v) in Figure 4.1,
traced at θ = 2.0. Notice, however, that the concavity of the curve changes as t
increases.

4.2. Strong viscous anisotropy. Here we remark that the function governing
the strength of the viscous anisotropy, namely g, is the same for creep as it is for
recovery. Thus, the region where Ut might change sign because of strong viscous
anisotropy is the region B of Figure 3.1. Also, the locus of points where g = 0 is
typically displayed by the thick-line shape of Figure 3.4, and because g(γ1, 0, θ) = 1 >
0 always, this curve never crosses the abscissa U = 0. It follows that there is only one
situation where viscous anisotropy leads to anomalous creep, when θmin < θ < θmax;
then U(t) starts at zero and grows toward the thick-line shape, which it reaches after
a finite time with a vertical asymptote.

4.3. Prestretch and nonlinear anisotropic creep. Here we show how anoma-
lous creep can be avoided (amplified) by stretching (compressing) the solid prior to
the shear. Hence, instead of (2.4), we consider the motion

(4.5) x = λ− 1
2X + λu(Y, t), y = λY, z = λ− 1

2Z.

The following decomposition of the associated deformation gradient shows that the
solid is stretched by a ratio λ in the Y direction:

(4.6) F = F2F1, where F2 =

⎡
⎣1 U 0

0 1 0
0 0 1

⎤
⎦ , F1 =

⎡
⎢⎣
λ− 1

2 0 0
0 λ 0

0 0 λ− 1
2

⎤
⎥⎦ .

(Note that F2F1 �= F1F2.) The kinematic quantities of section 2.2 are modified
accordingly. In particular,

(4.7) I4 = λ−1 cos2 θ + λ2 sin2 θ + Uλ
1
2 sin 2θ + U2λ2 sin2 θ.

The end result is that the differential equation governing creep is changed from (4.2)
to

(4.8) hλ(γ0, U, θ)(U − 1) + gλ(γ1, U, θ)Ut = 0,

where hλ and gλ are defined by

hλ(γ0, U, θ) = λ2
{
1 + γ0 sin2 θ[2λ2 sin2 θ + 3λ−1 cos2 θ − 1

+ (U + 1) sin θ(U sin θ + 3 cos θ)]} ,
gλ(γ1, U, θ) = 1 + γ1(λ

−1 cos2 θ + λ2 sin2 θ − 1 + Uλ
1
2 sin 2θ + U2λ2 sin2 θ).(4.9)

Figure 4.2 shows the loci of hλ = 0 in the case of a strong elastic anisotropy (γ0 = 30,
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Fig. 4.2. Effect of prestretch on time creep functions for γ0 = 30, γ1 = 1 (strong elastic
anisotropy). The amount of shear U starts at 0 for t = 0. Inside the thick-line shapes, U decreases;
this situation may arise when the solid is not prestretched (λ = 1) or when it is compressed (λ = 0.8).
Outside the thick-line shapes, Ut > 0 and U increases; this situation may arise when the solid is in
extension (λ = 2, λ = 2.7).

γ1 = 1), for several values of λ. The figure clearly shows that the prestretch λ can be
used to control the shape of these curves: if the solid is put in compression first, and
sheared for creep next, then the region of potential anomalous creep is increased; if
it is put under tension, then the area of the region rapidly decreases and eventually
disappears altogether.

5. Nonlinear traveling waves. So far we have looked at how the presence of
elastic and viscous fibers affects some quasi-static processes. Typically, creep and
recovery connect one state of constant shear (initial) to another (final). Now we
examine another class of solutions connecting two constant states of shear, this time
dynamically, by looking for traveling wave (kink) solutions.

The mathematical theory of one-dimensional transverse traveling waves in isotropic
viscoelastic materials with a Kelvin–Voigt type of constitutive equation is well groun-
ded; see, for example, Nishihara (1995) for a clear and complete mathematical ap-
proach, or Jordan and Puri (2005) for a specific and explicit example. A traveling
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wave is a solution to the equations of motion in the form

(5.1) U(Y, t) = U(ξ), ξ = Y − ct,

where c is the constant speed; also, U is such that

(5.2) lim
ξ→−∞

U(ξ) = UL, lim
ξ→∞

U(ξ) = UR,

where UL and UR are distinct constants. In what follows, we focus on the case where
UL = 0, UR = 1. This case is general up to a rigid translation. Here we take the
displacement corresponding to UR as the characteristic length L.

Substituting (5.1) into (3.2), we obtain

(5.3) εc2U ′′ = (Uf − cU ′g)
′′
,

and then by integration,

(5.4) cU ′g =
(
f − εc2

)
U + const.

By the requirement UL = 0, the constant must be zero. By the requirement UR = 1,
we have

(5.5) f(γ0, 1, θ) = εc2.

This equation prompts three remarks.
First, we must ensure that f(γ0, 1, θ) > 0. Recall that, according to (2.13),

(5.6) f(γ0, 1, θ) = 1 + γ0 sin2 θ(2 cos θ + sin θ)(cos θ + sin θ),

and so

(5.7) ∂f(γ0, 1, θ)/∂θ = γ0 sin θ(4 cos3 θ + 9 sin θ cos2 θ − 3 sin3 θ).

In Figure 5.1(a) we plot the variations of [f(γ0, 1, θ)−1]/γ0 with θ, as well as those of
its derivative with respect to θ (scaled to 1/8). Clearly, the function (5.6), viewed as
a function of θ, has an absolute minimum and an absolute maximum. The minimum
is at θ̂, say, such that tan θ̂ is that root of the cubic 4 + 9x− 3x3 = 0 corresponding
to π/2 < θ̂ < π; numerically, θ̂ = 2.1777. Then, solving f(γ0, 1, θ̂) = 0 for γ0, we
find that f(γ0, 1, θ) > 0 when 0 < γ0 < γ̂0 = 18.490; and that when γ0 > γ̂0, there
appears a range for θ where f(γ0, 1, θ) > 0 is not insured. Placing ourselves outside
that possibility, we deduce from (5.5) that, for a given γ0 and a given θ, the wave
travels with speed

(5.8) c = ±
√
f(γ0, 1, θ)/ε.

This is of course expressed in the dimensionless variables of length/L and time×μ/ν.
Turning back, if required, to physical variables, we would find that the wave travels
with the dimensional speed

√
μf(γ0, 1, θ)/ν.

The second remark is that, according to (5.5) and (5.6), the wave (when it exists)
travels with maximum speed at the angle θ̃, say, such that tan θ̃ is that root of the cubic
4 + 9x − 3x3 = 0 corresponding to 0 < θ̃ < π/2; numerically, θ̃ = 1.0910. Hence the
directions of extremal speeds of propagation are always the same, whatever the values
of the constitutive parameters μ, γ0, and γ1. This observation indicates the way for
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Fig. 5.1. (a) Variations with θ of [f(γ0, 1, θ)− 1]/γ0 and of its derivative, showing an absolute

minimum at θ̂ = 2.1777. (b) Variations of −3/ tan θ − 1 with θ, crossing the abscissa line at
θ0 = 1.8926.

an acoustic determination of the fiber orientation: if an experimental measurement of
the shear wave speed can be made in every direction of a fiber-reinforced viscoelastic
nonlinear material, then the fibers are at an angle θ̂ from the direction of the slowest
wave and at an angle θ̃ from the direction of the fastest wave. We recall that for
waves in an isotropic deformed neo-Hookean material, Ericksen (1953) found that the
fastest waves propagate along the direction of greatest initial stretch.

The third remark is that when (5.5) holds,

(5.9) f(γ0, U, θ) − εc2 = γ0U(U − 1) sin3 θ [U sin θ + 3 cos θ + sin θ] .

Then the separation of variables, followed by integration of the first-order differential
equation (5.4), leads to

(5.10)

∫
g(γ1, U, θ)

U(U − 1) sin3 θ[U sin θ + 3 cos θ + sin θ]
dU =

γ0

c
ξ + const.,

where the constant of integration is arbitrary; without loss of generality, we take it to
be such that U(0) = 1/2.

Clearly, critical issues arise when either the numerator or the denominator change
signs (because then U ′ changes sign, and it might not be possible to find a solution
satisfying the requirements (5.2)). We may take care of the numerator’s sign by
considering only elastic anisotropy (γ0 �= 0) and discarding viscous anisotropy (γ1 =
0); then g = 1. For the denominator, however, we note that U sin θ + 3 cos θ + sin θ
can change sign for certain ranges of U and θ. Figure 5.1(b) shows the curve U =
−3/ tan θ − 1; on its left side, the denominator is positive; on its right side, it is
negative. Accordingly, the wave connects 0 to 1 (see Figure 5.2(a)) or is unable
to do so (see Figure 5.2(b)). In that latter case, the wave front grows toward an
asymptotic value which is less than 1; a second solution exists (dotted curve) with 1
as an asymptotic value, but in the ξ → −∞ direction.
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Fig. 5.2. Traveling wave solution for anisotropic elasticity (γ1 = 0): (a) at θ = 1.8, (b) at θ = 2.1.

As a final remark, we note that when γ1 is large enough to allow for the possibility
that g = 0 (strong viscous anisotropy), then a “singular barrier” arises; see Pettet,
McElwain, and Norbury (2000).

6. Discussion. In the course of this investigation on nonlinear anisotropic creep,
recovery, and waves for fiber-reinforced nonlinear elastic materials, we unearthed some
complex mechanical responses. For some range of the constitutive parameters and for
some angle ranges of the fiber arrangement, we saw that unusual and possibly aberrant
behaviors can emerge.

From a mathematical point of view, we gave a detailed explanation of the reasons
for these behaviors, by linking them to the singularities of the determining equations
for the amount of shear.

From the mechanical point of view, we pointed out that nonstandard behaviors
always occur when the angle between the fiber family and the direction of shear is
such that the fibers are compressed; see Figure 2.1. It has been widely demonstrated
that several types of instabilities may develop in the case of fiber contraction; see
the detailed studies by Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002), (2003), (2005a), (2005b), or Fu and Freidin (2004). For
example, Merodio, Saccomandi, and Sgura (2007) recently investigated a nonhomo-
geneous rectilinear shear static deformation for the standard reinforcing model (2.1)
and found nonregular solutions (that is, deformations characterized by a discontinuous
amount of shear) in fiber-contracted materials.

From a numerical point of view, we recall that a simple model, together with a sim-
ple class of solutions, allows a step-by-step control of the simulations. It would indeed
be hard to detect nonstandard behaviors by relying solely on a complex numerical
finite element method (omitting to conduct a simple analytical methodology such as
the one presented in this paper). For example, Holzapfel and Gasser (2001) present a
detailed computational study of some viscoelastic fiber-reinforced nonlinear materials,
but use values for the material parameters and for the angles which place their simu-
lations outside the problematic ranges. Other studies are placed in the framework of
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linear models (even for polymeric materials; see Liu, Kasyanov, and Schoephoerster
(2007)), which fail to capture nonstandard behaviors.

From an experimental point of view, our results suggest some simple yet revealing
protocols. In particular, it would be most valuable to investigate the existence and
the persistence of asymptotic residual shear strains, sustained after the shear stress
is removed, at levels not only below the value at initial time but also above (as in
section 3). So far we have identified only reports of experimental results concerned
with elastomeric materials reinforced with inextensible fibers (and therefore with a
ratio between the shear modulus of the bulk matrix and that of the fibers of several
orders of magnitude), or concerned with moderate angles between the direction of
shear and the fiber direction.

From a biomechanical point of view, the results have meaningful implications for
biological soft tissues. First, the model captures adequately the elastic and the vis-
cous anisotropies of biological materials (Baldwin et al. (2006), Taylor et al. (1990)).
Second, although anomalous creep behaviors might preclude anomalous recovery
behaviors, it is still useful to study the latter, because they might nonetheless arise
in vivo following a stress-driven fiber orientation remodeling (Hariton et al. (2006)).
Third, the effect of the prestretch on nonstandard behaviors is significant theoreti-
cally (section 4.3) as well as practically. (In vivo experiments show that large static
prestretches of tendons reduce the risk of unexpected behaviors; see Kubo, Kanehisa,
and Fukunaga (2002).) Finally, the results of the traveling wave study (section 5)
may eventually lead to an acoustic (elastographic) determination of the fiber angle in
soft tissues, through an efficient, simple, and noninvasive investigation.

Obviously, our results must be improved, and several directions are possible.
Hence, two families of fibers have to be considered to give a better comparison with
in vivo results for soft tissues. Also, the more realistic models of fiber reinforcements
(such as the one proposed by Horgan and Saccomandi (2005) and by Gasser, Ogden,
and Holzapfel (2006)) must be incorporated into the present study, to identify with a
greater precision the range of parameters for which strange behaviors may occur.
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REFERENCES

S. L. Baldwin, K. R. Marutyan, M. Yang, K. D. Wallace, M. R. Holland, and J. G. Miller

(2006), Measurements of the anisotropy of ultrasonic attenuation in freshly excised myocardium,
J. Acoust. Soc. Amer., 119, pp. 3130–3139.

J. L. Ericksen (1953), On the propagation of waves in isotropic incompressible perfectly elastic
materials, J. Ration. Mech. Anal., 2, pp. 329–337.

Y. B. Fu and A. B. Freidin (2004), Characterization and stability of two-phase piecewise-
homogeneous deformations, Proc. Royal Soc. Lond. A, 460, pp. 3065–3084.

T. C. Gasser, R. W. Ogden, and G. A. Holzapfel (2006), Hyperelastic modelling of arterial
layers with distributed collagen fibre orientations, J. Roy. Soc. Interfaces, 3, pp. 15–25.

N. Gundiah, M. B. Ratcliffe, and L. A. Pruitt (2007), Determination of strain energy function
for arterial elastin: Experiments using histology and mechanical tests, J. Biomech., 40, pp. 586–
594.

I. Hariton, G. Debotton, T. C. Gasser, and G. A. Holzapfel (2006), Stress-driven collagen
fiber remodeling in arterial walls, TU Graz Online preprint reports, 68, pp. 1–26.

G. A. Holzapfel and T. C. Gasser (2001), A viscoelastic model for fiber-reinforced composites
at finite strains: Continuum basis, computational aspects and applications, Comput. Methods
Appl. Mech. Engrg., 190, pp. 4379–4430.

C. O. Horgan and G. Saccomandi (2005), A new constitutive theory for fiber-reinforced incom-
pressible nonlinearly elastic solids, J. Mech. Phys. Solids, 53, pp. 1985–2025.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR VISCOELASTIC ANISOTROPY 97

J. D. Humphrey (2002), Cardiovascular Solid Mechanics, Cells, Tissues and Organs, Springer,
New York.

P. M. Jordan and A. Puri (2005), A note on traveling wave solutions for a class of nonlinear
viscoelastic media, Phys. Lett. A, 335, pp. 150–156.

K. Kubo, H. Kanehisa, and T. Fukunaga (2002), Effect of stretching training on the viscoelastic
properties of human tendon structures in vivo, J. Appl. Physiol., 92, pp. 595–601.

Y. Liu, K. Kasyanov, and R. T. Schoephoerster (2007), Effect of fiber orientation on the
stress distribution within a leaflet of a polymer composite hearth valve in the closed position,
J. Biomech., 40, pp. 1099–1106.

J. Merodio and R. W. Ogden (2002), Material instabilities in fiber-reinforced nonlinearly elastic
solids under plane deformation, Arch. Mech., 54, pp. 525–552.

J. Merodio and R. W. Ogden (2003), Instabilities and loss of ellipticity in fiber-reinforced
compressible non-linearly elastic solids under plane deformation, Int. J. Solids Struct., 40,
pp. 4707–4727.

J. Merodio and R. W. Ogden (2005a), Mechanical response of fiber-reinforced incompressible
nonlinear elastic solids, Int. J. Nonlinear Mech., 40, pp. 213–227.

J. Merodio and R. W. Ogden (2005b), On tensile instabilities and ellipticity loss in fiber-reinforced
incompressible nonlinearly elastic solids, Mech. Res. Comm., 32, pp. 290–299.

J. Merodio, G. Saccomandi, and I. Sgura (2007), The rectilinear shear of fiber-reinforced incom-
pressible non-linearly elastic solids, Int. J. Non-Linear Mech., 42, pp. 342–354.

K. Nishihara (1995), Stability of traveling waves with degenerate shock for systems of one-
dimensional viscoelastic model, J. Differential Equations, 120, pp. 304–318.

G. J. Pettet, D. L. S. McElwain, and J. Norbury (2000), Lotka-Volterra equations with chemo-
taxis: Walls, barriers and travelling waves, IMA J. Math. Control Inform., 17, pp. 395–413.

G. Y. Qiu and T. J. Pence (1997), Remarks on the behavior of simple directionally reinforced
incompressible nonlinearly elastic spheres, J. Elasticity, 49, pp. 1–30.

D. C. Taylor, J. D. Dalton, A. V. Seaber, and W. E. Garrett (1990), Viscoelastic properties
of muscle-tendon units. The biomechanical effects of stretching, Amer. J. Sports Med., 18,
pp. 300–309.

N. Triantafyllidis and R. Abeyaratne (1983), Instabilities of a finitely deformed fiber-reinforced
elastic material, ASME J. Appl. Mech., 50, pp. 149–156.


