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Abstract

We present a phenomenological approach to dispersion in nonlinear elasticity. A simple, thermomechanically sound,
constitutive model is proposed to describe the (non-dissipative) properties of a hyperelastic dispersive solid, without
recourse to a microstructure or a special geometry. As a result, nonlinear and dispersive waves can travel in the bulk of
such solids, and special waves emerge, some classic (periodic waves or pulse solitary waves of infinite extend), some exotic
(kink or pulse waves of compact support). We show that for incompressible dispersive power-law solids and fourth-order
elasticity solids, solitary waves can, however, only exist in the case of linear transverse polarization. We also study the
influence of pre-stretch and hardening. We provide links with other (quasi-continuum, asymptotic) theories; in particular,
an appropriate asymptotic multiscale expansion specializes our exact equations of motion to the vectorial MKdV equa-
tion, for any hyperelastic material.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The interplay of short- and long-range interactions in a physical phenomenon leads to the existence of
coherent structures that may play an important role in the determination of the dynamical and thermodynam-
ical properties of real materials. That is why highly sophisticated nonlinear lattice models taking account of
long-range interactions have been extensively used to investigate the complex behaviour of many materials,
from crystalline solids to rubber-like elastomers. These models lead to major achievements in the study of
those phenomena where inherent characteristic lengths are a fundamental ingredient of the mechanical behav-
iour, such as fracture mechanics or nano-structures (carbon nanotubes or bio-polymers).

The mathematical models of atomic lattices involve large nonlinear systems of ordinary differential equa-
tions and their treatment requires an enormous computational effort. Moreover, it is hard to conceive that
such equations may be amenable to a simple, yet detailed, mathematical analysis. On the other hand, standard
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continuum theories – which assume that the lattice parameter is equal to zero – are more appealing than their
discrete counterparts because they provide a powerful synthetic tool of analysis, description, and prediction.
Their weakness is that they become all but useless at short wavelengths. (A well-known example of this flaw is
recalled below.) Hence the quest for quasi-continuum models, which generalize standard continuum mechanics
to incorporate characteristic material lengths.

A well-known example of quasi-continuum model is the so-called strain-gradient elasticity theory, which
incorporates higher derivatives of the displacement. This theory is clearly connected with the higher terms
in the naı̈ve (Taylor) expansion in terms of small h of a lattice. To reveal this connection, let us consider
the vibration of a single 1-D lattice, via the following Hamiltonian
H ¼
X

n

_y2
nðtÞ þ P

yn � yn�1

h

� �h i
; ð1:1Þ
where yn is the displacement from equilibrium of the nth particle, h is the equilibrium inter-particle distance,
and P is the inter-particle potential. The equations of motion derived from (1.1) are
un;tt ¼ ½T ðunþ1Þ þ T ðun�1Þ � 2T ðunÞ�=h2; ð1:2Þ

where un = (yn � yn�1)/h and T(Æ) = P 0(Æ)/h. The continuum limit of this equation, up to O(h4), is
utt ¼ ½T ðuÞ�xx þ
h2

12
uxxxx: ð1:3Þ
Here it is the last term (fourth-derivative with respect to space) which is usually hailed as being the first cor-
rection needed to account for the dispersive effects due to discreteness.

Mindlin [1] introduced phenomenological strain-gradient theories of continuum mechanics in the early
1960s; Green and Rivlin [2] extended them to include strain-gradients of any order; and Toupin and Gazis
[3] established a rigorous correspondence between strain-gradient theories and atomic lattices. Eq. (1.3) pre-
sents an example of this connection. This equation is actually quite popular in all those applications of con-
tinuum mechanics where inherent characteristic lengths of materials may not be neglected, even though it is
associated with several unpleasant problems. For instance, because of the presence of a fourth-order space
derivative term, additional boundary conditions are required. Also, the initial-value problem for (1.3) is ill-
posed. Indeed, the associated dispersion relation is
x2

c2
¼ K2 � h2

12
K4; ð1:4Þ
in the linear case, where c is the speed of sound, x is the frequency, and K is the wave number. Clearly here,
instability develops at short wavelengths (when K2h2 > 12). Rosenau [4] overcame this problem by starting
from the exact dispersion relation for the linear discrete system (1.2), that is
x2

c2
¼ 4

h2
sin2ðhK=2Þ; ð1:5Þ
to deduce a regularizing expansion in the parameter h,
x2

c2
¼ K2

1þ h2K2=12
: ð1:6Þ
It is clear that Eqs. (1.4) and (1.6) are equivalent at large wavelengths (small K), but not at short wavelengths
(large K), where the latter remains bounded. Now rewrite the continuum limit of (1.2) as
utt ¼ LAD2½T ðuÞ�; where D � ox; LA � 1þ h2

12
D2 þ H 4

360
D4 þ � � � ð1:7Þ
Then observe that LA is an invertible Schrodinger operator, with
L�1
A ¼ 1� h2

12
D2 þ h4

240
D4 þ � � � ð1:8Þ
Applying the operator L�1
A to both sides of (1.7) gives, up to O(h4), the equation
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utt ¼ ½T ðuÞ�xx þ
h2

12
uxxtt: ð1:9Þ
In the linear limit, this equation possesses the (bounded) dispersion relation (1.6). Also, the Cauchy problem
for this equation is well-posed and we do not require additional boundary conditions [9].

Rubin et al. [10] elaborated a phenomenological 3D counterpart to the regularization procedure of Rose-
nau, by modifying the Cauchy stress tensor T and the free energy w to include dispersive effects, while keeping
the other thermomechanical entities (the entropy, the internal production of entropy, and the entropy flux)
unchanged. Destrade and Saccomandi [7,8] recently showed that the material model of Rubin, Rosenau,
and Gottlieb falls within the theory of simple materials, which is a theory where the Cauchy stress tensor
depends only on the history of the deformation gradient. The consequence is that it is possible to introduce
inherent characteristic lengths without having to introduce exotic concepts such as the concept of hyperstress,
necessary to deal with strain-gradient theories.

The aim of the present paper is to provide a general treatment for the propagation of large amplitude trans-
verse bulk waves in the framework of a phenomenological theory. Hence we aim at generalizing the landmark
studies of Gorbacheva and Ostrovsky [5] and of Cadet [11–13], which presented results for the continuum limit
of a one-dimensional lattice with elastic bonds under longitudinal stress. Their results were obtained only for a
special law of the elastic bond and for a single progressive wave (in a continuum KdV limit of the lattice). Here
we consider a general constitutive law for the strain-energy of the material and we also consider the possibility
of nonlinear dispersion. Thus we expect to be able to extend the results of Gorbacheva and Ostrovsky to Mur-
naghan’s materials, to Ogden’s materials, and to many other popular phenomenological response functions.
Focusing on incompressible solids, and using the methods developed by Destrade and Saccomandi [6,8], we
present the governing equations in Section 2 and derive in Section 3 a single complex wave equation for finite-
amplitude transverse principal waves, valid for any dispersive solid. In Section 4 we specialize the equation to
the case of a strain-hardening power-law solid, and discuss the influence of polarization, dispersion, pre-
stretch, and strain-hardening. We find some exotic solutions such as pulses or kinks with infinite or even com-
pact support. However, the analysis soon reveals that these localized solutions are the exception rather than
the rule. The analysis is exact and does not rely on regularized expansions. When we do perform such an
expansion (Section 5) we recover, within an appropriate asymptotic limit, a ‘‘vector Modified Korteveg–deVries
equation’’ (MKdV).

2. Governing equations

Let the motion of a body be described by x = x(X, t), where x denotes the current coordinates of a point
occupied at time t by the particle which was at X in the reference configuration. The associated deformation

gradient is F(X, t) � ox/oX and the spatial velocity gradient is L(X, t) � ov/ox, where v = ox/ot is the velocity
vector. We consider a material whose mechanical behaviour is described by a given Cauchy stress tensor, TE

say. Standard continuum theories (such as the linear theory of elasticity or the Navier–Stokes equations of
fluid mechanics) are intrinsically size-independent; to overcome this shortcoming we modify the standard Cau-
chy stress tensor TE so that the equation for the full Cauchy stress tensor is
T ¼ TE þ TD; ð2:1Þ
where the new stress tensor term, TD, is introduced to take into account dispersive effects. Guided by preli-
minary work [6,8], we take it in the form
TD ¼ aðD �DÞ½A2 � A2
1�; ð2:2Þ
where D is the stretching tensor, A1 and A2 are the first two Rivlin–Ericksen tensors,
D � ðLþ LTÞ=2; A1 � 2D; A2 � _A1 þ A1Lþ LTA1; ð2:3Þ
and the dispersion material function a = a(D Æ D), must be positive due to thermodynamics restrictions.
It turns out that the term (2.2) is exactly the one proposed by Rubin et al. in [10], and that TD is a special

case of the extra Cauchy stress tensor associated with a non-Newtonian fluid of second grade, which is
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mA1 þ a1A2 þ a2A2
1; ð2:4Þ
in general, where m is the classical viscosity and a1, a2 are the microstructural coefficients. Note that (2.2) is of
the same form as (2.4) when m = 0 and a1 + a2 = 0; here the first equality means that the material is non-dis-

sipative, and the second makes the model compatible with the laws of thermodynamics, see Fosdick and Yu
[14] for details. (If we let m 5 0, then we have the possibility to include dissipation as in the classical Navier–
Stokes theory, but we do not pursue that alley here.) The coincidence between (2.2) and the model of Rubin
et al. is completed once we identify the dispersion material function a with the derivative of the Helmholtz free
energy w which they introduced to model dispersion:
a ¼ w0ðD �DÞ: ð2:5Þ

Now we restrict our attention to homogeneous, isotropic, compressible elastic solids. The response of such
materials from an undeformed reference configuration is described by the constitutive relation
TE ¼ I2ffiffiffiffi
I3

p oR
oI2

þ
ffiffiffiffi
I3

p oR
oI3

� �
Iþ 2ffiffiffiffi

I3

p oR
oI1

Bþ 2
ffiffiffiffi
I3

p oR
oI2

B�1; ð2:6Þ
where I is the identity tensor, B is the left Cauchy–Green strain tensor defined by B = FFT , and the strain-
energy function R is a function of the first three invariants I1, I2, I3 of B, defined in turn by
I1 ¼ trB; I3 ¼ det B; I2 ¼
1

2
½I2

1 � trðB2Þ� ¼ I3trðB�1Þ: ð2:7Þ
When the material is incompressible, det F = 1 at all times (every motion is isochoric), and we replace (2.6)
with
TE ¼ �pIþ 2R1Bþ 2R2B�1; ð2:8Þ

where now R = R(I1, I2) only (because I3 = 1 at all times), p is the Lagrange multiplier due to the incompress-
ibility constraint, and Ri � oR/oIi.

For the rest of the paper, we focus on incompressible solids and we try to work in all generality for the
elastic part of the Cauchy stress tensor. For applications and illustrative examples, we shall consider for
instance the power-law model proposed by Knowles [15],
R ¼ l
2b

1þ b
n
ðI1 � 3Þ

� �n

� 1

� �
; ð2:9Þ
where l > 0 is the infinitesimal shear modulus, and b > 0, n > 0 are material constants. The neo-Hookean
model, for which the generalized shear modulus is constant, corresponds to the case n = 1. The material mod-
elled by (2.9) is softening in simple shear when n < 1 and it is hardening in simple shear when n > 1; hence
Raghavan and Vorp [16] recently modelled the elasticity of aortic abdominal aneurysms by taking n = 2; also,
on letting n!1 we find Fung’s exponential strain-energy density, widely used to describe soft biological tis-
sues. We also mention models which are popular in the so-called weakly nonlinear elasticity theory, based on
truncated polynomial expansions of the strain-energy density. For instance, finite element packages often pro-
pose a polynomial strain-energy potential; the second degree version of this potential is
R ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ þ C20ðI1 � 3Þ2 þ C02ðI2 � 3Þ2 þ C11ðI1 � 3ÞðI2 � 3Þ; ð2:10Þ

where the Cij are five material parameters to be adjusted for optimal curve fitting. Note that this strain-energy
density coincides with the power-law n = 2 model when I1 = I2. Another important model comes from the
nonlinear acoustic literature, where the strain-energy function is expanded up to the fourth order in the strain
in order to reveal nonlinear shear waves. In that framework, Murnaghan’s expansion [17] is often used:
R ¼ kþ 2l
2

i2
1 � 2li2 þ

lþ 2m
3

i3
1 � 2mi1i2 þ ni3 þ m1i4

1 þ m2i2
1i2 þ m3i1i3 þ m4i2

2; ð2:11Þ
where k, l are the Lamé moduli, l, m, n are the third-order moduli, and m1, m2, m3, m4 are the fourth-order mod-
uli. Here we used the first three principal invariants i1, i2, i3 of E, the Green–Lagrange strain tensor; they are
related to the first three principal invariants I1, I2, I3 by the relations,
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I1 ¼ 2i1 þ 3; I2 ¼ 4i1 þ 4i2 þ 3; I3 ¼ 2i1 þ 4i2 þ 8i3 þ 1: ð2:12Þ

When the material is incompressible, i.e., the relative portion of energy stored in compression is negligible,
Hamilton et al. [18] proposed the following reduced version of the expansion (2.11),
R ¼ �2li2 þ ni3 þ m4i2
2: ð2:13Þ
Similarly, in the examples we specialize the dispersion material function of (2.2) and (2.5) to the following sim-
ple form,
a ¼ qb0 þ qb1ðD �DÞ; so that w ¼ qb0ðD �DÞ þ q
b1

2
ðD �DÞ2; ð2:14Þ
where b0 and b1 are positive material constants.

Remark 1. We emphasize that although the stretching tensor D and its objective time derivative
appear explicitly in the expression (2.2), the dispersive stress tensor TD nonetheless does not contribute to
dissipation. In that respect, its action is analogue to a gyroscopic force term in classical mechanics.
Remark 2. That TD gives a constitutive equation compatible with the class of simple materials is a hap-
penstance. If we were to consider further terms in the approximation of the discrete linear dispersion rela-
tion (1.5), this property would no longer be true. Hence, to approximate (1.5) to order O(h6), it is
necessary to introduce the gradient of the strain. Then, the quasi-continuum modelling of the material
has to turn to more complex theories and the mathematical simplicity and feasibility of the present model
is lost.

Remark 3. We note that the regularized Eq. (1.9) of Rosenau, and the constitutive model (2.1) both involve
derivatives with respect to time, and are thus mainly suitable to study weak-nonlocality in the framework of
wave propagation.

Remark 4. We focus mostly on incompressible solids because it is a convenient way to bypass the problem of a
coupling between transverse and longitudinal waves, and to build a general three-dimensional generalization
of the one-dimensional lattice theory used by Gorbatcheva and Ostrosky [5], where transverse waves were con-
sidered coupled to a longitudinal static deformation (note that Cadet [11,13] considered a lattice model with
longitudinal/transverse wave coupling.) In compressible materials, transverse waves are in general coupled to
the longitudinal wave, except for those special forms of the strain-energy density function which satisfy
R1 + 2R2 + R3 = const., see the survey [19] for details. The fourth-order elasticity model (2.13) clearly fits into
that category.
3. Finite amplitude waves in incompressible solids

In this section we consider the following class of motions
x ¼ k�
1
2X þ uðz; tÞ; y ¼ k�

1
2Y þ vðz; tÞ; z ¼ kZ; ð3:1Þ
where k is the pre-stretch in the Z-direction. These are motions describing a transverse wave, polarized in the
(XY) plane, and propagating in the Z-direction of a solid subject to a pure homogeneous equi-biaxial pre-
stretch along the X, Y, and Z axes, with corresponding constant principal stretch ratios k�

1
2; k�

1
2, and k, respec-

tively. Here u and v are yet unknown scalar functions of z and t.

3.1. Equation of motion

The geometrical quantities of interest are the left Cauchy-Green strain tensor B and its inverse B�1, given
by
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k�1 þ k2u2
z k2uzvz k2uz

k2uzvz k�1 þ k2v2
z k2vz

k2uz k2vz k2

2
64

3
75;

k 0 �kuz

0 k �kuz

�kuz �kvz kðu2
z þ v2

z Þ þ k�2

2
64

3
75; ð3:2Þ
respectively, where the subscript denotes partial differentiation. The first two invariants of strain are thus
I1 ¼ 2k�1 þ k2 þ k2ðu2
z þ v2

z Þ; I2 ¼ 2kþ k�2 þ kðu2
z þ v2

z Þ; ð3:3Þ

and they are clearly functions of u2

z þ v2
z only, which itself depends on z and t only. The kinematical quantities

of interest are A1, A2
1, and A2, given by
0 0 uzt

0 0 vzt

uzt vzt 0

2
64

3
75;

u2
zt uztvzt 0

uztvzt v2
zt 0

0 0 u2
zt þ v2

zt

2
64

3
75;

0 0 uztt

0 0 vztt

uztt vztt 2ðu2
zt þ v2

ztÞ

2
64

3
75; ð3:4Þ
respectively. Hence we find that D Æ D, and thus a and w, are functions of u2
zt þ v2

zt only:
D �D ¼ 1

2
ðu2

zt þ v2
ztÞ: ð3:5Þ
Now the equations of motion, in the absence of body forces, are given in current form as: div T = qo2x/ot2,
where q is the mass density. For an incompressible material, they read
� op
ox
þ oT 13

oz
¼ qutt; � op

oy
þ oT 23

oz
¼ qvtt;

oT 33

oz
¼ 0: ð3:6Þ
Differentiating these equations with respect to x, we find pxx = pyx = pzx = 0, so that px = q1(t), say. Similarly,
by differentiating the equations with respect to y, we find py = q2(t), say. Now the first two equations reduce to
�q1ðtÞ þ ðQuzÞz þ ðauzttÞz ¼ qutt; �q2ðtÞ þ ðQvzÞ þ ðavzttÞz ¼ qvtt; ð3:7Þ
and the third equation determines p. Here, Q ¼ Qðu2
z þ v2

z Þ is the generalized shear modulus, defined by
Q ¼ 2ðk2R1 þ kR2Þ; ð3:8Þ

and a ¼ aðu2

zt þ v2
ztÞ is the material function describing dispersive effects. From the generalized shear modulus, it is

possible to derive the shear stress-shear strain law for the motion of an incompressible material. Strong experi-
mental evidence – at least for rubber-like materials – suggests that Q > 0 for any isochoric deformation [20].

Following Destrade and Saccomandi [6], we take the derivative of Eq. (3.7) with respect z, we introduce the
strains U � uz, V � vz and the complex function W = U + iV, and we recast Eq. (3.7) as the following single
complex equation,
ðQW Þzz þ ðaW ttÞzz ¼ qW tt; ð3:9Þ
where Q is now a function of U2 + V2 alone: Q = Q(U2 + V2), and a is now a function of U 2
t þ V 2

t alone:
a ¼ aðU 2

t þ V 2
t Þ.

It is convenient to decompose the complex function W into its modulus X (say) and its argument h (say),
W ðz; tÞ ¼ Xðz; tÞeihðz;tÞ; so that Q ¼ QðX2Þ; a ¼ aðX2
t þ X2h2

t Þ: ð3:10Þ
Here X is the strain wave amplitude and h is the angle of polarization. Note that the combinations of (3.8) and
(3.3) and of (2.5) and (3.5) give the relations:
Q ¼ 2
dR

dðX2Þ
; a ¼ 2

dw

dðX2
t þ X2h2

t Þ
: ð3:11Þ
3.2. Travelling transverse waves

Now we focus on travelling wave solutions in the form
W ¼ W ðsÞ ¼ XðsÞeihðsÞ; where s ¼ z� ct; ð3:12Þ
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c being the speed. This ansatz reduces (3.9) to (QW)00 + c2(aW00)00 = qc2W00. We integrate it twice, taking each
integration constant to be zero in order to eliminate the rigid and the homogeneous motions. We end up with a
vector nonlinear oscillator,
ðQ� qc2ÞW þ c2aW 00 ¼ 0: ð3:13Þ
Then, separating the real part of this equation from the imaginary part gives
½QðX2Þ � qc2�Xþ aðc2X02 þ c2X2h02Þc2ðX00 � h02XÞ ¼ 0;

ðX2h0Þ0 ¼ 0:
ð3:14Þ
We integrate the latter equation to h 0 = IX�2, where I is a constant, and we substitute into the former equation
to get
½QðX2Þ � qc2�Xþ aðc2X02 þ c2I2X�2Þc2ðX00 � I2X�3Þ ¼ 0: ð3:15Þ
Multiplying across by X 0, and using the connections (3.11), we find the energy first integral,
RðX2Þ � 1

2
qc2X2 þ wðc2X02 þ c2I2X�2Þ ¼ E; ð3:16Þ
where E is a constant.
Now a standard analysis using phase-plane theory [5] or a Weierstrass ‘‘potential’’ theory [21,22] gives a

classification of all possible travelling waves solutions. Note that the choice I = 0 gives h = const., and then
we obtain the special case of a linearly-polarized transverse wave.

Eq. (3.16) is the central equation of this paper. It is valid for any dispersive incompressible solid with con-
stitutive Eqs. (2.1), (2.2), (2.5) and (2.8). It is exact and no approximations nor regular expansions have been
made to derive it. Before we move on to a constitutive example, we check that the equation is coherent with
quasi-continuum theories.

3.3. Link with nonlinear lattice theory

The constitutive model (2.1), (2.2), (2.8) is grounded on quasi-continuum models, and we expect that (3.16)
covers atomistic theories. In fact the correlation is remarkably simple: it suffices to take a = const. (i.e. to take
b1 = 0 in (2.14)) and to take Q = l0 + l1X

2 where l0, l1 are positive constants (i.e. R is of the polynomial form
(2.10), see [8]). Then Eq. (3.15) reduces to
X00 þ l1

qc2b0

X2 � 1

b0

1� l0

qc2

� �
� I2

X4

� �
X ¼ 0: ð3:17Þ
Gorbatcheva and Ostrosky [5] and Cadet [11] obtained this equation for a mono-atomic chain with inter-
atomic interactions by a power series expansion up to the fourth order over the lattice parameter.
4. Travelling waves in hardening power-law solids

To investigate the effect of nonlinearity in the elasticity and in the dispersion, we first take a look at the
situation for transverse travelling waves in dispersive hardening power-law solids, for which R is given by
(2.9) and w by (2.14). We start with the material at n = 2, and we indicate the trends for n > 2.

4.1. Linearly polarized transverse waves

When n = 2 and the material is not pre-stretched (k = 1), we find that
RðX2Þ ¼ l
2

1þ b
4

X2

� �
X2: ð4:1Þ
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Then, the motion of linearly-polarized waves (I = 0) is governed by the following specialization of (3.16),
l� qc2 þ lb
4

X2

� �
X2 þ qc2 b0X

02 þ b1

4
X04

� �
¼ 2E: ð4:2Þ
First we investigate the situation when b0 5 0, b1 = 0. Then we recover the classic solutions of quasi-contin-
uum modelling of nonlinear lattices. To show this, we call X0 the value of X when X

02 = 0, and we favour X0 in
stead of E as an arbitrary constant (they are related through 2E ¼ ðl� qc2ÞX2

0 þ lbX4
0=4Þ. Then we perform

the following change of variable and change of function,
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lbX2

0

4qc2b0

s
s; xðnÞ � XðsÞ

X0

; ð4:3Þ
and the non-dimensional version of (3.16) at b1 = 0 is
x02 ¼ �ðx2 � 1Þ x2 þ 1� 4

lbX2
0

ðqc2 � lÞ
" #

: ð4:4Þ
For the choice E = 0 (or equivalently X 0 = 0 at X = 0), the changes of variable and of function are
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qc2 � l
qc2b0

s
s; xðnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lb

4ðqc2 � lÞ

s
XðsÞ; ð4:5Þ
and the non-dimensional equation is
x02 ¼ �x2ðx2 � 1Þ: ð4:6Þ

In the latter case, the wave speed is necessarily supersonic with respect to an infinitesimal bulk wave (i.e.
qc2 > l) but otherwise arbitrary, and the solution is a well-known pulse solitary wave, x(n) = sechn, shown
in Fig. 1(a). In the former case (4.4), the solutions are periodic waves in general. When the arbitrary speed
is such that qc2 < lþ lbX2

0=4, the amplitude varies between �1 and +1 and the solution is found explicitly
in terms of a Jacobi elliptic function as
xðnÞ ¼ cnð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
nj1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
Þ; where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðl� qc2Þ=ðlbX2

0Þ
q

: ð4:7Þ
Notice that here the finite amplitude periodic wave can travel at the same speed as that of an infinitesimal
shear bulk wave

ffiffiffiffiffiffiffiffi
l=q

p
. Fig. 1(b) displays this wave in solid curve when c = 1 (and then qc2 = l and the wave-

length is ’5.24) and in dashed curve when c = 2 (and then the wavelength is ’2.97). When the speed is such
that qc2 > lþ lbX2

0=4, there are two possible waves, one with amplitude varying between

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqc2 � lÞ=ðlbX2

0Þ � 1
q

and �1, the other with amplitude varying between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqc2 � lÞ=ðlbX2

0Þ � 1
q

and
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Fig. 1. Nonlinear waves in a power-law dispersive solid: (a) pulse, (b) periodic.
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+1. Finally, there is a special wave for the choice qc2 ¼ lþ lbX2
0=4, because then Eq. (4.4) has the pulse

solitary wave solution: x = sechn.
A different picture emerges when b0 = 0, b1 5 0. In the case E 5 0, the changes of variable and of function,
Fig. 2.
[0,p/41
n ¼ lb
qc2b1

� �1=4

s; xðnÞ � XðsÞ
X0

; ð4:8Þ
give the non-dimensional governing equation
x04 ¼ �ðx2 � 1Þ x2 þ 1� 4

lbX2
0

ðqc2 � lÞ
" #

; ð4:9Þ
whereas the choice E = 0 and the changes
n ¼ lb
qc2b1

� �1=4

s; xðnÞ � lb
4ðqc2 � lÞ

� �1=2

XðsÞ; ð4:10Þ
give
x04 ¼ �x2ðx2 � 1Þ: ð4:11Þ
For (4.9), the solutions are periodic waves in general, just as when b0 5 0, b1 = 0, see above. Eq. (4.11), how-
ever, has supersonic solitary wave solutions with compact support, a rare occurrence for waves in solids. Indeed,
(4.11) can be integrated formally to give [8], xðnÞ ¼ I�1ðnÞ, where I�1 is the inverse of a monotonic function
defined in terms of a hypergeometric function as IðxÞ ¼ 2ðx2Þ1=4Hyp2F1½1=4; 1=4; 5=4; x2�. Fig. 2 shows how
we can construct (weak) solutions with finite support measures as a compact solitary kink wave or as a compact

solitary pulse wave. Notice also that these solutions also occurs for (4.9) at the special speed given by
qc2 ¼ lþ lbX2

0=4.
When b0 5 0, b1 5 0, the governing equation is a quadratic in X

02. Its resolution is straightforward and the
results are similar [22] to those in the case where b0 5 0, b1 = 0 that is, solitary and periodic waves on infinite
support measures (no compact waves). In this case we checked, using the same arguments as those used in [23],
that when the ratio b0/b1 approaches zero the tails of the non-compact localized wave decay more and more
rapidly and the solution approaches more and more the limiting compact wave (obtained at b0 = 0).

4.2. Plane polarized transverse waves

Now what happens when the wave is not linearly polarized (I 5 0)? Then we find that the presence of the
I2X�2 term in the equations upsets the delicate balance between nonlinearity and dispersion which allowed for
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Compact solitary waves in a power-law dispersive solid. For the kink, the solution x(n) is defined on the compact support
/4]; for the pulse, on [0,2p/41/4]. (a) Kink, (b) pulse.
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the appearance of localized, and even compact, solitary waves. Only periodic solutions exist when I 5 0. To
show this, we take the case b0 5 0, b1 = 0, k = 1.

When E 5 0, the changes of variable and function (4.3) give the following non-dimensional equation,
x02 ¼ �x2 � 1

x2
x4 þ 1� 4

qc2 � l

lbX2
0

 !
x2 � 4

qc2I2

lbX6
0

" #
: ð4:12Þ
Now recall that the existence of a localized (pulse or kink) solitary wave is subordinated to the existence of a
double root in the right hand-side of these equations [21,22]. According to the choice for c, Eq. (4.12) can be
written in the form
x02 ¼ �x2 � 1

x2
ðx4 � c2x2 � d4Þ; c � 1� 4

qc2 � l

lbX2
0

					
					 ; d � 4

qc2I2

lbX6
0

" #1=4

; ð4:13Þ
where the plus sign is taken when qc2
6 1� 4ðqc2 � lÞ=ðlbX2

0Þ and the minus sign is taken when
qc2 P 4ðqc2 � lÞ=ðlbX2

0Þ � 1. A simple analysis of these equations reveals that their right hand-side cannot
have a double root and remain positive at the same time. It follows that here, there are no solitary waves, only

periodic waves.

Similarly when E = 0, the changes of variable and function (4.5) give an equation which can be rewritten as
x02 ¼ � 1

x2
ðx6 � x4 þ dÞ; where d � qc2b0I2 lb

4ðqc2 � lÞ

� �2

: ð4:14Þ
Here the discriminant of the cubic in x2 is �d(27d � 4); it is zero when 27d = 4, but the corresponding right
hand-side of (4.14) is negative.

We conducted the same analysis when b1 5 0 and checked that again, the other solitary localized waves
(pulses, kinks, compact-like) disappear due to the introduction of the singular term I2/X2. A direct and
straightforward analysis of (3.16) makes it clear that this conclusion does not depend on the particular choice
of R made here. When the generalized shear modulus satisfies the empirical inequality Q > 0, localized waves
are bound to disappear when I 5 0.
4.3. Pre-stretch

When the solid is pre-stretched, the principal strain invariant I1 is given by (3.3) and (3.16) is changed
accordingly. In the case I = 0, Eq. (4.2) is replaced with
qc2 b0X
02 þ b1

4
X04

� �
¼ lk2 1þ b

2
ð2k�1 þ k2Þ

� �
ðX2 � X2

0Þ þ l
b
4
k4ðX4 � X4

0Þ; ð4:15Þ
where X0 is the value of X when X 02 = 0 (it is related to E to 2E ¼ rðX2
0Þ).

Hence the analysis is hardly modified by the introduction of pre-stretch. Methodologically and qualita-
tively, the results of Sections 4.1 and 4.2 apply here; quantitatively, it makes no sense to compare the
unpre-stretched situation with the pre-stretched case because X0 and c are arbitrary.
4.4. Other strain-hardening power-law solids and fourth-order elasticity

When n in (2.9) is an integer other than 2, the analysis is not overly modified. For instance, the factoriza-
tions occurring at n = 2 on the right hand-side of (4.4) and (4.6) are still in force, and the bracketed term is
now a polynomial of degree n � 1 in x2. All the results derived at n = 2 are easily extended. We leave the case
where n is not integer an open question.

As an example, we seek a pulse solitary wave in an unpre-stretched n = 3 power-law dispersive solid. We
find that the counterpart to (4.2) is
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l� qc2 þ lb
3

X2 þ lb2

27
X4

� �
X2 þ qc2 b0X

02 þ b1

4
X04

� �
¼ 2E: ð4:16Þ
We look for the linearly polarized, pulse solitary wave corresponding to the case b0 5 0, b1 = 0, E = 0. To
make a meaningful comparison with the n = 2 case, we perform the same changes of variable and function
as in (4.5). We find that the counterpart to (4.6) is
x02 ¼ �x2 4

3
x2 þ 16

27

qc2 � l
l

x4 � 1

� �
: ð4:17Þ
This differential equation can actually be solved using hyperbolic functions. Rather than present the details of
that long resolution, we rapidly discuss the effect of having a ‘‘stiffer’’ power-law material – in the sense that n

goes from 2 to 3 while l and b remain the same. When n = 2 the maximal amplitude of the wave is x(0) = 1,
see (4.6); when n = 3 the maximal amplitude is found by solving the bracketed biquadratic on the right hand-
side of (4.17). An elementary comparison shows that the maximal amplitude at n = 3 is always larger than 1.
Hence the ‘‘stiffening’’ of the material increases the amplitude of the pulse solitary wave. Clearly, the same
conclusion can be reached for the compact wave corresponding to the case b0 = 0, b1 5 0, E = 0.

For the special case of fourth-order elasticity (2.13), we find that
i2 ¼ �X2=4; i3 ¼ 0; so that RðX2Þ ¼ lX2=4þ m4X
4=16: ð4:18Þ
Clearly, by comparing this equation with (4.1), and by identifying m4 with 2lb, we find the exact same results
for the fourth-order elasticity theory of incompressible dispersive solids as we have for the n = 2 power-law
solid. Hence in particular, transverse pulses and kinks with compact support are possible in a fourth-order
elastic solid with constitutive Eqs. (2.13) and (2.14).

5. Concluding remark: a vector MKdV equation

To conclude, we go back to the general governing Eq. (3.9). We do not specialize the constitutive relations
for R and a, but we perform a moving frame expansion with the new scales s = z � ct, s = �t.

We assume that W is of the form
W ¼ �l=2w; where w ¼ Oð1Þ: ð5:1Þ

Then X = jWj = �1/2jwj and we expand the terms in (3.9) as
ðQW Þzz ¼ �1=2Qð0Þwss þ �3=2Q0ð0Þðjwj2wÞss þ � � � ;
qW tt ¼ �1=2qc2wss � 2�3=2qcwss þ � � � ;
ðaW ttÞzz ¼ �1=2c2að0Þwssss � 2�3=2cað0Þwssss þ � � �

ð5:2Þ
In order to recover the linear wave speed at the lowest order (here, �1/2) given by Q(0) = qc2, we must assume
that
Qð0Þ ¼ Oð1Þ; and að0Þ ¼ Oð�Þ ¼ �a0ðsayÞ; ð5:3Þ
where a0 is a constant of order O(1).
Then we find at the next order that
Q0ð0Þðjwj2wÞss þ c2a0wssss ¼ �2qcwss; ð5:4Þ
which we integrate once with respect to s to get the vectorial MKdV equation of Gorbacheva and Ostrosky [5],
ws þ qðjwj2wÞss þ pwsss ¼ 0; ð5:5Þ

where here q � Q 0(0)/(2qc) and p � ca0/(2q).

In this way we have clarified the status of the Gorbacheva and Ostrovsky’s beautiful results in the frame-
work of the general theory of dispersive hyperelasticity.
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