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Starting from the general modal solutions for a homogeneous layer of arbitrary material and
crystalline symmetry, a matrix formalism is developed to establish the semianalytical expressions of
the surface impedance matrices �SIM� for a single piezoelectric layer. By applying the electrical
boundary conditions, the layer impedance matrix is reduced to a unified elastic form whether the
material is piezoelectric or not. The characteristic equation for the dispersion curves is derived in
both forms of a three-dimensional acoustic SIM and of an electrical scalar function. The same
approach is extended to multilayered structures such as a piezoelectric layer sandwiched in between
two metallic electrodes, a Bragg coupler, and a semi-infinite substrate as well. The effectiveness of
the approach is numerically demonstrated by its ability to determine the full spectra of guided
modes, even at extremely high frequencies, in layered plates comprising up to four layers and three
materials. Negative slope in f –k curve for some modes, asymptotic behavior at short wavelength
regime, as well as wave confinement phenomena made evident by the numerical results are analyzed
and interpreted in terms of the surface acoustic waves and of the interfacial waves in connection
with the bulk waves in massive materials.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2836756�
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I. INTRODUCTION

Engineering applications in surface acoustic wave
�SAW� devices, composite material characterization, and
smart structures, require the analysis of acoustic wave inter-
action with anisotropic and/or piezoelectric multilayers. Re-
cently, the analysis of bulk acoustic waves �BAW� in multi-
layered structures composed of stacked piezoelectric,
dielectric, and metallic materials has once again attracted the
attention of engineers and researchers working on radio fre-
quency components such as stacked crystals filter, coupled
resonator filter, and multiplexers built on solidly mounted
resonators �SMR� and thin film bulk acoustic resonators. The
development of efficient simulation tools is needed to char-
acterize accurately the electromechanical behavior of com-
plex stratified structures accounting for realistic electrical
and mechanical interface and boundary conditions �BC�.

Many methods have been developed for studying the
acoustic waves spectra in layered media, and a majority of
them are based on the matrix formalism. The most com-
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monly known is without any doubt the transfer matrix
method �TMM�,1 which in its simplest form is conceptually
intuitive but intrinsically suffers from numerical instability at
high frequencies. Following many efforts to improve the
TMM,2–4 a genuine advance in breaking through the numeri-
cal limitation of the classical TMM was the approach using
the surface impedance matrix �SIM�.5–18 Although the con-
cept of the acoustical �or mechanical� impedance is an old
one for all physicists and engineers, the SIM expressed in its
initial form13 did not guarantee numerical stability at high
frequencies because the exponential dichotomy factors gen-
erating instability were not arranged in a convenient way. By
means of a reformulated form of the SIM9,11,12,14,16,17 and its
equivalent variants—reflection matrix,19 scattering
matrix,20,21 or compliance/stiffness matrix,22,23 for individual
layers and with the help of a recursive algorithm for the
overall multilayers.9,11,12,16,17,19–23 correct transitions of the
state vector across layer interfaces can be achieved. This in
turn allows numerically stable and robust algorithms to be
elaborated without increasing the basic matrix size.

The SIM approach consists in first, expressing the state
vector values at the two surfaces of a piezoelectric layer by
means of an eight-dimensional layer impedance matrix; then,

calculating the global surface impedance matrix of a
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multilayer with the help of a recursive algorithm from the
impedance matrix of the individual layers along with the
imposed/known BC; and finally, formulating the characteris-
tic equations of guided waves by canceling the determinant
of the final impedance matrix formulated for a selected in-
terface where the acoustic energy is concentrated. The key
point in calculating the layer impedance matrix, which guar-
antees the numerical stability, is the appropriate arrangement
of the eight partial modes resulting from the constitutive re-
lations and the equilibrium equations. Common to various
possible forms, it is essential to avoid exponential dichotomy
by absorbing the exponentially large terms through the neg-
ligibly small amplitudes,17 both of which are associated with
the same partial modes. The advantages of the SIM approach
over the well-known TMM approach are analyzed in some
detail in many published works. The approach, based on the
decomposition of incident and reflected partial waves at the
different interfaces, acts on the amplitudes of partial modes
of each layer rather than on the physical quantities them-
selves. Thus as a result of energy conservation, such an ap-
proach is guaranteed to be stable.19 The loss of precision in
the SIM is delineated in terms of upward-bounded and
downward-bounded waves. The resultant expressions and al-
gorithm are terse so that their implementation is more con-
venient and efficient than the TMM. This alternative formu-
lation is stable, efficient, and illuminating,21 while being as
fast as the TMM.16 The matrix form is concise, thus simple
to program and implement.22 The two concise recursive al-
gorithms, based on combining Stroh formalism and a SIM
approach, are more stable than the standard matrix method
and are faster than the global matrix method. They also ap-
pear to be extremely straightforward and efficient at least
from the computational point of view.17 The SIM approach
also has the advantage of being conceptually simple and nu-
merically flexible. Namely, a SIM can be defined for any
interface as well as for an external surface when the structure
is a multilayer. This flexibility allows one to numerically
determine the dispersion curves and field distributions with
more accuracy by selecting the appropriate interface in the
neighborhood of which the electromechanical energy flux is
localized, and to obtain the full set of solutions, even under
extreme conditions, by repeatedly formulating the SIM at
different locations. The modeling of Lowe1,24 for ultrasonic
waves in multilayered media is also restricted to isotropic
and purely elastic materials. Stewart and Yong25 performed
an analysis of the acoustic propagation in multilayered pi-
ezoelectric plates using the TMM. Both simple thickness
modes and general dispersion behaviors for propagating
straight-crested waves in zinc oxide on silicon thin film reso-
nators were studied. However, only the mass and no stiffness
effects of the electrodes on the resonators were considered in
their model. Acoustical spectra become very complex in
multilayered plates composed of layers having significantly
different material properties, especially when the constituent
layers have high velocity and/or impedance contrast. With a
slight variation of the pair �–k value in the spectral domain,
where � is the frequency and k the wave number, the nature
of the guided modes can be radically different, from Lamb-

like to SAW-like.
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In this paper, we develop a detailed formalism enabling
the full spectra of guided waves in layered plates to be cal-
culated even with a high impedance contrast and at ex-
tremely high frequencies. The exemplified structure consists
of a piezoelectric AlN layer, a high-impedance metallic tung-
sten �W� layer, and a low-impedance dielectric SiO2. This
study was motivated by the SMR design employing AlN as
active resonator and the stacked cells made of bilayer
W /SiO2 as Bragg coupler, to isolate the resonator from the
substrate. We develop a semianalytical model to calculate the
dispersion curves for various multilayer configurations.
Starting from an adaptation of the general Stroh
formalism26,27 to the special case of homogeneous materials
for every layer7,10,11,28,29 we recall briefly in Sec. II the main
results and formulas necessary for further developments.
SIM expressions and dispersion relations in terms of the SIM
elements are derived in Sec. III first for a single piezoelectric
layer and then extended to include two surrounding metallic
electrodes and a semi-infinite supporting substrate via a
Bragg coupler. Section IV is devoted to numerical investiga-
tions considering only a piezoelectric AlN layer combined
with a few W /SiO2 cells in order to facilitate the analysis of
the rather complicated spectra of guided acoustic modes.
Some conclusions and discussions are given in Sec. V.

II. BASIC STROH FORMALISM AND MAIN RESULTS

To simplify the formulation, we choose the reference
coordinate system such that the x1 axis is the propagation
direction in the layering plane, the x2 axis is parallel to the
layering thickness, and the layering plane is assumed to be
unbounded. The vibration state of a structure can be de-
scribed by means of a state vector ��� whose components are
composed of physical variables that are continuous across
the interfaces.27–29

The state vector we chose is defined by �
= �T21T22T23D2v1v2v3��T, where vi are the components of
particle velocity vector v, T2i are the components of stress
tensor in x2 plane; �� j��; j2�−1, � is the electric poten-
tial, � is the angular frequency, and D2 is the normal electric
displacement. The superscript T means transpose, and the
subscript i�=1,2 ,3�, corresponds to the space variable xi.
This choice of the state vector is identical to the choice in
Ref. 28, but different from that adopted in Refs. 9–11 where
the displacement was employed instead of the velocity and
where the components of � were not arranged in the same
order. According to results established in Refs.28, 29, and
13, the state vector � obeys the following system of ordinary
differential equation of first order in the harmonic regime:

d�

dx2
= j�A� . �1�

The system matrix A, also named the state matrix or Stroh
matrix, is given by

A = ��12�22
−1s1 ��12�22

−1�21 − �11�S1
2 + �0

�22
−1 �22

−1�21s1
�

with
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�ab = �
c1a1b c1a2b c1a3b eb1a

c2a1b c2a2b c2a3b eba

c3a1b c3a2b c3a3b eb3a

ea1b ea2b ea3b − �ab

	
��a,b = 1,2,3� ,

where �0 is � times a four-dimensional identity matrix with a
fourth element equal to zero, and c, e, �, and � denote ma-
terial constants. It is worthwhile recalling that the material
constants appearing in the matrices �ab are those evaluated
in the working reference system. The matrix A has a
frequency-independent form. It depends, apart from the ma-
terial constants, on a unique variable s1, with si=ki /�, ki

being the component along xi of the wave number, and si the
slowness component. It is from the A matrix that result the
proper modes, also called partial waves, susceptible of
propagating in a homogeneous unbounded medium. Accord-
ing to the linear system theory, the general solution of � can
be constructed by a linear combination of modal solutions
weighted with modal amplitude �y�. This yields the general
form for the state vector

��x1,x2,t� = QE�x2�yej��t−s1x1�, �2�

where

E�x2� = e−j�s2x2 �3�

is the transition matrix, also called the “propagator matrix,”
and s2 is the diagonal spectral matrix of Eq. �1�, Q is the
associated modal matrix, and y is the amplitude vector. The
components s2

�r� of s2 and Q�r� of Q �r=1, . . . ,8�, are eigen-
values and eigenvectors determined from the following ho-
mogeneous system:

�A + s2
�r�I�Q�r� = 0, r = 1, . . . ,8, �4�

where I is a eight-dimensional identity matrix. In what fol-
lows, we assume that the partial modes are arranged in such
a manner that the matrices s2 and Q can be put into the form:

s1 = �sD 0

0 sI
�, Q = � tD tI

vD vI
� , �5�

where all submatrices are four-dimensional.
Hereafter, the subscripts D and I stand for direct and

inverse partial waves, respectively, see Ref. 29 for their defi-
nition. Note that in Ref. 29 the words “diffracted” and “in-
cident” were used in the place of “direct” and “inverse,”
respectively, in the context on surface wave problems. We
point out that the real s2’s represent the upward- and
downward-propagating oblique plane waves in the layers
�propagating in x1 and standing in x2�, and that their interac-
tion is the origin of the resultant guided modes pertaining to
the layered plate. We recall that all eight partial modes are
required for a finite thickness layer, whereas only the four D
or I modes are needed for a semi-infinite substrate according
to the Sommerfeld radiation condition. In this paper, the case
s1=0, which corresponds to normal propagation, will not be
considered, and the rare degenerated cases where the eigen-
value �or Christoffel equation’s root� s2 is double valued for

certain isolated special values of s1 are also excluded, so that
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Eq. �2� is used as the valid solution throughout the paper.

III. MATRIX FORMALISM FOR GUIDED WAVES IN
LAYERED STRUCTURES

We first consider a plate composed of three materials,
namely a piezoelectric 
c�-oriented AlN layer, a metallic W
layer, and a purely dielectric SiO2 layer, as illustrated by Fig.
1. In order to apply the results of Sec. II and to develop the
matrix formalism for the purpose of deriving the character-
istic equation leading to the dispersion relation of acoustic
waves in this structure, we introduce some specific quantities
for the values of the relevant physical variables at the layer
surfaces. In Fig. 1 the superscript that is a negative sign
refers to the upper surface and the superscript that is a posi-
tive sign to the bottom surface, �	 stands for surface charge
density, V is the voltage across the piezoelectric layer, and J
is the current entering into the piezoelectric layer when an
external load impedance ZL is connected between two sur-
face electrodes. The latter are assumed for the moment to be
perfectly conducting and negligibly thin so that they have no
mechanical effects on the piezoelectric resonator. The effects
of actual metallic electrodes of finite thickness are discussed
in Sec. III D.

A. Single piezoelectric layer

We first look for expressions of the characteristic imped-
ance matrices in terms of the modal �Q� and spectral �s2�
matrices for a piezoelectric layer. For this purpose, we intro-
duce a generalized mixed matrix G defined by

�T−

T+� � �G��V−

V+� , �6�

with T	��t	 D2
	�T, V	��v	 �	�T, t��t21 t22 t23�T, v

��v1 v2 v3�T. After Eqs. �2�, �3�, and �5�, we derive an ex-
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FIG. 1. �Color online� A layered plate composed of a piezoelectric AlN
layer with N identical cells of bilayer W /SiO2. Also shown are the coordi-
nates system and the relevant physical quantities at the surface of a layer.
Electric variables are not involved for nonpiezoelectric layers.
pression of the G matrix as follows:
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G = � tD tI�EI
0�−1

tDED
0 tI

�� vD vI�EI
0�−1

vDED
0 vI

�−1

, �7�

where ED,I
0 =e−j�sD,Ih is the submatrix of the transition matrix

E0�E�x2=h�. We point out that other forms of G matrix
exist.17,23 Each of the four submatrices Gij, i, j=1,2, of G is
four dimensional and contains elements of different physical
signification. Take G11 for example and rewrite it in the form

G11 = �Z11
p K11

X11 Y11
� � �Zm K

X Ye
� . �8�

In Eq. �8�, Zm is a 3-by-3 matrix representing a me-
chanical impedance, Ye is a scalar proportional to an electri-
cal admittance, while K and X have the dimension of a pi-
ezoelectric coefficient. X=KT provided an appropriate
normalization is operated for the state vector. We emphasize
that Zm itself already includes a part originated from piezo-
electricity. G11 is the counterpart to the generalized surface
impedance matrix involved in the SAW problem.29 When the
layer material is nonpiezoelectric �dielectric or metallic, say�,
K=0 holds and G11 is decoupled into two independent parts,
namely Zm for the acoustic part and Ye for the electric part.
This means that the electrical and mechanical variables can
be dealt with independently. This happens equally to a pi-
ezoinactive acoustical mode in piezoelectric materials. The
same is true for the other submatrices of G which have
analogous properties. Some interesting relations exist linking
these submatrices. For a metallic layer, we take into account
the mechanical effects by assuming it to be perfectly conduc-
tive. We conclude by saying that Eq. �7� naturally applies for
a nonpiezoelectric layer.

In order to keep the matrix dimension compatibility and
to facilitate the transition at interfaces within a heterostruc-
ture, we find it more useful to define the acoustic impedance
�Z� matrix as follows:

�t−

t+� � �Z��v−

v+� . �9�

Z is six dimensional and appears in a purely elastic form.
However, it implicitly includes the dielectric and piezoelec-
tric effects when the layer is piezoelectric. This new defini-
tion applies whether the layer is piezoelectric or not.

B. Electrical BC and characteristic equations

We now express the Z matrix defined in Eq. �9� in terms
of the elements of the matrix G by eliminating the electrical
variables upon applying the known electrical BC. The sur-
face charge is written as �−=D2

−−D0
− and �+=D0

−−D2
+ at the

upper and bottom surfaces, respectively. Relations between
the electric potential and displacement D0

	 in the vacuum
side are established, after having resolved the Laplace equa-
tion, as D0

+=g�− and D0
−=−g�+ with g� j �s1 ��0. We deduce

from them that

�− = D2
− − g�− �10a�
and that
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�+ = − �D2
+ + g�+� . �10b�

The charge conservation reads �−+�+=0, which gives

�− = − �+ � � . �11�

Two types of electrical BC are to be distinguished for a pi-
ezoelectric layer:

�1� The surface is metallized and short-circuited �SC�, in
which case ZL=0, leading to

j�V � �− − �+ = 0. �12�

�2� The surface is nonmetallized and open-circuited �OC�, in
which case ZL=
, leading to

� = 0 with �− � �+ in general. �13�

In order to make the subsequent development easier, and
especially in order to facilitate the introduction of the BC, we
rewrite the relation �6� defining the G matrix more explicitly
and in a slightly different form:

�
t−

t+

�

�
	 � �

Z11
p Z12

p K11 K12

Z21
p Z22

p K21 K22

X11 X12 Y11 − g Y12

X21 X22 Y21 Y22 + g
	�

v−

v+

�−

�+
	 .

�14�

Equations �10a�, �10b�, and �11� have been taken into ac-
count in arriving at Eq. �14�. The upper-left sub-block in Eq.
�14� is a mechanical impedance, the lower-right sub-block is
an electrical admittance with the term g coming from the
vacuum contribution. The antidiagonal sub-blocks represent
the piezoelectric terms.

Since the AlN layer in a resonator configuration is usu-
ally sandwiched between two metallic electrodes, we con-
sider mainly the case where both surfaces are SC and we
determine the characteristic equations corresponding to this
condition. Electric SC condition implies V=0, i.e., �−=�+.
Since the value of the potential is relative to a certain refer-
ence arbitrarily chosen, it is usual to set them both equal to
zero. Use of �−=�+=0 in Eq. �14� yields, according to Eq.
�9�, the Z matrix for a SC piezoelectric layer:

�t−

t+� = �ZSC��v−

v+� with ZSC � �Z11
p Z12

p

Z21
p Z22

p � . �15�

ZSC is the layer mechanical impedance matrix when its sur-
faces are both short-circuited �superscript SC�. By further
applying the stress-free mechanical BC, say t−=0 at the up-
per surface, we finally arrive at the so-called surface imped-
ance matrix �SIM� Z+ defined for the bottom surface as

t+ � Z+v+, with Z+ = Z22
SC − Z21

SC�Z11
SC�−1Z12

SC. �16a�

In the same way, we can define the SIM Z− for the top
surface by applying SC and stress-free BC at the bottom
surface. The result is, after interchanging the matrix indices 1

and 2 in Eq. �16a�,
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t− � Z−v− with Z− = Z11
SC − Z12

SC�Z22
SC�−1Z21

SC. �16b�

Here, Zij
SC refer to the submatrices of ZSC. The SIM Z	

defined in Eq. �16� are the acoustic impedances looking out-
ward from one surface toward and accounting for the me-
chanical BC imposed upon the other surface along with the
electrical BC applied at both surfaces. The solutions of plate
modes in general, and of the Lamb and SH modes in particu-
lar, in a piezoelectric layer with SC and stress-free at both
surfaces are then obtained by simply canceling the Z	 deter-
minant:

�Z	�v	 = 0:v	 � 0

and

�SC��,k1� � det�Z	� = 0 → kSC��� . �17�

Any one of the couple sign �	� can be used and it results, in
principle, in identical solutions. However, the functional be-
havior of det�Z	�� ,k1�� is different in the case of a
multilayer and especially at high frequencies. This has prac-
tical consequences in numerical resolution.

Once the values of k1 are found for a given � �usually
by means of an iterative algorithm�, the corresponding
modes polarization can be determined from Eq. �17�. The
form of the characteristic equation in Eq. �17� has the advan-
tage of easily separating the sagittal plane �SP� modes
��Z	�1:2 ,1 :2� � =0� from the shear horizontal �SH� modes
�Z	�3,3�=0� when they are uncoupled. Such is the case for
acoustic modes in the layered structure depictured by Fig. 1.
The dispersion relation of plate modes is a plot of � versus
k1 over a certain range with like modes following regular
curves, which gives a graphical picture of the solutions of the
wave equation for a �specific layered� plate. There is an in-
finite number of � values which can satisfy Eq. �17� for a
given k1. But there will be in general a finite number of real
kSC that can be found for a given �, and that number in-
creases with �. Of course, the situation becomes complicated
if the solutions are not restricted to within the real domain.
At a given real frequency, besides the propagating modes,
which are associated with the real solutions of k1, there are a
finite number of nonpropagating modes having purely imagi-
nary wave numbers and an infinite number of inhomoge-
neous modes having complex wave numbers.30 In this paper,
we limit our investigation to the propagating plate modes.
Most of the solutions exist only for a frequency larger than a
critical threshold �cutoff�. The cutoff frequencies of the
propagating plate modes in the limit of k1→0 represent
nothing but the resonant frequencies of thickness modes,
which are the main waves for BAW devices.

The Z matrix associated to the OC condition can be
determined by simply canceling out the electrical charge in
Eq. �14�. With �=0, we obtain the counterpart to Eq. �15� as

�t−

t+� � �ZOC��v−

v+� with ZOC = ZSC − KY−1X . �18a�

The matrices K, X, and Y involved in the ZOC expression are

defined by
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K � �K11 K12

K21 K22
�, X � �X11 X12

X21 X22
� ,

Y � �Y11 − g Y12

Y21 Y22 + g
� . �18b�

Use of ZOC in the place of ZSC in Eqs. �16� and �17� results
in solutions �pairs kOC−� and modes polarization� of the
plate modes in the piezoelectric layer with OC and stress-
free surfaces.

Another alternative form of the characteristic equations
consists in using exclusively the electrical variables. Apply-
ing t	=0 to eliminate v	 in Eq. �14� leads to an electrical
system

��

�
� � �E���−

�+� with E = Y − X�ZSC�−1K . �19a�

Elimination of �+ from Eq. �19a� leads to a relation between
� and �− via a scalar function, the so-called effective surface
permittivity �eff defined for the top surface by

�eff��,k1� �
�

− j�s1��− =
E11E22 − E12E21

j�s1��E12 − E22�
. �19b�

Here Eij are the elements of the E matrix. �eff defined in Eq.
�19b� is similar to the real part of the effective surface per-
mittivity function of SAW problems29 for all real s1�k1 /�
values except that it tends to infinity with s1→0 for all finite
frequencies. Compared with the Z determinant, the �eff func-
tion has the advantage of being sensitive only to the piezo-
active modes. However, a pole and a zero of �eff, which are
associated with the proper mode for respectively a SC and
OC top surface, could be situated in extremely close prox-
imity when the electromechanical coupling of the mode is
poor.

C. Multilayered plates

So far we have shown that guided waves in a piezoelec-
tric layer can be obtained by first formulating the acoustic
impedances and then reducing them to a SIM or an effective
surface permittivity for one surface. The Z matrix for a
single layer can be calculated directly from its definition �9�
in terms of the associated spectral and modal matrices. But
for a multilayer consisting of a finite number of different
layers, writing out the overall Z matrix, which requires hav-
ing recourse to a recursive procedure9,16,17,19,21,22 is longer
than writing out the overall transfer P matrix, which needs
simple cascading �series multiplication� of the individual lay-
ers’ P matrix. An alternative way consists in expressing the
overall Z matrix in terms of the easy-processed overall P
matrix using the following relations, which apply to a lay-
ered plate as well as to a single layer:

Z11 = − P21
−1P22, Z12 = P21

−1,

Z21 = P12 − P11P21
−1P22, Z22 = P11P21

−1, �20a�

P22 = − Z−1Z11, P21 = Z−1,
12 12
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P12 = Z21 − Z22Z12
−1Z11, P11 = Z22Z12

−1. �20b�

Calculating the overall Z matrix from the overall P matrix
after Eq. �20a� is viable and simpler than using the recursive
algorithm as long as the numerical instability is absent. Oth-
erwise, the recursive algorithm17,22 has to be used to calcu-
late the overall Z matrix. We shall not further deal with this
aspect of the problem by assuming that the right SIM results
we need are numerically available.

Now we return to the consideration of a unit cell in the
Bragg coupler, which comprises two layers of nonpiezoelec-
tric materials with high impedance contrast. The mechanical
contact at any interface is assumed to be perfect throughout
this paper. We define the Z matrix for a unit cell in the same
way as for a single layer, see Eq. �9�, with at present t	 and
v	 denoting the state vector evaluated at the top surface of
the SiO2-layer �−� and at the bottom surface of the W-layer
�+�. The same procedure applies to a periodic coupler con-
sisting of m unit cells, or to an arbitrarily multilayered plate,
when t	 and v	 refer to the state vector evaluated at the top
�−� and bottom �+� surfaces of the whole structure. To stay
general, we assume the coupler to be terminated with a
known impedance Zs, which means that the relation t+

=Zsv
+ holds. Applying this relation to Eq. �9� leads to the

expression of the SIM �ZM� defined for the coupler top sur-
face:

t− � ZMv− with ZM = Z11 − Z12�Z22 − Zs�−1Z21. �21�

In Eq. �21�, Zij are the submatrices of the overall matrix Z
referring to the whole coupler.

To determine the solutions proper to an AIN-Bragg plate
with an electrically SC and stress-free surface, we apply the
continuity condition at the AIN–coupler interface, expressed
by tc

−= tp
+, and vc

−=vp
+. Here tc

− and tp
+ �respectively, vc

− and vp
+�

are the normal surface stress �respectively, velocity� at the
coupler and AlN side, respectively, of the interface. It yields

Z1v = 0 with Z1��,k1� = ZM − Z+. �22�

In Eq. �22�, v denotes the interface vibration velocity and Z+

is the SIM as determined in Eq. �16a� for an isolated AlN
layer. When the coupler bottom surface is stress free, Zs=0
in the ZM expression. Using ZM =Z11−Z12Z22

−1Z21 in the Z1

expression and then locating the Z1-determinant zeros, we
can obtain the guided wave solutions �pairs kSC−�� for a
multilayer without substrate. A systematic computation
yields the dispersion curves. The OC modes naturally result
from replacing ZSC with ZOC in the matrix Z	, cf. Eqs.
16–18.

D. Effects of the resonator’s electrodes and bottom
substrate

Now we show briefly how to include electrodes of finite
thickness and a bottom substrate in the matrix formalism
when dealing with a complete and more realistic SMR struc-
ture. Including the mechanical effects of finite thickness
electrodes in the analysis complicates the formulation only to
a small extent. For the inner electrode, a simple way is to
incorporate its transfer matrix Pe into the coupler’s one, and

then to use the resultant matrix Pm� =PmPe instead of Pm ev-
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erywhere. Another way of including the inner electrode,
when making use of the recursive algorithm, consists in writ-
ing out first the submatrices of the inner electrode’s Z matrix,
say Zij� , and then looking for the SIM ZM� defined for its top
surface with a known SIM ZM exterior to its bottom surface.
In this way, we easily obtain the expression of ZM� as

te
− � ZM� ve

− with ZM� = Z11� − Z12� �Z22� − ZM�−1Z21� . �23�

In Eq. �23�, ZM is the same as given in Eq. �21� referring to
the coupler upper surface and including the substrate �Zs�
when it is present, and te

−, ve
− refer to the state vector values

calculated at the upper surface of the inner electrode. Com-
parison of Eqs. �23� and �21� gives a hint at how the general
SIM recursive relation looks. Namely, the contribution of an
additional bottom part to the considered plate is expressed by
subtracting the SIM �Zs ,ZM� defined for the upper surface of
the bottom part from the submatrix �Z22,Z22� � to be inversed
of the plate under consideration. As to the top electrode, let
Ze

+ be the SIM defined for its bottom surface obtained by
accounting for the zero stress at its upper surface. Instead of
using t−=0 in Eq. �15�, we substitute the AIN-layer’s upper
surface stress t− by Ze

+v−. As a result, Eq. �16a� becomes

t+ � Z+v+ with Z+ = Z22
SC − Z21

SC�Z11
SC − Ze

+�−1Z12
SC. �24�

Then, substituting Z+ in Eq. �22� with Z+ given by Eq. �24�
allows the guided modes to be determined accounting for the
top electrode.

As to substrate, Zs=0 holds if the bottom substrate is the
vacuum, and Zs=Z11

p , see Eq. �8�, if it is a nonpiezoelectric
semi-infinite solid or a piezoelectric one with a SC surface.
For the OC piezoelectric substrate, Zs=Z11

OC, see Eq. �18�. In
addition, the factor g appearing in the expression of �+ in Eq.
�10b� must be replaced with the element Y11 calculated ac-
cording to Eq. �8� for the substrate.

IV. NUMERICAL RESULTS OF GUIDED MODES IN
LAYERED PLATES

We numerically investigated structures consisting of a
piezoelectric c-axis oriented AlN layer and a Bragg coupler
having different numbers of layers W /SiO2. Because of the
coupler materials being isotropic and because of the special
orientation of the AlN layer, the SH partial waves are decou-
pled from the SP ones and are piezo-inactive. In what fol-
lows, we focus only on the SP vibrations which are coupled
with the electrical field. In our numerical examples, the
thickness h of AlN layer was taken as 1 �m. For W �SiO2�,
the thickness H�L� was chosen as H=238.79 nm �L
=278.81 nm�, which corresponds to 
 /4 when the wave-
length 
 of the longitudinal thickness mode in AlN is 

=2h. First, we calculated the characteristic wave speeds for
the three materials involved in our study. Table I lists the
values we obtained with the physical constants we used in
simulations. It shows that AlN is the fastest material and that
W is the slowest one.

Then the acoustic spectra of Lamb waves in each indi-
vidual layer were calculated. Though not reproduced here,
they confirm that the Lamb and SH modes are uncoupled.

We verified that the spectra of Lamb waves comprise both
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symmetric and antisymmetric modes, and that as the fre-
quency increases, all of them tend to the vertically polarized
shear bulk wave speed �VS�, except for the two lowest ones
which tend to the SAW velocity �VSAW� on the free surface
of a half-space, which will be termed massive material in the
subsequent text.

Second, we calculated the dispersion curves, as plotted
in Fig. 2, for two different bilayer plates, AlN /W and
A1N /SiO2. The former represents a high wave speed-
contrast combination, and the latter is for the purpose of
comparison with more complicated configurations. The elec-
trical BC of the AlN layer was assumed to be SC in all
numerical calculations. In addition to the form f –k, fre-
quency as a function of wave number �here named k instead
of k1�, we also plotted the same curves in the form Vp– f ,
phase velocity versus frequency. All variables are in a nor-
malized form �fn= f / f0 , f0=V0 /2h�, and V0=5882 m /s is an
arbitrarily chosen reference wave speed� for the purpose of
more easily observing the asymptotic behavior of curves fea-
tured in plateau form. Two modes exist for all frequencies.
The other modes �named higher order� do not appear below
a corresponding threshold value fc �cut-off�. None of modes
is rigorously symmetric or antisymmetric because the bilayer
plates themselves do not exhibit any structural symmetry.
Near the cut-off �k
0+�, a few modes have a negative slope
in the dispersion curve of f –k plot, a phenomenon similar to
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VL �m/s� Y
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X propagation 9911 �nonpiezo�
W �high impedance� 5224
SiO2 �low impedance� 6099
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what happens to the so-called “anomalous Lamb
modes.”31,32The slope is usually considered as the group ve-
locity �Vg� though some researchers consider that the original
definition of Vg is not applicable in this special k range be-
cause the mode is amplitude modulated in time.32 As a gen-
eral rule, the phase velocity Vp of higher-order guided modes
decreases with increasing frequency, with a limit correspond-
ing to the speed VS of the vertically polarized shear bulk
wave. With increasing frequency, the lowest branch goes up
and then down after passing by a peak value of Vp, and
finally tends to the SAW speed of the slower material �W or
SiO2�. The next lowest branch goes directly down to the
shear bulk speed of W for the AlN /W bilayer. For the
A1N /SiO2 bilayer, it first approaches the SAW speed of AlN
�Vp /V0�0.9� where it stays awhile between fn=2–3 near a
horizontal line, termed plateau, before joining the shear bulk
speed of massive SiO2. Here we observe the mode repulsion
phenomenon, i.e., the same branch of dispersion curves
“shifts” above and below the plateau, as illustrated in Fig. 2
by the numbers 2 and 3. The wave patterns in this region
resemble those of the nondispersive SAW in massive AlN.
The asymptotical lines for longitudinal BAW are not yet ob-
servable in the shown frequency range. For any mode exhib-
iting cutoff, the group velocity Vg defined by the slope in

0 15 20 25
/ ≠ = 2h / λ

er AlN/SiO2

10 15 20
= f / f

3

FIG. 2. Dispersion curves of guided
waves in two bilayer plates, AlN /W �left�
and A1N /SiO2 �right�. The top panes are
the overall views of frequency against
wave number, both normalized, and the
bottom panes are enlarged views of the
phase velocity vs frequency to show the
cluster and plateau behavior of guided
modes in some dispersion regions. Star-
marked lines: SAW in massive AlN;
square-marked lines: SAW in the other
material; circle-marked lines: Shear BAW
in the slower material; cross-marked lines:
Shear BAW in AlN.

ls used in the multilayers.
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f –k curve is zero at f = fc. The interpretation is that a wave
transversely resonant and sanding along x1 �k=0� transfers
no energy in the x1 direction.

Figure 3 presents the acoustic modes spectra calculated
for a three-layer A1N /W /SiO2 plate, a sandwich with the
slowest layer embedded in between two relatively faster
ones. As in bilayer plates, two branches exist for all frequen-
cies, and higher order branches appear for f � fc, with a few
of them exhibiting negative slope in the f –k plot of the dis-
persion curves near cutoff fc. No mode in the full spectra is
symmetric or antisymmetric. In the enlarged views of the
dispersion curves Vp– f plot, in a restricted velocity range but
in more extended frequency range �up to fn=25�, we can
easily observe some plateaus where the wave speed seems to
reach an asymptotic limit �horizontal line�. An analysis of the
origin of these peculiar behaviors enables one to get deeper
physical insight of the wave motion in the layered structure.
A plateau appears clearly in the Vp– f plot as soon as fn�2,
which is the speed of SAW in massive AlN. Two other pla-
teaus exist, one above Vp /V0=0.5 and one below Vp /V0

=0.5. The higher one is due to the SAW speed of massive
SiO2; however, the lower one is not due to the SAW in mas-
sive W. Contrary to what is expected, the lowest branch in
this structure approaches a wave speed that is not the SAW
velocity, neither in any of the two external materials SiO2

and AlN, nor in the middle W. A careful analysis reveals that
it tends to the wave speed of the interfacial �Stoneley� mode
which would exist and propagate near the interface of W and
SiO2 when both fill up half-spaces. In addition, we observe
another asymptotic limit at Vp /V0�0.5 for fn�10, which is
the shear bulk wave in massive W. At higher frequencies
�fn�15�, some branches reach a plateau-like zone just below
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FIG. 3. Dispersion curves of guided waves in a three-layer A1N /W /SiO2 pl
range, on the right are two enlarged views of the phase velocity Vp as a fun
The curve branch with the slowest speed �Vp /V0�0.479� is the interface m
same properties as the one that would exist and propagate at the interface b
Vp /V0=0.9 over a finite frequency range, which is due to the
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longitudinal bulk wave of massive W; the branches then un-
dergo a sharp decrease in phase velocity, after which they
first approach the asymptotic limit of shear bulk speed of
massive SiO2 �Vp /V0
0.63� and then the shear bulk speed
of massive W �Vp /V0
0.5�. These results clearly show the
acoustic confinement in the slow layer �W� of the guided
modes at very short wavelength regime. In addition to one
interface and two surface modes, two families of guided
modes can be distinguished, one for those tending to the
shear bulk speed of W �Vp /V0
0.5� and the other for those
approaching the shear bulk speed of SiO2�Vp /V0
0.63�.

To go further, we have also calculated the dispersion
curves for a four-layer A1N /W /SiO2 /W plate, as shown in
Fig. 4. The characteristics of higher modes cutoff, no sym-
metry, and negative slope are similar to the previously pre-
sented two- and three-layer plates, except that here the num-
ber of modes is larger �58 against 47 in Fig. 3, and 36 for
both A1N /SiO2 and AlN /W configurations in Fig. 2� within
the same frequency range �fn�15�. The lowest branch tends
to the SAW speed of massive W because W is now one of the
outside layers. The next lowest branch approaches rapidly �at
fn�2� the speed of the interfacial mode. Another branch also
tends to the interface mode speed, but at a much higher fre-
quency, fn�8. This phenomenon is logically explained by
the presence of two W /SiO2 interfaces in the current
configuration-piezoelectric AlN combined with a three-layer
coupler W /SiO2 /W. The branch that reaches the interfacial
wave speed first is essentially at the interface of SiO2 with
the outside W layer, while the other one is mainly at the
interface of SiO2 with the embedded W layer. No mode tends
to the SAW speed of massive SiO2 because this layer has no
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uted to the SAW in massive AlN material as in Fig. 3. To
observe the guided modes near the bulk wave speeds in mas-
sive materials, it is necessary to go further in frequencies.

Figure 5 presents the dispersion curves for fn up to 50
along with all asymptotic lines associated with a character-
istic wave speed. In sufficiently short wavelength regime, the
guided modes can be classified into two families according
to their asymptotic behavior. The family with lower speeds
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FIG. 4. Dispersion curves of guided waves in a four-layer A1N /W /SiO2 /
limited range, on the right are two enlarged views of phase velocity Vp plot
range. The curve branch with the slowest speed �Vp /Vo�0.454� is the SAW
speed of the interface mode because there are two interfaces of W–SiO2.
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FIG. 5. Dispersion curves of the same plate as in Fig. 4, showing the phase
velocity Vp vs the frequency f for a more extended f range, to show their
asymptotic limits. The line numbered 1 is for SAW in massive W; line 2 is
for interface waves �two branches merging into one�; line 3 is for shear
BAW in massive W �a group of two modes, one in the inner W and the other
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reaches by pair the shear bulk speed �Vp /V0
0.5� of mas-
sive W, a phenomenon due to the presence of two separate
layers of W in the structure. The family with higher speeds
goes singly to the shear bulk speed �Vp /V0
0.63� of mas-
sive SiO2, as expected when only one layer is made of SiO2

material in the whole structure. We also observe a double-
mode plateau around Vp /V0
0.9, the speed of longitudinal
bulk wave in massive W, which can be interpreted as an
intermediate wave confinement in either W layer. The guided
modes near these plateaus have almost the same properties as
the classical shear or longitudinal bulk waves in unbounded
W material. The longitudinal BAW speed in SiO2 is a little
higher than the line 7, and the longitudinal BAW in AlN is
too high to be shown in this graph.

Numerical instabilities were appearing for fn higher than
10 around Vp /V0=1 during computations using the transfer
matrix. No instability was observed when using the imped-
ance matrix formalism although some modes could not be
determined �missing data� using the SIM defined for one
specific surface. However, thanks to the SIM approach,
which is unconditionally stable irrespective of the total num-
ber of layers and individual layer thickness, in contrast to the
well-known TMM, it suffices to repeatedly apply the SIM at
different locations within the layered structure for the com-
plete wave spectra of all guided modes to be determined,
even in extremely short wavelength regime. This mainly
concerns regions where guided modes tend to SAW or bulk
wave speeds of a component material. Relatively straightfor-
ward and efficient from the computational point of view, the
approach is also flexible because the characteristic equation,
always in a form of �Zl

m−Zu
m+1 � =0, can be written for an
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flexibility allows the numerical results to be obtained for the
dispersion curves and field distributions by selecting the only
interface in the neighbourhood of which mode confinement
occurs or the electromechanical energy flux is concentered
when the full set of solutions is not required.

V. CONCLUSIONS AND FURTHER DISCUSSION

Calculations of guided waves in layered plates mixing
piezoelectric, dielectric, and metallic layers have been devel-
oped using the Stroh formalism and matrix presentation. The
characteristic equations for the dispersion curves are derived
in two forms: an acoustic SIM and an electrical scalar func-
tion. The SIM is expressed in a unified elastic form for both
piezo and nonpiezo-materials, which makes easy the appli-
cation of the field continuity at the interfaces of heterostruc-
tures. By repeatedly applying the unconditionally stable SIM
formalism at different interface locations, we have been able
to obtain the full set of solutions, even for frequencies up to
several tenths of the fundamental thickness mode resonant
frequency. Numerical investigations for plates having up to
four layers and three materials show an extreme complexity
of the acoustic spectra. They include �1� the slope of f –k
curves near the cut-off, for a given mode, can be negative or
positive depending on the specific stack configuration, and
more than one mode exhibits this feature. This suggests that
the sign of the dispersion curve slope of certain modes can
be controlled by layers’ stack order and/or relative thickness
ratio; �2� interfacial waves exist at short wavelength regime
between the W and SiO2 layers, but they do not appear at the
interface between AIN and W or between AlN and SiO2

layers. As a general rule, this depends on the velocity ratio;
�3� the energy of all guided acoustic waves is confined in the
slow W layer when the wavelength is short enough, though
intermediate confinement occurs in the SiO2 layer when it is
embedded. The asymptotic behavior of the dispersion curves
is physically originated from the proper modes of BAW and
SAW in massive materials of the constituent materials. The
mode clustering and forbidden regions are not yet observed
because the number of layers is still low and the structural
periodicity is insignificant. With an increase in the number of
unit cells, say for N�3, one can expect the appearance of
pseudo band gaps in the wave spectra due to Bragg effects.

Investigation of Lamb modes in SMR including two
metal electrodes and a Si substrate are underway. The effects
of the semi-infinite substrate and thick electrodes, already
included in the general expressions derived in Sec. III D, are
to be accounted for in future numerical simulations. An ex-
tension of the analysis to the purely imaginary domain as
well as to the complex domain of the wave number is needed
in order to have a complete knowledge of the full Lamb
wave spectra, which becomes indispensable for modeling the
lateral propagation phenomena33,34 and for understanding the
spurious signals observed in SMR-based filter responses.
Knowledge of the energy trapping properties and wave mo-
tion patterns, if desired, can be gained by examining the
through-thickness distribution of electroacoustic fields for
any specific mode defined by the pair value of �–k1. The

most direct effects of the electrodes �of material Mo� are a
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considerable lowering of the proper resonant frequencies of
the piezoelectric AlN resonator. The presence of a bottom
substrate �Zs�0� leads to solutions of guided surface modes
which are multiple and dispersive, similar to the conven-
tional Rayleigh SAW, provided that the substrate is a faster
material and the wavelength is comparable to the overall
thickness of AlN layer added to the coupler. In the consid-
ered configuration �Fig. 1�, this type of solution only exists
for very low frequencies. In normal resonator operation,
most of the solutions are of leaky SAW type which pertain
more or less to bulk radiation into the substrate depending on
the coupler parameters and frequency. As a consequence, the
wave number of any mode having a phase speed faster than
the SV-polarized BAW in the substrate is necessarily com-
plex, leading to an attenuation as they propagate along the
surface �in x1�. At short wavelength regime �
�h /5� and for
a given �–k1 pair, the wave pattern in each layer tends to be
independent one from the other. As a result, one cannot talk
about the mode type �SAW- or Lamb-like� for the overall
structure, which no longer has a precise signification. The
exact wave pattern in a heterostructure is easy to access in all
cases by examining the field profiles as a function of the
thickness position �for a fixed �–k1 pair�.
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