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Summary

In the context of the finite elasticity theory, we consider a model for compressible solids
called ‘compressible neo-Hookean material’. We show how finite-amplitude inhomogeneous
plane wave solutions and finite-amplitude unattenuated solutions can combine to form a
finite-amplitude Love wave. We take a layer of finite thickness overlying a solid half-space,
both made of different prestressed compressible neo-Hookean materials. We derive an exact
solution of the equations of motion and boundary conditions and also obtain results for the
energy density and the energy flux of the waves. Finally, we investigate the special case when
the interface between the layer and the substrate is in a principal plane of the prestrain. A
numerical example is given.

1. Introduction

A seismic event launches at least two types of surface waves, one causing vertical (elliptic) move-
ments and the other causing rather destructive lateral (shear horizontal) movements. In the essay
which won him the Adams Prize in 1911, LovB proposed a simple Earth model, which supports
the latter kind of waves, by considering a crust made of an isotropic, linear and elastic solid, rigidly
bonded onto a substrate (a semi-infinite solid) made of another isotropic, linear and elastic solid. In
this heterogeneous structure, a shear horizontal wave may propagate, leaving the upper face of the
layer free of traction and having an amplitude which decays rapidly with depth in the substrate. This
localization of the amplitude variation is what makes Love waves (and surface waves in general) a
subject of great interest in seismology, because it means that the energy spreads essentially in two
dimensions, and thus the wave travels further from the epicenter than bulk waves, for which the
energy spreads in three dimensions.

Over the years, Love’s results were extended in several directions and turned out to be also
useful in other contexts. For instance, anisotrd@)yibhomogeneity 3 to 5), piezoelectric coupling
(6 to 8) and many other effects were considered; see the review by Ma8gfor(an exhaustive
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account. Two possibilities are of special interest to seismology science: the possibility of includ-
ing strain-induced anisotropy, because it provides a simple and revealing modeling of the con-
sequence of slow tectonic movements, and the possibility of including nonlinear effects, because
large-amplitude seismic movements have indeed been observed. The first possibility can be dealt
with within the framework of small-amplitude waves superimposed upon a large static homoge-
neous prestrain, se&{to 13). The second possibility is usually treated in the framework of the
so-called weakly nonlinear elasticity theory (sé&d)(or (15), for instance), where the equations of
motion are developed one order further than the linear regime. (Note that according to Zabolotskaya
(16), nonlinear shear horizontal waves require fourth-order elasticity.)

Here, we propose to combine both effects by considering finite-amplitude Love waves in a finitely
deformed layer/substrate structure. Our only restriction is in our choice of a constitutive law for the
solids, as we focus on the so-called compressible neo-Hookean materials. These enjoy a peculiar
property once deformedl7 to 19): they allow the propagation of a finite-amplitude, inhomoge-
neous, linearly polarized, transverse plane wave in any direction. Moreover, this wave is obtained
by solving a linear ordinary differential equation even though the theory is completely nonlinear. (In
passing, we note that the eventuality of a solitary wave is thereby precluded here.) We use this wave
as an ingredient in the construction of the Love wave solution to the corresponding boundary-value
problem. A great deal of generality is nonetheless achieved, in particular because the nonprincipal
wave propagation is possible and because the solution is exact, without any limitations to be im-
posed on its magnitude. Corresponding general results are obtained on energy propagation in the
layer and the substrate.

A special case of the compressible neo-Hookean model was first introduced to describe a class of
solid polyurethane rubbers studied in the Blatz—Ko experim&t)s Of course, we remain aware
that solids playing a role in the applications of Love waves are not always adequately described by
the compressible neo-Hookean strain energy density. However, exact and explicit results like those
of this paper are always useful, either as a basis for perturbation methods or as a basis for testing
numerical schemes.

The paper is organized as follows. In sectdnwe present the constitutive equations of the
compressible neo-Hookean model. Next (sec8prwe not only retrieve results for transverse in-
homogeneous time-harmonic waves superimposed on a prestressed ta8 ut also present
similar results for transverse unattenuated time-harmonic motion. In séctiom set-up consisting
of a semi-infinite substrate covered with a layer of finite thickness is described and the effect of
prestrain is investigated, assuming that the two solids are rigidly bonded. A large-amplitude Love
wave solution is then obtained provided the propagation direction in the interface and the normal
to the interface are along conjugate directions of the prestrain tensors. A dispersion equation is
also obtained, similar to that of linear isotropic elasticity. Here, however, this equation involves the
bulk wave speeds along the propagation direction and along the normal to the layer, which are both
affected by the pre-deformations. In secti@nwe derive the energy densities and energy fluxes
corresponding to the motions in the layer and the substrate. Mean energy densities and fluxes are
obtained by averaging over a period in time, and their properties are investigated. Total energy den-
sities and fluxes are also introduced, showing that the repartition of energy between the layer and
the substrate depends on the ratio of layer thickness to the wavelength. Finally (Fgotiercon-
sider the special case when the interface is in a principal plane of the prestrain tensors in the layer
and the substrate. In this case, the propagation direction may be any direction in the interface and,
owing to the anisotropy induced by the prestress, the Love wave speed varies with the propagation
direction.
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2. Compressible neo-Hookean materials

In order to deal with possibly large deformations of solids, we invoke the finite elasticity theory.
To model the nonlinear elasticity of solids, we use one of the simplest constitutive models on offer
for compressible isotropic solids, which may be called the compressible neo-Hookean material. We
here present this model.

Let F be the deformation gradient, defined as usual (see, for inst&13Eby

F=ox/oX, Fia=0x/0Xn, 2.1)

whereX is the position of a particle in the reference (Lagrangian) configuratiorxahe corre-
sponding position in the current (Eulerian) configuration. Associated With the left Cauchy—
Green strain tensor

B=FF", Bijj = (0x/0Xa)@Xj/0Xn), (2.2)

where the superscrift denotes the transpose. The determinarkt &
J = detF = (detB)/2. (2.3)

It is the ratio between the volume of a material element of the solid in the reference and the current
states. Then, compressible neo-Hookean materials are characterized by a strain energ\Wjensity
measured per unit volume in the undeformed state, given by

2W = u(trB — 3) + G(J) — G(1), (2.4)

whereyu is a constant (the shear modulus) &@€D) is an arbitrary function ofl (a material func-
tion, which can be adjusted to model the compressibility properties of the solid). The corresponding
constitutive equation for the symmetric Cauchy stress tehser

T=3G(I) +uJ71B. (2.5)

Such a compressible neo-Hookean material is sometimes called ‘special Blatz—Ko' material, or
‘restricted Hadamard’ material { to 19). Hayes 22) shows that the resulting equations of motion
are strongly elliptic when

©>0, G'(J)=>0, (2.6)

and we assume as much henceforth. We also assume that the undeformed state is stress free, so that
G’(1) = —2u. Note that comparison with linearized isotropic elasticity yigBIg1) = 2(1 + u),
wherel andy are the Larg coefficients. Here, however, no restriction is placed on the amplitude of
the displacement = x — X, so that due tod.2) and the arbitrariness @(J), the relation between
T andu is clearly nonlinear.
Several examples of specific volumetric functi@®&l) have been presented over the ye2&).(
Among these, we recall the particularly simple choice of Levinson and Burgdsddading to a
model called ‘simplified Blatz—Ko’ inX9), that is

G =U+0)3%=-1) -2 +2u0)(J - 1), (2.7)

with 4 > 0 andA + ¢ > 0 in order to satisfy4.6).
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3. Transverse waves superimposed on a static deformation

Here, we consider transverse wave solutions in unbounded prestrained materials. Suppose that a
compressible neo-Hookean material is first subjected to a static finite homogeneous deformation
defined by

X =FX, X =FiaXa, (3.1)

where theFj o are constants. The corresponding constant left Cauchy—Green strain teBser is
FFT and the determinanl = detF is a constant. On this state of deformation, we superpose a
time-dependent displacement taking a particle from poskitmposition

X =X(X, 1) = X(FX,t) = X+ u(x, t), (3.2

whereu is the mechanical displacement. In the absence of body forces, the equations of motion for
this time-dependent deformation may be written in the foti) 19)

pi = divyP, pi(;i = aﬁk/axk, (3.3)

wherep = poJ~1 is the constant mass density in the intermediate state of static deformation
andP is the Piola—Kirchhoff stress tensor at timavith respect to the intermediate state of static
deformation,

P= (detﬁ)Tﬁ_T, Pik = (detlff)fij |/:\k_11 (3.4)

Here,T is the Cauchy stress tensor at titrendF = ox/ox is the deformation gradient with respect
to the intermediate state of static deformation. We notefhat FF ~1, whereF = 6X/oX is the
deformation gradient with respect to the undeformed configuration.

As in (18), we are now looking for solutions with a displacement figlgs X — x of the form

u= f(m-x)g(n-x—ot)a, (3.5)

where f andg are functions to be determined amgin anda are unit vectors. It is assumed thmat
andn are not parallel and thatis orthogonal to botim andn,

a-m=a-n=0, (3.6)

so that 8.5) represents a linearly polarized transverse wave with propagation speed
For such a wave motion, recall thatand its inverse arelg)

F=1+ f'ga@m+ fga®n, Fl=1-fga@m-— fga®n, (3.7)
so that the special Blatz—Ko constitutive equatidrbyyields
T=1G6') + I~ FBFT, (3.8)
and, because dEt= 1, the Piola—Kirchhoff stress tens@.4) reduces here to
P=1G'(3)F T +x3-'FB. (3.9)

It follows (18) that the displacement fiel®.5) is a solution of the equations of motion if and
only if f andg satisfy the equation

(n-Bn—utpw? fg” +2n-Bmf'g + m-Bmf’g=0, (3.10)
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where f’ andg’ denote the derivatives df andg with respect to their argument. We then choose
m andn such that{7)

n-Bm=0, (3.11)

which means thain andn are along the principal axes of the elliptical section of the ellipsoid
X - Bx = 1 by the plane - x = 0. Then, 8.10 yields two uncoupled equations fdérandg,

v3(t"/f)=—c, (2 —0?)(g"/9) =c, (3.12)

wherec is an arbitrary constant ang, ando, are the wave speeds of homogeneous bulk waves
propagating alongn andn, respectively,

pol)rzn = um-Bm, povﬁ = un-Bn. (3.13)

If ¢ is assumed to be positive,= «? (say) for some reat, then 8.12) yields an unattenuated
time-harmonic wave motion provided > »2. The displacement field of this wave is

ux, t) = [Bsin (Km-x) +Ccos<Km-x)} cos(K(n X — vt)) a, (314
Om Um 1)2—1)%

wherex, B andC are arbitrary constants.

If ¢ is assumed to be negative= —y 2 (say) for some reat, then @.12) yields an inhomoge-
neous time-harmonic wave motion provided< »2. The displacement field of this inhomogeneous
plane wave is

ulx,t) = Aexp(—vym . x) cos(y(n - X — vt)) a, (3.15)
[

m 2,2

wherey and A are arbitrary constants. Here, we retrieve a solution obtainetijrig8). However,

the solution 8.14 was not mentioned in these papers because the emphasis there was on inhomo-
geneous plane waves. Here, badhil@ and @.15 are needed for the construction of a Love wave
solution.

We remark that when the conditio8.(1]) is not satisfied, solutions may nevertheless be obtained
(18) but they are no longer time harmonic. In this paper, we focus on time-harmonic waves because
they are the building blocks for Love waves.

For future reference, we conclude this section with the evaluation of the traction vemtor
a planem - x = constant. Because the displacemaris alonga and hence orthogonal tm,
such a plane is globally preserved in the motion. MoreoverEdet1 andF~Tm = m by (3.7).

Hence, using Nanson®rmula, da = (detF)F~Tda, linking an areaklementda in the current
configuration with the same areal elemeatin the intermediate state, we conclude that wban

is alongm, then the areal element is the same in baghfigurationsda = da = mda. Thus, the
traction vectott on a planem - X = constant is the same whether it is measured per unit area of the
intermediate state or per unit area of the current state. Recallifid) (we obtain

t=Pm=Tm=Tm+ pv2f'ga, (3.16)

whereT denotes the constant Cauchy stress tensor of the intermediate state.
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4. The prestressed layered formation

We wish to extend the classical results of Logkif the linear elasticity theory in two directions: by
taking account of initial stresses (and the accompanying strain-induced anisotropy) and by allowing
the wave’s amplitude to be arbitrarily large.

We start with Love’s original set-up, which consists of a semi-infinite substrate, covered with a
layer of finite thickness. The two solids are bonded rigidly. Here, we assume that both the substrate
and the layer are made of different compressible neo-Hookean materials, with a shear modulus
and a functionG for the substrate and a shear modulugand a functionG for the layer. Also,
po and po denote the mass densities of the substrate and the layer, respectively, measured in the
undeformed reference configuration.

In order to model geological formations, it is common to consider that the solids have been
subjected to initial stresses, giving rise to strain-induced anisotropy (see, for ins2&noe 26)).

To simplify matters, we focus on static homogeneous initial strains. ThXsjénotes the position
of a material particle in the undeformed solids, with origi0 in the interface between the substrate
and the layer, then the initial deformations are

x=FX, X=FX. (4.1)

Here, the components of the deformation gradiénts the substrate anB in the layer are con-
stants. The associated constant left Cauchy—Green strain tensBrs=aF& " in the substrate and
B = FFT in the layer. Also, we lefl = detF andJ = detF.

We call m the unit vector normal to the faces of the layer, in the static prestrained 4ta}e (
oriented from the layer toward the substrate, see Eiglence, in this prestrained state, the layer/
substrate interface is the plame x = 0 or, equivalentlym - X = 0, and the substrate occupies the
half-spacen- x > 0. Also, in the static prestrained state, the upper face of the layer, in contact with
vacuum, is the planm - X = —h, whereh is the thickness of the layer in this state, so that the layer
occupies the regiorh < m-X < 0.

As inthe classical linear case, we focus on the possible existence of a linearly polarized transverse
wave, propagating in a directiam and polarized in a transverse directianboth parallel to the
interface. Thus,n(, a, m) forms an orthonormal triad.

To ensure rigid bonding, the displacement must be continuous at the interface. The displacements
u in the substrate andlin the layer are given, respectively, by

u=x—X=(0—-FHx, U=X-X=(-FHx (4.2)

At any point in the interfacen- x = m-X = 0, we havex = X = an + pafor somexz andg. Then,

the displacement continuity = U at the interface is equivalent - X(an + fa) = F~1(an+ pa).
Because this must hold for alland 8, we conclude that the requirement of displacement continuity
is

Flhn=F ', Fla=Fla (4.3)

It then follows thaf ~*n x F~ta = F~*n x F~ta. Hence, using the identit@(), F~'n x Fla =
(detF)~1F T (n x a), and similarly forF, we obtain

(detF)™1F"m = (detF)"1F 'm, (4.4)
from which it follows that
J72m-Bm=J"°m-Bm. (4.5)



LARGE-AMPLITUDE LOVE WAVES 359

m x>0

Fig. 1 Sketch of the layered formation. The wave propagates in the direction of the unitreitismpolarized
alonga and the magnitude of its amplitude varies along the direction of the unit vegtoormal to the faces
of the layer

We note in passing that the unit vectdrnormal to the faces of the layer in the undeformed state is
given by

M=(m-Bm)Y2FTm=m-Bm)"Y?F™m (4.6)
and that the thicknesd of the layer in the undeformed state is
H = h(m-Bm)~Y2 4.7)

Next, we consider the corresponding constant Cauchy stress tdhasodd, in the substrate and
the layer, respectively. The equilibrium of the prestrained state requires that the upper face of the
layer be subjected to the traction (dead load) Tm and that the traction vector be continuous at
the interfaceT m = Tm. Using the constitutive equations of the layer and the substrate, this yields

237n-Bm=xJdn-Bm, pJ'a-Bm=puJ'a-Bm, (4.8)
163+ 73 'm-Bm=1G'(0) + uJ™'m- Bm. (4.9)

Using the requirements of continuity of the displacement and the traction at the interface, we now
show how a given initial straiB in the layer (resulting from a prescribed str@3getermines the
initial strainB in the substrate.

First, we note that4.9) may be written alternatively as follows, using %),

1G/(3) + 13372m-Bm= 1G'(J) + 7J~'m-Bm. (4.10)

BecauseB is given, J andm - Bm are known and so, this is an equation for a single unknown,
J. Itis shown in Appendix A how the strong ellipticity assumption implies that this equation has
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at most one positive solution faf, and one and only one solution if, in addition, it is assumed
that limy_,0 G’(J) = —oo. OncelJ is known, then 4.5) determinesn - B m and @.8) determines
n- Bmanda- B m. Explicitly,

m- Bm=(J/J)°m-Bm, n-Bm=(J/)(u/x)n-Bm, a- Bm=(I/I)(/u)a-Bm.
(4.11)
In order to obtain all the components Bfin the orthonormal triadr(, a, m), we still need to
determinea- Ba, n-Bnandn - B a. For this purpose, we note that the displacement continuity
requirement4.3) implies that

n-Bh=n-B'n, a-Bla=a-B'a, n.-Bla=n.Bla (4.12)
Usingn = a x min (4.12; and the identity
n-B~nh = J"?[(a-Ba)(m-Bm) — (a- Bm)?], (4.13)
valid also withB instead ofB, we obtain

(@a-Bm)2 (a-Bm)?

a-Ba=a-Ba-— — . 4.14
m-Bm m-Bm ( )
Recalling @.11)1 3, we obtain
- 12 a-Bm)?
a-Ba=a-Ba+ (”2—1> @-Bm7” (4.15)
iz m- Bm
A similar procedure, using = m x nin (4.12, yields
- 2 n - Bm)2
n-Bn:n-Bn+<#2—1>(~). (4.16)
iz m - Bm
Finally, 4.123 with n = a x manda = m x n yields
- 12 n-Bm)(a- Bm
n.Ba=n-Ba+ (“2—1> (n-Bm)@-Bm (4.17)
H m- Bm

To summarize: when the (constant) left Cauchy—Green strain tenisoihe layer is prescribed,
then the (constant) left Cauchy—Green strain teBsiorthe substrate is uniquely determined. First,
J is uniquely determined from4(10. Then, all the components & in the orthonormal triad
(n, m, @) are explicitly given by 4.11) and @.15—(4.17).

In order to use the exact wave solutions described in se8tisme shall assume from now on that
the condition 8.11) is fulfilled in the layer, which by4.11), implies that it is also fulfilled in the
substrate:

n-Bm=0, n-Bm=0. (4.18)
Then, the equations for the other componentB eéduce to
m-Bm= (J/J)°m-Bm, a-Bm=(J/J3)(&/u)a-Bm, (4.19)
~2 B2
~ a-Bm ~ ~
a-Ba=a-Ba+ ﬂ—z—l (7~) n-Bh=n-Bn, n-Ba=n-.Ba
Iz m- Bm
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In tensorial form, the expression Bfin terms ofB is given by
(m-Bm)B = (m-Bm)B — Bm® Bm

+[(7/p) (@ Bmya+ (3/3)(m-Bmym] @ [(ii/x)(@- Bmya+ (J/J)(m- Bmm].
(4.20)

In particular, we note théén = Bn.

5. Large-amplitude Love wave

Now, we look at wave propagation in the initially deformed structure. In the substrate, we require
that the amplitude of the wave decays in the directiomaind hence the displacement fields
assumed to be of the forn3.(L5. In the layer, we consider an unattenuated time-harmonic dis-
placement fieldi of the form @.14). As in the classical case, we wish to combine these exact wave
solutions in order to obtain a global time-harmonic wave motion with propagation spééate

that both displacement fields need to be of the same angular frequency, and hence the same wave
number, in order to satisfy boundary conditions at the interface. Thus, (it for the substrate

and @.14 for the layer, we write

u(x,t) = Aexp (—ym . x) cosk(n - x —ot)a (5.1)
Um
and
u(x, t) = [Bsin (fm . x) +C cos(fm . x)} cosk(n - x — ot)a, (5.2)
Om Om
where
k= —~% 4 (53)

NS AN

is the wave number. Here, in accordance wah g, the body wave speeds, vm, on andoy, are
given by

pOUr?n =um- B m, PODE =un- B n, ,505/[%1 = ﬁm ' émn ﬁoaﬁ = ﬁn : Ena (54)
and the Love wave spe@dhas to satisfy
52 < 0? <02, (5.5)

Note that this is possible only wherf > 52 or, equivalently, recallingy - Bn = n - Bn, when
u/po > i/ po- Thus, Love waves require the combination of a ‘slow’ (or ‘soft’) layer over a ‘fast’
(or ‘hard’) substrate, independently of the initial prestrain.

We now show that the boundary conditions may be satisfied. This leads to the dispersion equation
(a relation betweehk andv) and the determination of the constaitsB andC in terms of a single
parameter characterizing the amplitude of the wave.

The first boundary condition to enforce is that the displacement is continuous at the layer/substrate
interfacem - x = 0. Using 6.1) and £.2), this gives

A=C. (5.6)
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The second boundary condition is the continuity of the traction vector at the layer/substrate inter-
facem - x = 0. Using @.16 and applying it to the wave motio® (1), we obtain, for the tractioh
on a planan - x = constant in the substrate,

t=Tm—ypomAexp(—[y /om]lm-X) cosk(n - x — ot)a, (5.7)

wherep = J~1p is the mass density of the substrate in the intermediate configuration. Similarly,
for the tractiont on a planem - x = constant in the layer, we find

T=Tm+ Kp Om {B cos(fm . x> —Csin (fm . x>] cosk (n-x —ot)a, (5.8)
Om Om
wherep = J~15 is the mass density of the layer in the intermediate configuration. Also, recall

thatTm=Tm = , whereris the constant traction (dead load) applied at the upper face of the
layer. Hence, the conditian= t at the layer/substrate interfage- x = 0 reads

ypomA+xkpomB =0. (5.9

The third boundary condition is that, at the upper face of the layex = —h, the wave creates
no traction in addition to the static traction (dead load)Jsing 6.9), this yields

B cos(xh/om) + C sin(kh/om) = 0. (5.10)

Equations %.6), (5.9 and 6.10 form an algebraic linear homogeneous system for the three
unknownsA, B andC. Writing the condition for nontrivial solutions and using.g), we arrive at
the following dispersion equation relating the wave spetalthe wave numbek:

2 _ 52 2 _ 52
tan [kh,/” AQ””] ~ 2 [P T~ (5.12)
Of pom\ v°— 0§

Let c andC denote the transverse bulk wave speeds in the undeformed substrate and layer, re-
spectively: ¢ = u/po, € = ji/po. Using @.19 and 6.4), we note thav?/v> = ¢?/¢? and
pom/(Pom) = poc/(poC), so that the dispersion equatidh11) may also be written as

~ o~ poc [(c/€)? = (v/vn)?
tan |:kh(l)n/l)m) (U/l)n)z - 1:| - ﬁ, W =0. (512)

In the absence of prestraiB,= B = 1, J = J = 1, hencev? = v = c? in the substrate and

02 = 02, = €% in the layer, so that this dispersion equation specializes to

poC [(c/©)% — (v/€)?
tan [kh\/ (v/€)2 — 1} - 506\/(1)/6)—2—1 =0, (5.13)

which coincides with the dispersion equation of linear isotropic elasti@ify. From a practical
point of view, any dispersion curve obtained froB1(3 as a plot ofv /€ againstkh for a given
choice ofpo/po andc/C can be used in the present context®fl@), by identifyingv /€ with v /op,
andkh with (v /om)kh, see Willson {1) for similar results in the small-on-large theory. A typical
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0-95
0.9 4

0-85 4
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Fig. 2 Dispersion curves for successive Love wave modes in a prestrained configuration.Hplete,
lz/4/(c/8)2 —1(1 =1,2,3,4,...). Thus, for 0< kh < (om/on)H1, only one mode can propagate (funda-
mental mode). Fofom/on)H| < kh < (odm/vn)H +1,1 + 1 modes can propagate

plot for the different wave modes is presented in RgOf course, the scope of the results is now
richer because they include large amplitudes and prestress.

When the dispersion equatiob.{]) is satisfied, the solution of the linear homogeneous system
(5.6), (5.9 and 6.10 for A, BandC is

A =acodxh/vym), B = —asin(kh/om), C =acodxh/oy), (5.14)

whereq is arbitrary. ThusA, B andC are expressed in terms of a single parametenaracterizing
the amplitude of the Love wave.
Finally, we now denote byy, &, ¢) the Cartesian coordinates alomg &, m),

n=n-x, =a-X, {=m-X, (5.15)
and we find that the displacement fiel&@s1) and 6.2) are

U = a coxh/vm) exp(—y ¢ /om) cosk(n — ot)a, (5.16)
U= acogx(h+ ¢)/om) cosk(n — vt)a, (5.17)
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or equivalently, recallingg.3),

U = o COS {k ”2 %n exp{ £y [vR=v? cosk(n —ot)a, (5.18)
k(h+ )y /2 5_2 ] cosk(y — ot)a. (5.19)

6. Energy density and energy flux

U=acos

Here, we compute the energy flux and the energy density associated with a motion of the type
(3.2 in compressible neo-Hookean materials. ¥¢tand W be the strain energy densities corre-
sponding, respectively, to the static deformati8ri and to the motion3.2), both measured per

unit volume of the undeformed state. Then, the energy deéisityeasured per unit volume of the
homogeneously deformed stag1), and the corresponding energy flux vecare 8)

E=1px- X+ I7HW - W), Rx=-% P, (6.1)

where the Piola—Kirchhoff stressnsorP with respect to the state of homogeneous static deforma-
tion is defined by 3.4). They satisfy the energy balance equation

(0 /ot) + (@Rk/oxk) = O, (6.2)

wherex are the coordinates in the state of homogeneous static deformation and the partial deriva-
tive with respect to time is taken at fixed

We now evaluat€ andR for the wave motion%.17) in the layer and for the wave motioB.(6)
in the substrate. Using(17), we obtain for the layer

& = 3pk%a?(v? + 92) cod @ sir? Q + 3pk%a?(v? — 52) sir? @ cog

—aa- [(x/om) Sin® cosQ Tm + k cos® sinQ Tn], (6.3)

R = cos® sinQ{—vkaTa+ a?ko i I~ (x /om) Sin® cosQ Bm + kcos® sinQ Bn]},  (6.4)
where
Q=k(p—ot) and @ =x(h+7)/om. (6.5)
Using (6.16), we obtain for the substrate
& = 3pk2a? cof(xh/vm) exp(—2y ¢ /om)[v2 — v2 cos X)]
— a coSrkh/om) exp(—y ¢ /om)a- [(y /om) cosQTm + ksinQ Tn], (6.6)
R = —vka codkh/om) sinQexp(—y ¢ /om)Ta
+ a’ko I coS(kh /D) exp(—2y ¢ /om)[(y /om) COSQ BmM + ksinQ Bn]. (6.7)

Mean energy densities and mean energy fluxes are obtained by averaging over a period in time at
fixed x:
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21 /o 21 /o
(&) = (a)/27r)/ Ex,ndt, (R)= (a)/27r)/ R(x, t)dt. (6.8)
0 0
Using 6.3—(6.5 and 6.8), we find the mean energy density and the mean energy flux in the
layer as
(&) = 1pK%a?(v? + 0Zcos D), (R) = Lok2a?i It cod @ Bn. (6.9)

Using 6.6—(6.8), we find the mean energy density and the mean energy flux in the substrate as
() = 2po2K2a? coL(kh /om) eXp(—2y ¢ /om), (6.10)
(R) = $0k?a?p 371 cof(kh /om) exp(—2y ¢ /um) BN. (6.11)

The mean energy flux in the layer and the mean energy flux in the substrate are bolﬁmlﬁlﬁp,
thus along the same direction, parallel to the interface. In general, this direction is not along the
propagation direction. This is an effect of the anisotropy induced by the prestrain. However, in the
special case whemis along a principal direction @ andB, the mean energy fluxes are alamg

Also, we note that at the interfage = 0, the mean energy flufR)o (say) in the substrate is
related to the mean energy flyR ) (say) in the layer through

IR = 1 IR0 (6.12)

Similarly, for the mean energy densiti&s)o and(€)¢ at the interfaceg = 0, we find that

1 (€)o 1 (€)o
= J ) 6.13
(v /om2 + cot2ch/om) " "1+ cos2xh/im) (6.13)
Recalling thab? > 52, we note in particular thgi =2 J(£)o > 113 (E)o.
We now consider the energy flux velocity defined as the mean energy flux vector divided by the
mean energy density. For the energy flux velogityave in the layer, we have

9= @ =0 E+ZCOSZD BE , (6.14)
(&) (v/vn)*+cos 2D (n - Bn)
and for the energy flux velocity in the substrate, we have
(R) Bn
=7 = . 6.15
© ~m-en) (619

In the layer, the energy flux velocity depends on the deptlahile in the substrate, the energy flux
velocity is the same at all points. This is because the wave motion in the substrate consists of a
single train of inhomogeneous plane waves. On the contrary, the wave motion in the layer may be
viewed as a superposition of trains of homogeneous plane waves. B&mauseBn, the energy

flux velocities are related through

[(v/5n)? 4 cos 2D]g = [1 + cos 2D]g. (6.16)
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Also, because? > 5%, we note that the energy flux velocity at any point of the layer is smaller in
magnitude that the energy flux velocity in the substrate. Finally, we note that

g-n=v, g-m=0, (6.17)

in accordance with previous results about finite-amplitude inhomogeneous plane waves in un-
bounded deformed Blatz—Ko materialls7( 18). These relations are the same as those derived by
Hayes R9) in the context of linear theories.

We now define total mean energy densities and total mean energy fluxes as

- 0 _ - 0 _
()7 = / (EQnde, Ry = / RN,

()7 = /0 EEe, (R)T = /0 (R(O))c. (6.18)

The total mean energy densi(@T is the wave energy in the layérh < ¢ = m-x < 0) per unit
length (alongn) and per unit width (alon@) of the layer. Similarly, the total mean energy density
(€)1 is the energy in the substrat@ < ¢ = m-x < oo) per unit length and per unit width of the
substrate. The total mean energy fl&) 1 is the energy flux characterizing the rate at which energy
flows through a normal section of the layerh < ¢ = m-x < 0) per unit width of this section.
Similarly, the total mean energy fluR )t is the energy flux characterizing the rate at which energy
flows through a normal section of the substrigtdr < ¢ = m-x < 0) per unit width of this section.
For the wave motion in the layer, we obtain

(&)1 = 2pK%a?[52(Bm/2x) sin(2ch /om) + v2h], (6.19)
(R)T = L0k2a?[(om/2x) sin(2ch/om) + h] iz J~Bn, (6.20)
and for the wave motion in the substrate, we obtain
() = %pkzazv%(vm/}})CO§(Kh/5m), (6.21)
(R)T = K2a20(vom/y) COL(xch/Tm) I~ 1BN. (6.22)

Here, we note that the repartition of energy between the layer and the substrate depends on the depth
h of the layer, or more precisely, on the dimensionless pararkéteharacterizing the ratio of the
layer depth to the wavelength.

7. Interface in a principal plane

For a given static straiB in the layer and a given unit vectan, there is, in general, only one
directionn in the interfacen-x = m-X = 0 along which a finite-amplitude Love wave as described

in sections may propagate. Indeed, becanse = n-Bm = 0 is requiredn must be alongnx Bm.
However, ifmis along a principal axis d, thenn-m = n-Bm = 0 is satisfied automatically for any
propagation direction orthogonal tam, that is,n can be along any direction in the interface. Here,

we consider this special case and give a numerical example showing the effects of strain-induced
anisotropy on the wave characteristics.
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Callingi, j andk the unit vectors along the principal axesByfwe write
n = cosfi + sinfj, a= —sinfi +cosdj, m=Kk, (7.1)
where the anglé < [0, 2z ] is arbitrary. The left Cauchy—Green strain tensor in the layer is
B=A2iQi+/3]®]+13kak, (7.2)

where/1, 1o and /3 are the principal stretches in the layer. The left Cauchy—Green strain ®nsor
in the substrate is then uniquely determined as explained in settiginst, J is determined from
(4.10), which here reads

1G/(0) + ul1%2523 = 3G/ () + AT 25 Y, (7.3)
with J = 111213. Then, using4.20, we obtain
B=22iQi+13 Q]+ ikak, (7.4)
wherels is given by
23 =07%5%32 (7.5)

Hence, the dispersion equation relating the wave speaadd the wave numbde is (5.11) or,
equivalently, 6.12), where

02/8% =02/c? = 12c0 0 + A5siP0,  02/(€%13) = v2/(c?13) = 1. (7.6)

We note that when both the substrate and the layer are of the Levinson and Burgessdype (
with Lamé parameters, ¢ and/, u, respectively, 7.3) for the determination of reduces to the
linear equation

G4 u+pi7?2593 =G+ 2u) = O+ i + 137205 ol — (A +20).  (7.7)

We now present a numerical example. We take both the layer and the substrate to be of the
Levinson and Burgess typ€.6)—(2.7), with A = 1 andZ = j, an assumption often encountered
in the geophysics literature (it leads to an infinitesimal Poisson ratig4fhich is common for
rocks). HenceG'(J) = 2u(2J — 3) andG’(J) = 2u(2J — 3) and (7.7) yields

3= (i/m)dada = 3@/ — DR+ 1727597 (7.8)

For the ratiospo/po and i/ u, we takepo/pg = 1-0 andu/u = 0-6. For the principal stretches in
the layer, we také; = 1.45, 1> = 1.05 andiz = 0-75, so that] = 1.14, which means a change in
volume of 14% . The corresponding stress tensor in the layer is

T=7(1183®i+025®j— 02X ®k), (7.9)

so that the deformation can be maintained with the constant normal presstire0-221k (dead
load) applied at the upper face of the layer. It then follows fr@B)(and (7.5) thatJ = 1.18,11 =
1.45, 1, = 1.05 andl3 = 0-77. As explained in sectioh, the dispersion curves can be deduced
from dispersion curves in the linear isotropic case and are shown i@.Fi{early, becaus&, varies
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0-5 n

Fig. 3 Polar graphs of the Love wave speedsandv, corresponding tkh = z as a function of the angle
that the propagation directionmakes with the direction

with the chosen direction, this figure shows that the number of possible modes for a given value of
the dispersion parametkh is not necessarily the same for allWe here focus on the influence of
prestrain and choose, for instankd,= = (wavelength equal to twice the thickness layer), a value

of this parameter such that two modes of propagation are possible in all directiafisndamental

mode with speed; and a second mode with speed In Fig. 3, we plot the polar graphs ef, and

vn and of the Love wave speeds ando; of the two modes as a function of the angleetween

the propagation direction and the principal direction corresponding to the greatest strefgh=

A1 = 1.45. We note that the greatest and least values;odnd v> correspond to propagation
along the directions of greatest and least stretch in the interface, indicating an experimental way of
determining these directions.

8. Conclusion

In this paper, we have obtained an exact finite-amplitude Love wave solution for a layer and a
substrate consisting of prestrained compressible neo-Hookean materials. The dispersion relation is
similar to that of linear isotropic elasticity but an explicit dependence on the prestrain is exhibited.
In particular, the number of wave modes for different values of the dispersion parakheigr
influenced by the prestrain.

It should be emphasized that the existence of this Love wave solution is subjected to the condition
that the propagation directionand the normatn to the interface are such thatBm = n-Bm = 0,
whereB andB are the left Cauchy—Green strain tensors characterizing the prestrain of the substrate
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and the layer, respectively. Note that it follows from the continuity of the traction at the interface
that the conditions - Bm = 0 andn - Bm = 0 are equivalent.

Thus, the interface may be arbitrarily chosen. However, when it is not a principal pleBe of
andB, there is only one propagation direction satisfying these conditions. In contrast, when the
interface is a principal plane & andB, all propagation directions in this interface are possible.

In this case, for a given value &h, the number of possible modes is not necessarily the same for
all propagation directions.

The energy flux and energy density of the solution in the layer and the substrate have been studied
in detail. In particular, it has been shown that the mean energy fluxes in the layer and the substrate
are both alon@®n = Bn, thus along the same direction, parallel to the interface. The fact that this
direction is not along the propagation direction (except wiéna principal direction) is due to the
anisotropy induced by the prestrain.
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APPENDIX A
A. Uniqueness for the determination ofJ in the substrate

Here, we consider4(10 for the determination of in the substrate when the strain ten8om the layer is
given. It may also be written as

() =36 +uII?2m-Bm=m-Tm, (A.1)

whereT is the stress tensor in the layer, corresponding to the strain tBnsor
First, using the strong ellipticity conditiong.¢), we note that

f/(3) = 3G"(3) + ©I~2m-Bm > 0, (A.2)

so that f (J) is strictly monotonically increasing fod e [0, oo]. Then, recallingG’(1) = —2u, we have
1G'(3) < —pfor I <1andiG'(3) > —pfor 3 > 1, hence

lim f(J) =12 lim G'J) < —x, lim fJ)=co. A3
J—>O() 2350 S K J—)oo() o A3)
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Owing to the monotonicity off (J), the limit for J — 0 exists and is either finite and negative-eso. If
21lim;_,0G'(J) = —To < —u < 0 (with Ty finite), then, clearly, for any strain tensBrsuch tham - Tm >
—To, (A.1) has exactly one solution fal > 0. However, for any strain tensBrsuch tham- Tm < —To, this
equation has no solution far > 0. If lim ;_,g G’(J) = —oo0, then, clearly, whatever be the valuerof Tm,
(A.1) has exactly one solution far > 0.
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