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Summary

In the context of the finite elasticity theory, we consider a model for compressible solids
called ‘compressible neo-Hookean material’. We show how finite-amplitude inhomogeneous
plane wave solutions and finite-amplitude unattenuated solutions can combine to form a
finite-amplitude Love wave. We take a layer of finite thickness overlying a solid half-space,
both made of different prestressed compressible neo-Hookean materials. We derive an exact
solution of the equations of motion and boundary conditions and also obtain results for the
energy density and the energy flux of the waves. Finally, we investigate the special case when
the interface between the layer and the substrate is in a principal plane of the prestrain. A
numerical example is given.

1. Introduction

A seismic event launches at least two types of surface waves, one causing vertical (elliptic) move-
ments and the other causing rather destructive lateral (shear horizontal) movements. In the essay
which won him the Adams Prize in 1911, Love (1) proposed a simple Earth model, which supports
the latter kind of waves, by considering a crust made of an isotropic, linear and elastic solid, rigidly
bonded onto a substrate (a semi-infinite solid) made of another isotropic, linear and elastic solid. In
this heterogeneous structure, a shear horizontal wave may propagate, leaving the upper face of the
layer free of traction and having an amplitude which decays rapidly with depth in the substrate. This
localization of the amplitude variation is what makes Love waves (and surface waves in general) a
subject of great interest in seismology, because it means that the energy spreads essentially in two
dimensions, and thus the wave travels further from the epicenter than bulk waves, for which the
energy spreads in three dimensions.

Over the years, Love’s results were extended in several directions and turned out to be also
useful in other contexts. For instance, anisotropy (2), inhomogeneity (3 to 5), piezoelectric coupling
(6 to 8) and many other effects were considered; see the review by Maugin (9) for an exhaustive
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account. Two possibilities are of special interest to seismology science: the possibility of includ-
ing strain-induced anisotropy, because it provides a simple and revealing modeling of the con-
sequence of slow tectonic movements, and the possibility of including nonlinear effects, because
large-amplitude seismic movements have indeed been observed. The first possibility can be dealt
with within the framework of small-amplitude waves superimposed upon a large static homoge-
neous prestrain, see (10 to 13). The second possibility is usually treated in the framework of the
so-called weakly nonlinear elasticity theory (see (14) or (15), for instance), where the equations of
motion are developed one order further than the linear regime. (Note that according to Zabolotskaya
(16), nonlinear shear horizontal waves require fourth-order elasticity.)

Here, we propose to combine both effects by considering finite-amplitude Love waves in a finitely
deformed layer/substrate structure. Our only restriction is in our choice of a constitutive law for the
solids, as we focus on the so-called compressible neo-Hookean materials. These enjoy a peculiar
property once deformed (17 to 19): they allow the propagation of a finite-amplitude, inhomoge-
neous, linearly polarized, transverse plane wave in any direction. Moreover, this wave is obtained
by solving a linear ordinary differential equation even though the theory is completely nonlinear. (In
passing, we note that the eventuality of a solitary wave is thereby precluded here.) We use this wave
as an ingredient in the construction of the Love wave solution to the corresponding boundary-value
problem. A great deal of generality is nonetheless achieved, in particular because the nonprincipal
wave propagation is possible and because the solution is exact, without any limitations to be im-
posed on its magnitude. Corresponding general results are obtained on energy propagation in the
layer and the substrate.

A special case of the compressible neo-Hookean model was first introduced to describe a class of
solid polyurethane rubbers studied in the Blatz–Ko experiments (20). Of course, we remain aware
that solids playing a role in the applications of Love waves are not always adequately described by
the compressible neo-Hookean strain energy density. However, exact and explicit results like those
of this paper are always useful, either as a basis for perturbation methods or as a basis for testing
numerical schemes.

The paper is organized as follows. In section2, we present the constitutive equations of the
compressible neo-Hookean model. Next (section3), we not only retrieve results for transverse in-
homogeneous time-harmonic waves superimposed on a prestressed state (17, 18) but also present
similar results for transverse unattenuated time-harmonic motion. In section4, the set-up consisting
of a semi-infinite substrate covered with a layer of finite thickness is described and the effect of
prestrain is investigated, assuming that the two solids are rigidly bonded. A large-amplitude Love
wave solution is then obtained provided the propagation direction in the interface and the normal
to the interface are along conjugate directions of the prestrain tensors. A dispersion equation is
also obtained, similar to that of linear isotropic elasticity. Here, however, this equation involves the
bulk wave speeds along the propagation direction and along the normal to the layer, which are both
affected by the pre-deformations. In section6, we derive the energy densities and energy fluxes
corresponding to the motions in the layer and the substrate. Mean energy densities and fluxes are
obtained by averaging over a period in time, and their properties are investigated. Total energy den-
sities and fluxes are also introduced, showing that the repartition of energy between the layer and
the substrate depends on the ratio of layer thickness to the wavelength. Finally (section7), we con-
sider the special case when the interface is in a principal plane of the prestrain tensors in the layer
and the substrate. In this case, the propagation direction may be any direction in the interface and,
owing to the anisotropy induced by the prestress, the Love wave speed varies with the propagation
direction.
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2. Compressible neo-Hookean materials

In order to deal with possibly large deformations of solids, we invoke the finite elasticity theory.
To model the nonlinear elasticity of solids, we use one of the simplest constitutive models on offer
for compressible isotropic solids, which may be called the compressible neo-Hookean material. We
here present this model.

Let F be the deformation gradient, defined as usual (see, for instance, (21)) by

F = ∂x/∂X, Fi A = ∂xi /∂ XA, (2.1)

whereX is the position of a particle in the reference (Lagrangian) configuration andx the corre-
sponding position in the current (Eulerian) configuration. Associated withF is the left Cauchy–
Green strain tensor

B = FF T , Bi j = (∂xi /∂ XA)(∂xj /∂ XA), (2.2)

where the superscriptT denotes the transpose. The determinant ofF is

J = detF = (detB)1/2. (2.3)

It is the ratio between the volume of a material element of the solid in the reference and the current
states. Then, compressible neo-Hookean materials are characterized by a strain energy densityW,
measured per unit volume in the undeformed state, given by

2W = μ(tr B − 3) + G(J) − G(1), (2.4)

whereμ is a constant (the shear modulus) andG(J) is an arbitrary function ofJ (a material func-
tion, which can be adjusted to model the compressibility properties of the solid). The corresponding
constitutive equation for the symmetric Cauchy stress tensorT is

T = 1
2G′(J)I + μJ−1B. (2.5)

Such a compressible neo-Hookean material is sometimes called ‘special Blatz–Ko’ material, or
‘restricted Hadamard’ material (17 to 19). Hayes (22) shows that the resulting equations of motion
are strongly elliptic when

μ > 0, G′′(J) > 0, (2.6)

and we assume as much henceforth. We also assume that the undeformed state is stress free, so that
G′(1) = −2μ. Note that comparison with linearized isotropic elasticity yieldsG′′(1) = 2(λ + μ),
whereλ andμ are the Laḿe coefficients. Here, however, no restriction is placed on the amplitude of
the displacementu = x − X, so that due to (2.2) and the arbitrariness ofG(J), the relation between
T andu is clearly nonlinear.

Several examples of specific volumetric functionsG(J) have been presented over the years (23).
Among these, we recall the particularly simple choice of Levinson and Burgess (24), leading to a
model called ‘simplified Blatz–Ko’ in (19), that is

G(J) = (λ + μ)(J2 − 1) − 2(λ + 2μ)(J − 1), (2.7)

with μ > 0 andλ + μ > 0 in order to satisfy (2.6).
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3. Transverse waves superimposed on a static deformation

Here, we consider transverse wave solutions in unbounded prestrained materials. Suppose that a
compressible neo-Hookean material is first subjected to a static finite homogeneous deformation
defined by

x = FX, xi = Fi A XA, (3.1)

where theFi A are constants. The corresponding constant left Cauchy–Green strain tensor isB =
FF T and the determinantJ = detF is a constant. On this state of deformation, we superpose a
time-dependent displacement taking a particle from positionx to position

x = x(x, t) = x(FX, t) = x + u(x, t), (3.2)

whereu is the mechanical displacement. In the absence of body forces, the equations of motion for
this time-dependent deformation may be written in the form (17, 19)

ρẍ = divxP, ρ ẍi = ∂ Pik/∂xk, (3.3)

whereρ = ρ0J−1 is the constant mass density in the intermediate state of static deformation
andP is the Piola–Kirchhoff stress tensor at timet with respect to the intermediate state of static
deformation,

P = (detF̂)TF̂−T , Pik = (detF̂)Ti j F̂−1
k j . (3.4)

Here,T is the Cauchy stress tensor at timet andF̂ = ∂x/∂x is the deformation gradient with respect
to the intermediate state of static deformation. We note thatF̂ = FF−1, whereF = ∂x/∂X is the
deformation gradient with respect to the undeformed configuration.

As in (18), we are now looking for solutions with a displacement fieldu = x − x of the form

u = f (m ∙ x)g(n ∙ x − vt)a, (3.5)

where f andg are functions to be determined andm, n anda are unit vectors. It is assumed thatm
andn are not parallel and thata is orthogonal to bothm andn,

a ∙ m = a ∙ n = 0, (3.6)

so that (3.5) represents a linearly polarized transverse wave with propagation speedv.
For such a wave motion, recall thatF̂ and its inverse are (18)

F̂ = I + f ′ga ⊗ m + f g′a ⊗ n, F̂−1 = I − f ′ga ⊗ m − f g′a ⊗ n, (3.7)

so that the special Blatz–Ko constitutive equation (2.5) yields

T = 1
2G′(J)I + μJ−1F̂BF̂T , (3.8)

and, because detF̂ = 1, the Piola–Kirchhoff stress tensor (3.4) reduces here to

P = 1
2G′(J)F̂−T + μJ−1F̂B. (3.9)

It follows (18) that the displacement field (3.5) is a solution of the equations of motion if and
only if f andg satisfy the equation

(n ∙ Bn − μ−1ρ0v
2) f g′′ + 2n ∙ Bm f ′g′ + m ∙ Bm f ′′g = 0, (3.10)
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where f ′ andg′ denote the derivatives off andg with respect to their argument. We then choose
m andn such that (17)

n ∙ Bm = 0, (3.11)

which means thatm and n are along the principal axes of the elliptical section of the ellipsoid
x ∙ Bx = 1 by the planea ∙ x = 0. Then, (3.10) yields two uncoupled equations forf andg,

v2
m( f ′′/ f ) = −c, (v2

n − v2)(g′′/g) = c, (3.12)

wherec is an arbitrary constant andvm andvn are the wave speeds of homogeneous bulk waves
propagating alongm andn, respectively,

ρ0v
2
m = μm ∙ Bm, ρ0v

2
n = μn ∙ Bn. (3.13)

If c is assumed to be positive,c = κ2 (say) for some realκ, then (3.12) yields an unattenuated
time-harmonic wave motion providedv2 > v2

n. The displacement field of this wave is

u(x, t) =

[

B sin

(
κ

vm
m ∙ x

)

+ C cos

(
κ

vm
m ∙ x

)]

cos

(
κ

√
v2 − v2

n

(n ∙ x − vt)

)

a, (3.14)

whereκ, B andC are arbitrary constants.
If c is assumed to be negative,c = −γ 2 (say) for some realγ , then (3.12) yields an inhomoge-

neous time-harmonic wave motion providedv2 < v2
n. The displacement field of this inhomogeneous

plane wave is

u(x, t) = Aexp

(

−
γ

vm
m ∙ x

)

cos

(
γ

√
v2

n − v2
(n ∙ x − vt)

)

a, (3.15)

whereγ and A are arbitrary constants. Here, we retrieve a solution obtained in (17, 18). However,
the solution (3.14) was not mentioned in these papers because the emphasis there was on inhomo-
geneous plane waves. Here, both (3.14) and (3.15) are needed for the construction of a Love wave
solution.

We remark that when the condition (3.11) is not satisfied, solutions may nevertheless be obtained
(18) but they are no longer time harmonic. In this paper, we focus on time-harmonic waves because
they are the building blocks for Love waves.

For future reference, we conclude this section with the evaluation of the traction vectort on
a planem ∙ x = constant. Because the displacementu is alonga and hence orthogonal tom,
such a plane is globally preserved in the motion. Moreover, detF̂ = 1 andF̂−Tm = m by (3.7).
Hence, using Nanson’sformula, da = (detF̂)F̂−T da, linking an arealelementda in the current
configuration with the same areal elementda in the intermediate state, we conclude that whenda
is alongm, then the areal element is the same in bothconfigurations:da = da = mda. Thus, the
traction vectort on a planem ∙ x = constant is the same whether it is measured per unit area of the
intermediate state or per unit area of the current state. Recalling (3.11), we obtain

t = Pm = Tm = T m + ρv2
m f ′ga, (3.16)

whereT denotes the constant Cauchy stress tensor of the intermediate state.
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4. The prestressed layered formation

We wish to extend the classical results of Love (1) in the linear elasticity theory in two directions: by
taking account of initial stresses (and the accompanying strain-induced anisotropy) and by allowing
the wave’s amplitude to be arbitrarily large.

We start with Love’s original set-up, which consists of a semi-infinite substrate, covered with a
layer of finite thickness. The two solids are bonded rigidly. Here, we assume that both the substrate
and the layer are made of different compressible neo-Hookean materials, with a shear modulusμ
and a functionG for the substrate and a shear modulusμ̃ and a functionG̃ for the layer. Also,
ρ0 and ρ̃0 denote the mass densities of the substrate and the layer, respectively, measured in the
undeformed reference configuration.

In order to model geological formations, it is common to consider that the solids have been
subjected to initial stresses, giving rise to strain-induced anisotropy (see, for instance (25) or (26)).
To simplify matters, we focus on static homogeneous initial strains. Thus, ifX denotes the position
of a material particle in the undeformed solids, with originX=0 in the interface between the substrate
and the layer, then the initial deformations are

x = FX, x̃ = F̃X. (4.1)

Here, the components of the deformation gradientsF in the substrate and̃F in the layer are con-
stants. The associated constant left Cauchy–Green strain tensors areB = FF T in the substrate and
B̃ = F̃F̃T in the layer. Also, we letJ = detF and J̃ = detF̃.

We call m the unit vector normal to the faces of the layer, in the static prestrained state (4.1),
oriented from the layer toward the substrate, see Fig.1. Hence, in this prestrained state, the layer/
substrate interface is the planem ∙ x = 0 or, equivalently,m ∙ x̃ = 0, and the substrate occupies the
half-spacem∙ x > 0. Also, in the static prestrained state, the upper face of the layer, in contact with
vacuum, is the planem ∙ x̃ = −h, whereh is the thickness of the layer in this state, so that the layer
occupies the region−h 6 m ∙ x̃ 6 0.

As in the classical linear case, we focus on the possible existence of a linearly polarized transverse
wave, propagating in a directionn and polarized in a transverse directiona, both parallel to the
interface. Thus, (n, a, m) forms an orthonormal triad.

To ensure rigid bonding, the displacement must be continuous at the interface. The displacements
u in the substrate and̃u in the layer are given, respectively, by

u = x − X = (I − F−1)x, ũ = x̃ − X = (I − F̃−1)x̃. (4.2)

At any point in the interfacem ∙ x = m ∙ x̃ = 0, we havex = x̃ = αn +βa for someα andβ. Then,
the displacement continuityu = ũ at the interface is equivalent toF−1(αn +βa) = F̃−1(αn +βa).
Because this must hold for allα andβ, we conclude that the requirement of displacement continuity
is

F−1n = F̃−1n, F−1a = F̃−1a. (4.3)

It then follows thatF−1n × F−1a = F̃−1n × F̃−1a. Hence, using the identity (21), F−1n × F−1a =
(detF)−1FT (n × a), and similarly forF̃, we obtain

(detF)−1FT m = (detF̃)−1F̃T m, (4.4)

from which it follows that

J−2m ∙ Bm = J̃−2m ∙ B̃m. (4.5)
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Fig. 1 Sketch of the layered formation. The wave propagates in the direction of the unit vectorn, it is polarized
alonga and the magnitude of its amplitude varies along the direction of the unit vectorm, normal to the faces
of the layer

We note in passing that the unit vectorM normal to the faces of the layer in the undeformed state is
given by

M = (m ∙ Bm)−1/2FT m = (m ∙ B̃m)−1/2F̃T m (4.6)

and that the thicknessH of the layer in the undeformed state is

H = h(m ∙ B̃m)−1/2. (4.7)

Next, we consider the corresponding constant Cauchy stress tensorsT andT̃, in the substrate and
the layer, respectively. The equilibrium of the prestrained state requires that the upper face of the
layer be subjected to the traction (dead load)τ = T̃m and that the traction vector be continuous at
the interface,T m = T̃m. Using the constitutive equations of the layer and the substrate, this yields

μ̃ J̃−1n ∙ B̃m = μJ−1n ∙ B m, μ̃ J̃−1a ∙ B̃m = μJ−1a ∙ B m, (4.8)

1
2G̃′( J̃) + μ̃ J̃−1m ∙ B̃m = 1

2G′(J) + μJ−1m ∙ B m. (4.9)

Using the requirements of continuity of the displacement and the traction at the interface, we now
show how a given initial straiñB in the layer (resulting from a prescribed stressT̃) determines the
initial strainB in the substrate.

First, we note that (4.9) may be written alternatively as follows, using (4.5),

1
2G′(J) + μJ J̃−2m ∙ B̃m = 1

2G̃′( J̃) + μ̃ J̃−1m ∙ B̃m. (4.10)

BecausẽB is given, J̃ andm ∙ B̃m are known and so, this is an equation for a single unknown,
J. It is shown in Appendix A how the strong ellipticity assumption implies that this equation has
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at most one positive solution forJ, and one and only one solution if, in addition, it is assumed
that limJ→0 G′(J) = −∞. OnceJ is known, then (4.5) determinesm ∙ B m and (4.8) determines
n ∙ B m anda ∙ B m. Explicitly,

m ∙ B m = (J/ J̃)2m ∙ B̃m, n ∙ B m = (J/ J̃)(μ̃/μ)n ∙ B̃m, a ∙ B m = (J/ J̃)(μ̃/μ)a ∙ B̃m.
(4.11)

In order to obtain all the components ofB in the orthonormal triad (n, a, m), we still need to
determinea ∙ B a, n ∙ B n andn ∙ B a. For this purpose, we note that the displacement continuity
requirement (4.3) implies that

n ∙ B−1n = n ∙ B̃−1n, a ∙ B−1a = a ∙ B̃−1a, n ∙ B−1a = n ∙ B̃−1a. (4.12)

Usingn = a × m in (4.12)1 and the identity

n ∙ B−1n = J−2[(a ∙ Ba)(m ∙ Bm) − (a ∙ Bm)2], (4.13)

valid also withB̃ instead ofB, we obtain

a ∙ Ba = a ∙ B̃a −
(a ∙ B̃m)2

m ∙ B̃m
+

(a ∙ Bm)2

m ∙ Bm
. (4.14)

Recalling (4.11)1,3, we obtain

a ∙ Ba = a ∙ B̃a +

(
μ̃2

μ2 − 1

)
(a ∙ B̃m)2

m ∙ B̃m
. (4.15)

A similar procedure, usinga = m × n in (4.12)2, yields

n ∙ Bn = n ∙ B̃n +

(
μ̃2

μ2 − 1

)
(n ∙ B̃m)2

m ∙ B̃m
. (4.16)

Finally, (4.12)3 with n = a × m anda = m × n yields

n ∙ Ba = n ∙ B̃a +

(
μ̃2

μ2 − 1

)
(n ∙ B̃m)(a ∙ B̃m)

m ∙ B̃m
. (4.17)

To summarize: when the (constant) left Cauchy–Green strain tensorB̃ in the layer is prescribed,
then the (constant) left Cauchy–Green strain tensorB in the substrate is uniquely determined. First,
J is uniquely determined from (4.10). Then, all the components ofB in the orthonormal triad
(n, m, a) are explicitly given by (4.11) and (4.15)–(4.17).

In order to use the exact wave solutions described in section3, we shall assume from now on that
the condition (3.11) is fulfilled in the layer, which by (4.11)2 implies that it is also fulfilled in the
substrate:

n ∙ Bm = 0, n ∙ B̃m = 0. (4.18)

Then, the equations for the other components ofB reduce to

m ∙ B m = (J/ J̃)2m ∙ B̃m, a ∙ B m = (J/ J̃)(μ̃/μ)a ∙ B̃m, (4.19)

a ∙ Ba = a ∙ B̃a +

(
μ̃2

μ2 − 1

)
(a ∙ B̃m)2

m ∙ B̃m
, n ∙ Bn = n ∙ B̃n, n ∙ Ba = n ∙ B̃a.
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In tensorial form, the expression ofB in terms ofB̃ is given by

(m ∙ B̃m)B = (m ∙ B̃m)B̃ − B̃m ⊗ B̃m

+ [(μ̃/μ)(a ∙ B̃m)a + (J/ J̃)(m ∙ B̃m)m] ⊗ [(μ̃/μ)(a ∙ B̃m)a + (J/ J̃)(m ∙ B̃m)m].

(4.20)

In particular, we note thatBn = B̃n.

5. Large-amplitude Love wave

Now, we look at wave propagation in the initially deformed structure. In the substrate, we require
that the amplitude of the wave decays in the direction ofm and hence the displacement fieldu is
assumed to be of the form (3.15). In the layer, we consider an unattenuated time-harmonic dis-
placement field̃u of the form (3.14). As in the classical case, we wish to combine these exact wave
solutions in order to obtain a global time-harmonic wave motion with propagation speedv. Note
that both displacement fields need to be of the same angular frequency, and hence the same wave
number, in order to satisfy boundary conditions at the interface. Thus, using (3.15) for the substrate
and (3.14) for the layer, we write

u(x, t) = Aexp

(

−
γ

vm
m ∙ x

)

cosk(n ∙ x − vt)a (5.1)

and

ũ(x, t) =

[

B sin

(
κ

ṽm
m ∙ x

)

+ C cos

(
κ

ṽm
m ∙ x

)]

cosk(n ∙ x − vt)a, (5.2)

where

k =
κ

√
v2 − ṽ2

n

=
γ

√
v2

n − v2
(5.3)

is the wave number. Here, in accordance with (3.13), the body wave speedsvn, vm, ṽn andṽm are
given by

ρ0v
2
m = μm ∙ B m, ρ0v

2
n = μn ∙ B n, ρ̃0ṽ

2
m = μ̃m ∙ B̃m, ρ̃0ṽ

2
n = μ̃n ∙ B̃n, (5.4)

and the Love wave speedv has to satisfy

ṽ2
n < v2 < v2

n. (5.5)

Note that this is possible only whenv2
n > ṽ2

n or, equivalently, recallingn ∙ B n = n ∙ B̃n, when
μ/ρ0 > μ̃/ρ̃0. Thus, Love waves require the combination of a ‘slow’ (or ‘soft’) layer over a ‘fast’
(or ‘hard’) substrate, independently of the initial prestrain.

We now show that the boundary conditions may be satisfied. This leads to the dispersion equation
(a relation betweenk andv) and the determination of the constantsA, B andC in terms of a single
parameter characterizing the amplitude of the wave.

The first boundary condition to enforce is that the displacement is continuous at the layer/substrate
interfacem ∙ x = 0. Using (5.1) and (5.2), this gives

A = C. (5.6)
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The second boundary condition is the continuity of the traction vector at the layer/substrate inter-
facem ∙ x = 0. Using (3.16) and applying it to the wave motion (5.1), we obtain, for the tractiont
on a planem ∙ x = constant in the substrate,

t = T m − γρvmAexp(−[γ /vm]m ∙ x) cosk(n ∙ x − vt)a, (5.7)

whereρ = J−1ρ0 is the mass density of the substrate in the intermediate configuration. Similarly,
for the tractioñt on a planem ∙ x = constant in the layer, we find

t̃ = T̃m + κρ̃ ṽm

[

B cos

(
κ

ṽm
m ∙ x

)

− C sin

(
κ

ṽm
m ∙ x

)]

cosk (n ∙ x − vt) a, (5.8)

whereρ̃ = J−1ρ̃0 is the mass density of the layer in the intermediate configuration. Also, recall
thatT m = T̃m = τ , whereτ is the constant traction (dead load) applied at the upper face of the
layer. Hence, the conditiont = t̃ at the layer/substrate interfacem ∙ x = 0 reads

γρvmA + κρ̃ ṽmB = 0. (5.9)

The third boundary condition is that, at the upper face of the layerm ∙ x = −h, the wave creates
no traction in addition to the static traction (dead load)τ . Using (5.8), this yields

B cos(κh/ṽm) + C sin(κh/ṽm) = 0. (5.10)

Equations (5.6), (5.9) and (5.10) form an algebraic linear homogeneous system for the three
unknownsA, B andC. Writing the condition for nontrivial solutions and using (5.3), we arrive at
the following dispersion equation relating the wave speedv to the wave numberk:

tan

[

kh

√
v2 − ṽ2

n

ṽ2
m

]

−
ρvm

ρ̃ ṽm

√
v2

n − v2

v2 − ṽ2
n

= 0. (5.11)

Let c and c̃ denote the transverse bulk wave speeds in the undeformed substrate and layer, re-
spectively: c2 = μ/ρ0, c̃2 = μ̃/ρ̃0. Using (4.19) and (5.4), we note thatv2

n/ṽ2
n = c2/c̃2 and

ρvm/(ρ̃ṽm) = ρ0c/(ρ̃0c̃), so that the dispersion equation (5.11) may also be written as

tan

[

kh(ṽn/ṽm)

√
(v/ṽn)2 − 1

]

−
ρ0c

ρ̃0c̃

√
(c/c̃)2 − (v/ṽn)2

(v/ṽn)2 − 1
= 0. (5.12)

In the absence of prestrain,B = B̃ = I , J = J̃ = 1, hencev2
n = v2

m = c2 in the substrate and
ṽ2

n = ṽ2
m = c̃2 in the layer, so that this dispersion equation specializes to

tan

[

kh
√

(v/c̃)2 − 1

]

−
ρ0c

ρ̃0c̃

√
(c/c̃)2 − (v/c̃)2

(v/c̃)2 − 1
= 0, (5.13)

which coincides with the dispersion equation of linear isotropic elasticity (27). From a practical
point of view, any dispersion curve obtained from (5.13) as a plot ofv/c̃ againstkh for a given
choice ofρ0/ρ̃0 andc/c̃ can be used in the present context of (5.12), by identifyingv/c̃ with v/ṽn
andkh with (ṽn/ṽm)kh, see Willson (11) for similar results in the small-on-large theory. A typical
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Fig. 2 Dispersion curves for successive Love wave modes in a prestrained configuration. Here,Hl =
lπ/
√

(c/c̃)2 − 1 (l = 1, 2, 3, 4, . . .). Thus, for 0< kh < (ṽm/ṽn)H1, only one mode can propagate (funda-
mental mode). For(ṽm/ṽn)Hl < kh < (ṽm/ṽn)Hl+1, l + 1 modes can propagate

plot for the different wave modes is presented in Fig.2. Of course, the scope of the results is now
richer because they include large amplitudes and prestress.

When the dispersion equation (5.11) is satisfied, the solution of the linear homogeneous system
(5.6), (5.9) and (5.10) for A, B andC is

A = α cos(κh/ṽm), B = −α sin(κh/ṽm), C = α cos(κh/ṽm), (5.14)

whereα is arbitrary. Thus,A, B andC are expressed in terms of a single parameterα characterizing
the amplitude of the Love wave.

Finally, we now denote by(η, ξ, ζ ) the Cartesian coordinates along (n, a, m),

η = n ∙ x, ξ = a ∙ x, ζ = m ∙ x, (5.15)

and we find that the displacement fields (5.1) and (5.2) are

u = α cos(κh/ṽm) exp(−γ ζ/vm) cosk(η − vt)a, (5.16)

ũ = α cos(κ(h + ζ )/ṽm) cosk(η − vt)a, (5.17)
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or equivalently, recalling (5.3),

u = α cos

[

kh

√
v2−ṽ2

n
ṽ2

m

]

exp

[

−kζ

√
v2

n−v2

v2
m

]

cosk(η − vt)a, (5.18)

ũ = α cos

[

k(h + ζ )

√
v2 − ṽ2

n

ṽ2
m

]

cosk(η − vt)a. (5.19)

6. Energy density and energy flux

Here, we compute the energy flux and the energy density associated with a motion of the type
(3.2) in compressible neo-Hookean materials. LetW andW be the strain energy densities corre-
sponding, respectively, to the static deformation (3.1) and to the motion (3.2), both measured per
unit volume of the undeformed state. Then, the energy densityE , measured per unit volume of the
homogeneously deformed state (3.1), and the corresponding energy flux vectorRRR are (28)

E = 1
2ρẋ ∙ ẋ + J−1(W − W), Rk = −ẋi Pik, (6.1)

where the Piola–Kirchhoff stresstensorP with respect to the state of homogeneous static deforma-
tion is defined by (3.4). They satisfy the energy balance equation

(∂E/∂t) + (∂Rk/∂xk) = 0, (6.2)

wherexk are the coordinates in the state of homogeneous static deformation and the partial deriva-
tive with respect to time is taken at fixedx.

We now evaluateE andRRR for the wave motion (5.17) in the layer and for the wave motion (5.16)
in the substrate. Using (5.17), we obtain for the layer

Ẽ = 1
2ρ̃k2α2(v2 + ṽ2

n) cos2 8 sin2 � + 1
2ρ̃k2α2(v2 − ṽ2

n) sin2 8 cos2 �

−αa ∙ [(κ/ṽm) sin8 cos� T̃m + k cos8 sin� T̃n], (6.3)

R̃RR = cos8 sin�{−vkαT̃a + α2kvμ̃ J̃−1[(κ/ṽm) sin8 cos� B̃m + k cos8 sin� B̃n]}, (6.4)

where

� = k(η − vt) and 8 = κ(h + ζ )/ṽm. (6.5)

Using (5.16), we obtain for the substrate

E = 1
2ρk2α2 cos2(κh/ṽm) exp(−2γ ζ/vm)[v2

n − v2 cos 2�]

− α cos(κh/ṽm) exp(−γ ζ/vm)a ∙ [(γ /vm) cos� Tm + k sin� Tn], (6.6)

RRR = − vkα cos(κh/ṽm) sin� exp(−γ ζ/vm)Ta

+ α2kvμJ−1 cos2(κh/ṽm) exp(−2γ ζ/vm)[(γ /vm) cos� Bm + k sin� Bn]. (6.7)

Mean energy densities and mean energy fluxes are obtained by averaging over a period in time at
fixedx:
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〈E〉 = (ω/2π)

∫ 2π/ω

0
E(x, t)dt, 〈RRR〉 = (ω/2π)

∫ 2π/ω

0
RRR(x, t)dt. (6.8)

Using (6.3)–(6.5) and (6.8), we find the mean energy density and the mean energy flux in the
layer as

〈Ẽ〉 = 1
4ρ̃k2α2{v2 + ṽ2

n cos 28}, 〈R̃RR〉 = 1
2vk2α2μ̃ J̃−1 cos2 8 B̃n. (6.9)

Using (6.6)–(6.8), we find the mean energy density and the mean energy flux in the substrate as

〈E〉 = 1
2ρv2

nk2α2 cos2(κh/ṽm) exp(−2γ ζ/vm), (6.10)

〈RRR〉 = 1
2vk2α2μJ−1 cos2(κh/ṽm) exp(−2γ ζ/vm) Bn. (6.11)

The mean energy flux in the layer and the mean energy flux in the substrate are both alongB̃n = Bn,
thus along the same direction, parallel to the interface. In general, this direction is not along the
propagation directionn. This is an effect of the anisotropy induced by the prestrain. However, in the
special case whenn is along a principal direction ofB andB̃, the mean energy fluxes are alongn.

Also, we note that at the interfaceζ = 0, the mean energy flux〈RRR〉0 (say) in the substrate is
related to the mean energy flux〈R̃RR〉0 (say) in the layer through

μ̃−1 J̃〈R̃RR〉0 = μ−1J〈RRR〉0. (6.12)

Similarly, for the mean energy densities〈E〉0 and〈Ẽ〉0 at the interfaceζ = 0, we find that

μ̃−1 J̃
〈Ẽ〉0

(v/ṽn)2 + cos(2κh/ṽm)
= μ−1J

〈E〉0

1 + cos(2κh/ṽm)
. (6.13)

Recalling thatv2 > ṽ2
n, we note in particular that̃μ−1 J̃〈Ẽ〉0 > μ−1J〈E〉0.

We now consider the energy flux velocity defined as the mean energy flux vector divided by the
mean energy density. For the energy flux velocityg̃ wave in the layer, we have

g̃ =
〈R̃RR〉

〈Ẽ〉
= v

1 + cos 28

(v/ṽn)2 + cos 28

B̃n

(n ∙ B̃n)
, (6.14)

and for the energy flux velocityg in the substrate, we have

g =
〈RRR〉

〈E〉
= v

Bn
(n ∙ Bn)

. (6.15)

In the layer, the energy flux velocity depends on the depthζ , while in the substrate, the energy flux
velocity is the same at all points. This is because the wave motion in the substrate consists of a
single train of inhomogeneous plane waves. On the contrary, the wave motion in the layer may be
viewed as a superposition of trains of homogeneous plane waves. BecauseB̃n = Bn, the energy
flux velocities are related through

[(v/ṽn)2 + cos 28]g̃ = [1 + cos 28]g. (6.16)
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Also, becausev2 > ṽ2
n, we note that the energy flux velocity at any point of the layer is smaller in

magnitude that the energy flux velocity in the substrate. Finally, we note that

g ∙ n = v, g ∙ m = 0, (6.17)

in accordance with previous results about finite-amplitude inhomogeneous plane waves in un-
bounded deformed Blatz–Ko materials (17, 18). These relations are the same as those derived by
Hayes (29) in the context of linear theories.

We now define total mean energy densities and total mean energy fluxes as

〈Ẽ〉T =
∫ 0

−h
〈Ẽ(ζ )〉dζ, 〈R̃RR〉T =

∫ 0

−h
〈R̃RR(ζ )〉dζ,

〈E〉T =
∫ ∞

0
〈E(ζ )〉dζ, 〈RRR〉T =

∫ ∞

0
〈RRR(ζ )〉dζ. (6.18)

The total mean energy density〈Ẽ〉T is the wave energy in the layer(−h < ζ = m ∙ x < 0) per unit
length (alongn) and per unit width (alonga) of the layer. Similarly, the total mean energy density
〈E〉T is the energy in the substrate(0 < ζ = m ∙ x < ∞) per unit length and per unit width of the
substrate. The total mean energy flux〈R̃RR〉T is the energy flux characterizing the rate at which energy
flows through a normal section of the layer(−h < ζ = m ∙ x < 0) per unit width of this section.
Similarly, the total mean energy flux〈RRR〉T is the energy flux characterizing the rate at which energy
flows through a normal section of the substrate(−h < ζ = m∙x < 0) per unit width of this section.

For the wave motion in the layer, we obtain

〈Ẽ〉T = 1
4ρ̃k2α2[ṽ2

n(ṽm/2κ) sin(2κh/ṽm) + v2h], (6.19)

〈R̃RR〉T = 1
4vk2α2[(ṽm/2κ) sin(2κh/ṽm) + h]μ̃ J̃−1B̃n, (6.20)

and for the wave motion in the substrate, we obtain

〈E〉T = 1
4ρk2α2v2

n(vm/γ ) cos2(κh/ṽm), (6.21)

〈RRR〉T = 1
4k2α2v(vm/γ ) cos2(κh/ṽm)μJ−1Bn. (6.22)

Here, we note that the repartition of energy between the layer and the substrate depends on the depth
h of the layer, or more precisely, on the dimensionless parameterkh characterizing the ratio of the
layer depth to the wavelength.

7. Interface in a principal plane

For a given static straiñB in the layer and a given unit vectorm, there is, in general, only one
directionn in the interfacem∙x = m∙ x̃ = 0 along which a finite-amplitude Love wave as described
in section5 may propagate. Indeed, becausen∙m = n∙B̃m = 0 is required,n must be alongm×B̃m.
However, ifm is along a principal axis of̃B, thenn∙m = n∙B̃m = 0 is satisfied automatically for any
propagation directionn orthogonal tom, that is,n can be along any direction in the interface. Here,
we consider this special case and give a numerical example showing the effects of strain-induced
anisotropy on the wave characteristics.
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Calling i, j andk the unit vectors along the principal axes ofB̃, we write

n = cosθ i + sinθ j, a = − sinθ i + cosθ j, m = k, (7.1)

where the angleθ ∈ [0, 2π ] is arbitrary. The left Cauchy–Green strain tensor in the layer is

B̃ = λ̃2
1i ⊗ i + λ̃2

2 j ⊗ j + λ̃2
3k ⊗ k, (7.2)

whereλ̃1, λ̃2 andλ̃3 are the principal stretches in the layer. The left Cauchy–Green strain tensorB
in the substrate is then uniquely determined as explained in section4. First, J is determined from
(4.10), which here reads

1
2G′(J) + μλ̃−2

1 λ̃−2
2 J = 1

2G̃′( J̃) + μ̃λ̃−1
1 λ̃−1

2 λ̃3, (7.3)

with J̃ = λ̃1λ̃2λ̃3. Then, using (4.20), we obtain

B = λ̃2
1i ⊗ i + λ̃2

2 j ⊗ j + λ2
3k ⊗ k, (7.4)

whereλ3 is given by

λ2
3 = λ̃−2

1 λ̃−2
2 J2. (7.5)

Hence, the dispersion equation relating the wave speedv and the wave numberk is (5.11) or,
equivalently, (5.12), where

ṽ2
n/c̃2 = v2

n/c2 = λ̃2
1 cos2 θ + λ̃2

2 sin2 θ, ṽ2
m/(c̃2λ̃2

3) = v2
m/(c2λ2

3) = 1. (7.6)

We note that when both the substrate and the layer are of the Levinson and Burgess type (2.7)
with Lamé parametersλ, μ andλ̃, μ̃, respectively, (7.3) for the determination ofJ reduces to the
linear equation

(λ + μ + μλ̃−2
1 λ̃−2

2 )J − (λ + 2μ) = (λ̃ + μ̃ + μ̃λ̃−2
1 λ̃−2

2 )λ̃1λ̃2λ̃3 − (λ̃ + 2μ̃). (7.7)

We now present a numerical example. We take both the layer and the substrate to be of the
Levinson and Burgess type (2.4)–(2.7), with λ = μ andλ̃ = μ̃, an assumption often encountered
in the geophysics literature (it leads to an infinitesimal Poisson ratio of 1/4, which is common for
rocks). Hence,G′(J) = 2μ(2J − 3) andG̃′( J̃) = 2μ̃(2J̃ − 3) and (7.7) yields

J = (μ̃/μ)λ̃1λ̃2λ̃3 − 3(μ̃/μ − 1)(2 + λ̃−2
1 λ̃−2

2 )−1. (7.8)

For the ratios̃ρ0/ρ0 andμ̃/μ, we takeρ0/ρ0 = 1∙0 andμ̃/μ = 0∙6. For the principal stretches in
the layer, we takẽλ1 = 1∙45, λ̃2 = 1∙05 and̃λ3 = 0∙75, so thatJ̃ = 1∙14, which means a change in
volume of 14% . The corresponding stress tensor in the layer is

T̃ = μ̃(1∙13i ⊗ i + 0∙25j ⊗ j − 0∙22k ⊗ k), (7.9)

so that the deformation can be maintained with the constant normal pressureτ = −0∙22μ̃k (dead
load) applied at the upper face of the layer. It then follows from (7.8) and (7.5) that J = 1∙18,λ1 =
1∙45, λ2 = 1∙05 andλ3 = 0∙77. As explained in section5, the dispersion curves can be deduced
from dispersion curves in the linear isotropic case and are shown in Fig.2. Clearly, becausẽvn varies
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Fig. 3 Polar graphs of the Love wave speedsv1 andv2 corresponding tokh = π as a function of the angleθ
that the propagation directionn makes with the directioni

with the chosen directionn, this figure shows that the number of possible modes for a given value of
the dispersion parameterkh is not necessarily the same for alln. We here focus on the influence of
prestrain and choose, for instance,kh = π (wavelength equal to twice the thickness layer), a value
of this parameter such that two modes of propagation are possible in all directionsn: a fundamental
mode with speedv1 and a second mode with speedv2. In Fig.3, we plot the polar graphs ofvn and
ṽn and of the Love wave speedsv1 andv2 of the two modes as a function of the angleθ between
the propagation directionn and the principal directioni, corresponding to the greatest stretchλ̃1 =
λ1 = 1∙45. We note that the greatest and least values ofv1 and v2 correspond to propagation
along the directions of greatest and least stretch in the interface, indicating an experimental way of
determining these directions.

8. Conclusion

In this paper, we have obtained an exact finite-amplitude Love wave solution for a layer and a
substrate consisting of prestrained compressible neo-Hookean materials. The dispersion relation is
similar to that of linear isotropic elasticity but an explicit dependence on the prestrain is exhibited.
In particular, the number of wave modes for different values of the dispersion parameterkh is
influenced by the prestrain.

It should be emphasized that the existence of this Love wave solution is subjected to the condition
that the propagation directionn and the normalm to the interface are such thatn ∙Bm = n ∙B̃m = 0,
whereB andB̃ are the left Cauchy–Green strain tensors characterizing the prestrain of the substrate
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and the layer, respectively. Note that it follows from the continuity of the traction at the interface
that the conditionsn ∙ Bm = 0 andn ∙ B̃m = 0 are equivalent.

Thus, the interface may be arbitrarily chosen. However, when it is not a principal plane ofB
and B̃, there is only one propagation direction satisfying these conditions. In contrast, when the
interface is a principal plane ofB andB̃, all propagation directionsn in this interface are possible.
In this case, for a given value ofkh, the number of possible modes is not necessarily the same for
all propagation directions.

The energy flux and energy density of the solution in the layer and the substrate have been studied
in detail. In particular, it has been shown that the mean energy fluxes in the layer and the substrate
are both alongBn = B̃n, thus along the same direction, parallel to the interface. The fact that this
direction is not along the propagation direction (except whenn is a principal direction) is due to the
anisotropy induced by the prestrain.
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(Belgium) for their support.

References

1. A. E. H. Love,Some Problems of Geodynamics(Dover, New York 1967).
2. C. Lardat, C. Maerfeld and P. Tournois, Theory and performance of acoustical dispersive sur-

face wave delay lines,Proc. IEEE59 (1971) 355–368.
3. J. T. Wilson, Surface waves in a heterogeneous medium,Bull. Seism. Soc. Amer.32 (1942)

297–304.
4. H. Deresiewicz, A note on Love waves in a homogeneous crust overlying an inhomogeneous

stratum,ibid. 52 (1962) 639–645.
5. S. N. Bhattacharya, Exact solutions of SH wave equation for inhomogeneous media,ibid. 60

(1970) 1847–1859.
6. J. L. Bleustein, A new surface wave in piezoelectric materials,Appl. Phys. Lett.13 (1968)

412–413.
7. Yu. V. Gulyaev, Electroacoustic surface waves in piezoelectric materials,J. Exp. Theor. Phys.

Lett.9 (1969) 37–38.
8. B. Collet and M. Destrade, Piezoelectric Love waves on rotated Y-cut mm2 substrates,IEEE

Trans. Ultrason. Ferroelectr. Freq. Control53 (2006) 2132–2139.
9. G. A. Maugin, Elastic surface waves with transverse horizontal polarization,Adv. Appl. Mech.

23 (1983) 373–434.
10. M. A. Hayes and R. S. Rivlin, Surface waves in deformed elastic materials,Arch. Ration. Mech.

Anal.8 (1961) 358–380.
11. A. J. Willson, Love waves and primary stress,Bull. Seism. Soc. Amer.65 (1975) 1481–1486.
12. B. K. Kar and A. K. Pal, On the possibility of Love wave propagation under initial shear stress,

Proc. Ind. Nat. Sci. Acad.51 (1985) 686–688.
13. M. A. Dowaikh, On SH waves in a pre-stressed layered half-space for an incompressible elastic

material,Mech. Res. Commun.26 (1999) 665–672.
14. G. A. Maugin,Nonlinear Waves in Elastic Crystals(University Press, Oxford 1999).



370 E. RODRIGUES FERREIRAet al.

15. A. N. Norris, Finite amplitude waves in solids,Nonlinear Acoustics(ed. M. F. Hamilton &
D. T. Blackstock; Academic Press, San Diego, CA 1999) 263–277.

16. E. A. Zabolotskaya, Sound beams in a nonlinear isotropic solid,Sov. Phys. Acoust.32 (1986)
296–299.

17. M. Destrade, Finite-amplitude inhomogeneous plane waves in a deformed Blatz–Ko material,
Proceedings of the 1st Canadian Conference on Non Linear Solid Mechanics, Vol. 1 (ed.
E. M. Croitoro; University of Victoria Press, Victoria 1999), 89–98.

18. E. Rodrigues Ferreira and Ph. Boulanger, Finite-amplitude damped inhomogeneous waves in a
deformed Blatz–Ko material,Math. Mech. Solids10 (2005) 377–387.

19. E. Rodrigues Ferreira and Ph. Boulanger, Superposition of transverse and longitudinal finite-
amplitude waves in a deformed Blatz–Ko material,ibid. 12 (2007) 543–558.

20. P. J. Blatz and W. L. Ko, Application of finite elasticity to the deformation of rubbery materials,
Trans. Soc. Rheol.6 (1962) 223–251.

21. P. Chadwick,Continuum Mechanics(Dover, New York 1999).
22. M. Hayes, A remark on Hadamard materials,Q. Jl Mech. Appl. Math.21 (1968) 141–146.
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APPENDIX A

A. Uniqueness for the determination ofJ in the substrate

Here, we consider (4.10) for the determination ofJ in the substrate when the strain tensorB̃ in the layer is
given. It may also be written as

f (J) ≡ 1
2G′(J) + μJ J̃−2m ∙ B̃m = m ∙ T̃m, (A.1)

whereT̃ is the stress tensor in the layer, corresponding to the strain tensorB̃.
First, using the strong ellipticity conditions (2.6), we note that

f ′(J) = 1
2G′′(J) + μ J̃−2m ∙ B̃m > 0, (A.2)

so that f (J) is strictly monotonically increasing forJ ∈ [0, ∞]. Then, recallingG′(1) = −2μ, we have
1
2G′(J) 6 −μ for J 6 1 and1

2G′(J) > −μ for J > 1, hence

lim
J→0

f (J) = 1
2 lim

J→0
G′(J) 6 −μ, lim

J→∞
f (J) = ∞. (A.3)
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Owing to the monotonicity off (J), the limit for J → 0 exists and is either finite and negative or−∞. If
1
2 lim J→0 G′(J) = −T0 6 −μ < 0 (with T0 finite), then, clearly, for any strain tensorB̃ such thatm ∙ T̃m >

−T0, (A.1) has exactly one solution forJ > 0. However, for any strain tensor̃B such thatm ∙ T̃m6 −T0, this
equation has no solution forJ > 0. If lim J→0 G′(J) = −∞, then, clearly, whatever be the value ofm ∙ T̃m,
(A.1) has exactly one solution forJ > 0.
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