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Summary

The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to
length , subject to pure bending, is considered. The two incremental equilibrium equations
corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear
eigenproblem that displays a multiple turning point. It is found that fer § < oo, the block
experiences an Euler-type buckling instability which in the limit> oo degenerates into a
surface instability. Singular perturbation methods enable us to capture this transition, while
direct numerical simulations corroborate the analytical results.

1. Introduction

The development of compressive stresses in mechanical structures is well known to be responsible
for Euler-type buckling instabilities. What is less recognised is that such scenarios are likely to
occur in a number of cases that, apparently, are of a completely different nature. A typical example
is the phenomenon of stress concentration in perforated thin elastic plates subjected to tension.
Usually, the holes act as stress concentrators that can be completely or only partially surrounded by
compressed regions. If the pulling forces are sufficiently strong, an out-of-plane bending instability
is experienced locally near the sites of the holes. A systematic investigation of problems of this
nature has recently been initiated by Coneaial. (1 to 3).

A second example where Euler-type buckling is indirectly encountered is provided by the pure
bending of a thin and short elastic tube. The curved configuration adopted by the tube is charac-
terised by compressive axial stresses on the concave side, whereas tension prevails on the convex
part. Experience shows that a regular instability pattern consisting of many little ripples will develop
along the former region, eventually leading to the creation of one or several kinks that signal the
collapse of the tube.

The stability problem of pure bending in thin-walled tubular structures has a long history and
there is a vast mechanical engineering literature dealing with various aspects; some of it is aptly
summarised in the authoritative monograph by Kyriakides and Co#n@®a the mathematical
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side, noteworthy contributions in the present context are the works by Seide and Weingarten (
and Tovstik and Smirnov (briefly summarised #))( The former investigation is based on the
Donnell-von Karman buckling equations linearised around a variable-coefficient membrane state
of stress. The resulting boundary-value problem was analysed numerically with the help of the
Galerkin method, and it was found that the circumferential shape of the buckled cylinder displays
a small dimple on the compressed side. Several versions of the same problem have been reconsid-
ered in 6) from the point of view of asymptotic analysis. Both works just now mentioned made
the simplifying assumption that the rippling pattern is the same at every point along the axis of
the cylinder or, in other words, a solution with separable variablesamaisori postulated. The
assumption is sensible for short tubes (which are fairly stiff), but it is inadequate for modelling the
collapse in the elastoplastic regime for moderate lengths, which turns out to require a very different
approach (cf.4)).

Our main aim in the present investigation is to revisit the pure bending of a rubber block deform-
ing in plane strain, a problem that has several points in common with the tube bending mentioned
above. Unfortunately, the literature in this area has focussed mainly on describing the deformation
itself rather than its potential bifurcations. The typical scenario is outlined irlFige undeformed
configuration is shown in the left-hand sketch and is characterised by the geometric paraineters 2
(length),H (height) and 2 (thickness); the deformed block appears in the same figure, on the right.
The plane strain hypothesis simplifies the problem considerably, since one needs to deal only with
cross sections (shown shaded) perpendicular to the vertical axis of the block and situated sufficiently
far away from the lower and upper faces.

Pioneering work on pure bending stability was carried out by Triantafyllidjs Who exam-
ined incremental bifurcation equations for a couple of piecewise power-law constitutive models,
including a hypoelastic one. He pointed out that the underlying instability mechanism is a surface
instability similar to that encountered in the plane strain half-space problems discussed by Hill and
Hutchinson 8) or Young ©). Haughton {0) performed a similar analysis for hyperelastic materi-
als in a three-dimensional context (hneo-Hookean, mostly) and allowed for vertical compression as
well. The instability was found to be of Euler type but his interpretation of some of the results can
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Fig. 1 Cylindrical bending of a rubber blocleft: reference configuratiomight: current configuration. Shaded
areas indicate two generic cross sections perpendicular to the vertical axis
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be improved upon, as we explain in secti@nA novel feature in 10) is the interaction between

two different modes of instability, one due to pure bending and the other related to compression.
Dryburgh and Ogdenl) introduced thin coatings on the curved boundaries of the bent block
and made comparisons with the uncoated case. Their findings show that, relative to the latter case,
bifurcation is generally promoted by the presence of surface coating, on either or both curved bound-
aries, that is, the bifurcation occurs at smaller strains. The relative sizes of the shear moduli for the
coating and, respectively, the bulk material were found to play an important role in describing this
phenomenon.

The finite elasticity works reviewed above share a common feature in that they all deal with
incompressible materials. So far, little is known about the role played by compressibility on the
bifurcation behaviour in pure bending. The reason might be rooted in the absence from the literature
of a manageable closed-form expression for the pre-bifurcation deformation. Aron and Y2ang (

13) touched upon issues like existence and uniqueness for bending deformations in unconstrained
elastic materials, while Bruhreg al. (14) used Hencky's compressible elasticity model to investigate
closed-form solutions for cylindrical bending. They succeeded in deriving explicit expressions for
the bending angle and moment in terms of the circumferential stretches on the curved boundaries.
The solution is quite involved and it seems unlikely to be useful for anything but numerical calcula-
tions. Moreover, the particular Hencky’s elasticity framework is restricted to moderate deformations
only.

A critique of bifurcation phenomena in pure bending was given by Gent and Tonho
pointed out that their experiments did not agree with the theoretical predictions based on the surface
instability concept proposed iff), In particular, they found that the instability occurs for a smaller
degree of compression and the block adopts a configuration with a small number of sharp creases
on the inner surface. To fully explain this observation would require a nonlinear post-buckling
analysis because the bifurcation involved is probably of subcritical type. We note in passing that
Gent and Cho’s creases are, to a certain extent, very similar to those encountered on the curved
surface of severely torsioned stocky rubber cylind&6}.(These phenomena are likely to be related
to the failure at the boundary of the complementing condition ($@eand the references therein),
and they fall outside the scope of our study.

With this background in mind, we reconsider in the next sections a particular instance of the pure
bending problems taken up id@ 11). The aim is to elucidate the nature of the instability and to
analyse the mathematical structure of the governing boundary-value problempuhéyL > 1.

To reduce the algebraic complexity of the bifurcation equations, we focus on the incompressible
neo-Hookean elastic material. In sectidrthese assumptions are shown to yield an eigenproblem
for a fourth-order partial differential equation with variable coefficients, subsequently simplified by
seeking a solution with separable variables. Direct numerical simulations reveal an Euler-type buck-
ling phenomenon for & n < oo, but in the limity — oo this degenerates into a surface instability.
Some erroneous interpretations proposed by previous investigators (for examme(X0)) are

also corrected here for the first time. As demonstrated in sedfitime transition regime between

the two different forms of instabilities can be efficiently captured by singular perturbation methods.
The two contrasting asymptotic methods employed are discussed separately in gett{gvisB
analysis) andt.2 (boundary-layer (BL) approach), respectively. The former would seem to be the
most appropriate because the differential equation in question has variable coefficients. However,
it transpires that conventional BL arguments shed more light and help us to steer clear from the
confusion created by the presence of a multiple turning point. Unlike the recent asymptotic studies
(1 to 3), here turning points play no role whatsoever (the same assertion appears to hold for the
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related works 18, 19)). The paper concludes with a discussion of the results obtained, together with
suggestions for further study.

2. Overview of the model

Finite pure bending of incompressible hyperelastic materials is discussed in a number of books such
as @0) or (21), for example. To make the paper reasonably self-contained, we summarise some of
those ideas below.

The reference configuration of the initially undeformed rectangular cross section of the hypere-
lastic block is the region (see Fig)

Bri={(X1,X2) e R2| =A< X1 < A, —L < Xp < L)

Supposing that the block is bent (symmetrically with respect txtkexis) into a sector of circular
cylindrical tube, the current configuration of the deformed cross section is easily represented in
polar coordinates by the domain

Be:={(r,0) e Rx (=z,z] |ry <r <rz, —wo < 6 < wo}.

Rivlin (22) showed that for an incompressible elastic material, this type of deformation may be
described by the mapping

r=(d+2X1/0)Y?, 6 =wXo, (2.1)

whered is a quantity to be specified later andcan serve as a control parameter as it is related to
the angle of bendingyg := wlL. Since the plate cannot be bent into itself, we require that

O<wp<m, (2.2)
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Fig. 2 The undeformed (left) and deformed (right) cross sections of the rubber block shown in Béending
is symmetric with respect to theg -axis so that the two angles marked are congruent and equgt &ee the
text for more details
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an assumption used tacitly henceforth. Although the deformation record@dljrséems to have

an iconic status among workers in finite elasticity, it is clear that the kinematics afforded by that
expression are somewhat restricted. The IXes= constant become arcs of the circle- constant,

while the linesXs = constant are transformed in lin@s= constant; in other words, ‘cross sections’
perpendicular to the vertical symmetry axis/® remain orthogonal to the deformed axis of the
current configuratiorBc. This is somewhat at odds with the commonly accepted point of view

in structural mechanics, according to which pure bending of thick sandwich panels (for example,
(23)) is based on models that allow cross sections to slide relative to the normal to the deformed
axis. Nonetheless, the nonlinear mappidyis still a sensible choice for the type of questions we
want to answer, at least in a first approximation.

The bifurcation analysis carried out in this work is based upon linearising the plane strain equa-
tions of finite elasticity around the nonlinear pre-buckling deformat®@md)( This approach to
linearised, or incremental, bifurcations is well established (8&g2d), for example), so we shall
not rehearse it here. Instead, we limit ourselves to pointing out the key steps that lead to our eigen-
problem.

We assume that the constitutive behaviour of the material is characterised by a strain energy
functionW = W(4,, 49), where the principal stretchds and iy are associated with the Eulerian
principal directionss and, respectivelygy. Due to the incompressibility constraint, these can be
written as

=271 and ip=1:=or,

which defines the notatiori. According to Ogden 41), the two-dimensional version of the
incremental equations of equilibrium for incompressible elasticity reads

divd=0 and divl=0, (2.3)

wherel = (0(r, 9), o(r, #)) is the incremental displacement field ahdenotes the incremental
nominal stress tensor with components

§; = Lijw Fa + pRj — Pdij, i,j e{r,0}.
Here, p is the increment in the Lagrange multiplier = p(r, ) associated with the internal
constraint of incompressibility anB;j represent the components of the incremental deformation
gradient

o

1,0 o
o u)l’ 7(“99 _D)
U,r r (U + V,0 )
Finally, Lijx are the components of the fourth-order tensor of instantaneous incremental moduli
which, in Eulerian principal axes, has six independent non-zero such componer2g){cf. (

Liijj = 4i4jWj, (2.4a)

22W = AW, L
I(IA%_AJZJ J), Ifl¢]92’|7§ija

$(Liiii — Liijj + AW, ifi # 4 = 4,

Lijj = (2.4b)

Lijji = Ljiij = Lijij — AW, (2.4c)
whereW, = oW/aki, Wij = 62W/6/1i6/1j and the summation convention does not apply.
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Direct calculations show that the system of equati@?3) can be reduced to

rzﬁar = r[r(l—/nll— L/1122+ P,r ) + L1111+ L2zoo— 2L 11270,
+r2(L1111— L1120 +L2121(0,00 —8,0) + rL 2112510 (2.5)
rB.y =L+ L1210 0, +0,0 —0)+ r2L12120,rr 47 (L2112+ L1122 — L2222)0rg.  (2.6)

To avoid overloading the notation, we used the correspondenee 1 andd — 2 for the
incremental moduli, and we indicated their derivatives with respectip dashes. A further sim-
plification is afforded by the incremental incompressibility condition2r8), which allows us to
deduce the existence of a potenthak ¢ (r, #) such that

o ° 6
0d=--— and v= ——¢.
r oo or

The upshot of this observation is that the two equati@3) @nd @.6) can now be combined into
a single partial differential equation for the potential function. After some routine (but lengthy)
manipulations, we get

2.7)

4
> Lilg] =0, (2.8)
j=1
with £;, partial differential operator of thgth order, defined according to
o4 4 o4
L4:=ar*— +2pr°—— —
4= A T2 S 1 g
o3 ANEA
L3:=2%Cra) — + 235
3 (Fa) a3t (r> aron2’

ol (o] 2 e e (a2 ] o®
L=t [a +(r)}ar2 et r r2| 062’

and
1
a(r) '=Lizia, y(r):i=Laiz, p) = §(L1111+ L2222) — (L1122+ L2119).

The form @.8) of the bifurcation equation is valid for any choice of incompressible hyperelastic
material but, as it stands, the model is not easily amenable to analytical work. Before further sim-
plifications are implemented, we must address the issue of boundary conditions.

The two curved boundaries 8¢ are assumed to be free of incremental tractions

ar3¢,rrr _(Zﬂ + a)(¢’99 _r¢,r6’6’) - 09 for (r5 (9) € {rls r2} X (_ﬂs 7[]3 (29a)

b.00 +1 or —T2p,re =0, for (r,0) € {r1,r2} x (-, zl; (2.9b)
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these conditions can be obtained as a particular case of the calculations of Dryburgh andl@gden (
to which the reader is referred for more information.
Next, we look for separable solutions of the bifurcation equat®®8) {n the form

¢ (r,0) = O (r)coagms), (2.10)

wherem € N is the azimuthal mode number related to the number of ripples on the compressed side
of the rubber block, whil& (r) represents the infinitesimal amplitude of this cosine rippling pattern.
Several types of boundary conditions are possible for the straight boundariks &bllowing
Haughton 10) and Dryburgh and Ogderi{), we consider zero incremental displacement in the
radial direction and vanishing normal traction. It can be shown that these conditions are satisfied as
long as

m="r _nr (2.11)

ol wo
for some positiven € Z. With this information in hand, all that remains to be done is to choose
a constitutive model and carry out the simplification 2fgf with the help of the assumed form
solution recorded inA.10).
The bulk material is modelled by a simple neo-Hookean strain energy function specialised to

plane strain elasticity

1
W(ir, dg) = 57(iF + 25 = D),

t being the shear modulus of the material. (In fact, the analysis conducted henceforth also applies
to the Mooney—Rivlin material, which coincides with the neo-Hookean material in plane strain.) As
shown by Rivlin 2) and subsequently discussed by oth& <0, 11), for this particular choice of
constitutive law the constantin (2.1) is determined by

L2
d = —(1+45°wh)"2
®g
On making use ofZ.10 in (2.8) results in a fourth-order ordinary differential equation. When
expressed in terms of the non-dimensional variaplésdius),u (related to the mode number) and
n (aspect ratio), defined by

r A
pi=rs KH=NTLoni=
it can be cast as
D" +P(p)@” + Q(p)@" + R(p)® +S(p)® =0, onpy <p < pa. (2.12)
Above, the dashes denote derivatives with respegtdand
Pp) = —j, Qp) = [; —u? (w%p2 + wglpzﬂ :

R(p) = -+
p

3 2 2 2 3 4
=4 — , S =u.
pz H <w0p a)2p2>‘| (p) U

0
Note that the inner and, respectively, the outer curved surfaces of the current configuration become

1
pz= 10+ 4nPwl)™? £ 2nwo] /2, (2.13)
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while the principal stretch in they-direction assumes the simple form
A= wop. (2.14)
The solution of 2.12) is found subject to the non-dimensional boundary conditions obtained from

(2.9 via (2.10:

2 2 2
" — 1? (wgpz + a)2p2> o+ % (wgpz + a)2p2> ®=0, forp=p12, (2.15a)

0 0.
1 u?
= =0+ 50 =0, forp=pio (2.15b)
P wpp

Now, the normal mode approach has reduced the bifurcation analysis to the study of a standard ordi-
nary eigenproblem fob (p) andwg € (0, 7). The shear modulus of the neo-Hookean solid plays no
role in the eigenproblem: in that sense, the nonlinear effects are purely geometrical. For structural
mechanics problems (for exampl@5]), the route taken above is free of pitfalls, whereas in finite
elasticity it is only deceptively so. The danger is that the bent block might develop shear bands or
other material instabilities before the compressed inner surface starts to wrinkle. Such occurrences
are heralded by a loss of ellipticity in the partial differential equat@®)( unfortunately, they re-

main undetected by2(12). Conveniently, the use of a neo-Hookean constitutive law precludes any
form of material instabilities (note thal, is strongly elliptic in this case). Such exotic effects, how-
ever, were accounted for i), but it was found that the “surface instability” was always the first to
occur.

3. Numerical experiments

The stability of the bent rubber block is now investigated numerically, the starting point being the
eigenproblem.12), (2.15 formulated in sectio@. Our first objective is to find out the dependence
of the critical bending anglex on the aspect ratig = A/L. It is expected that an Euler-type
buckling instability is experienced for & # < oo but that in the limity — oo, this behaviour
degenerates into a surface instability. Such behaviour is consistent with the results of Hati@hton (
and Dryburgh and Ogderl)). It appears that earlier investigatorg (5) reported only surface
instabilities although intuitively one would expect that the finite thickness of the block should set
a length scale for the deformation pattern (recall that there is no characteristic length in surface
instability problems).

A peculiar feature of our eigenproblem is the dependence of the mode numibef2.11) on
the bending anglex. In order to identify the former quantity for a givepy we plot the critical
principal stretch on the curved inner boundary= p; in terms of this number, the critical value
of m being that associated with the largést= A(p1; n,n) whenn e N. The practical imple-
mentation of the procedure is reported in FBgwhere we consider a sample of values fdfsee
the caption for details): the horizontal axis records the mode numbsey, while the vertical axis
shows4;. Strictly speakingn € N but here we take this parameter to be a positive real number
(>1) and note thatyg, the eigenvalue of the probler2.02), (2.15, depends on this quantity as
well as ony, that is,wp = wo(n, n). Fory = 1, we find the curve shown with a continuous line
and which consists of two sloping parts separated by a peakcorresponding t;n ~ 2.43).
Henceforth, we refer to this curve &3. Note that the right-hand part is monotonic decreasing
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Fig. 3 Plot of the critical stretcti; = 1(p1) againsim/z = n/wq, as obtained by direct numerical integration
of the eigenproblem2(12), (2.15 for a sample of aspect ratios The maximum principal stretch for each
individual case considered is marked by a small circle and corresponds to themyaipts: 1-0), P, (3 = 3:0),

P3 (n = 5:0), P4 (n = 10:0), P5 (3 = 150) andPg (n = 20-0). These maxima are attained foe 1, except
for Py that corresponds to ~ 2.43

and unbounded but here only a segment of that curve is shown. The neutral stability curves for
the other values of = »j > 1 considered ar€; = {(A1(p1; nj,n),n/wo)|n € Ry, n > 1},

and they all turn out to be part &f;. (As pointed out by an anonymous referee, this is best seen

by rescaling 2.12), (2.15 with the help of the new independent varialdle:= pwo and the pa-
rameteru = u/wo; the resulting eigenvalue problem fdr(Z) involves now onlyA; and m.)

The remark made above regardifig applies to theC; curves as well. For the sake of clarity in

Fig. 3, the curves are shifted to the right by equal amounts and shown separately as dashed lines,
but their top end pointsf, — Ps) are marked o€ as well. All such points correspond to the choice
n=1.

The feature illustrated in FigB is generic and not restricted to the particular valueg of 1
chosen. A first observation is that the number of ripples on the compressed side of the block in-
creases with the non-dimensional thickngsg/hen this latter quantity is reasonably largeX 3),
the critical mode number given b.(L1) always corresponds t0 = 1. Thus, the behaviour of a
very thick block can be understood in two different wagig:assuming thah = 1 andy > 1 or,
conversely(ii) fixing » = O(1) and lettingn > 1.

It is instructive to gain some insight into the behaviour of the critical eigenfunctions associated
with the P;’s marked on Fig3. This information is included in Figd, where we show the radial
and azimuthal displacements only fBf — P4, as obtained from the two equations ). The
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Fig. 4 The eigenfunctions associated with the critical poiR{sin Fig. 3: (a) Py (y = 1.0), (b) P> (n =
3.0), (c) P3 ( = 5:0) and (d)P4 (7 = 10:0). In each plot, the continuous line represents-®(p) (radial
displacement) and the dashed line is the graph’¢) (azimuthal displacement). The range for these functions
is p1 < p < p2 and they are suitably normalised so that their maximum amplitude is unity

localisation of the deformation near the curved inner surface of the bent blockmihereases is
clear. The stress concentration phenomenon revealed by these plots is to be expected because the
thicker the rubber block, the more difficult it is to bend, that is, the instability is likely to occur
for small values of the bending angle. Hence, curvature effects are only ‘felt’ in the immediate
proximity of the bent inner surface. In the remainder of the paper, we show that this behaviour is
ideally suited for a singular perturbation analysis.

At this juncture, some remarks on the method used to identify the critical mode number are
appropriate. At first sight, our work in Fig might appear a bit long winded. The coincidence
of the curvesCj (j = 2,...,6) with €, could have been inferred by taking into account that
the principal stretch is independent ofi and depends only on the produgiy—see 2.13 and
(2.14). However, we believe that the longer route taken here has the advantage of clarifying the
interpretation of the neutral stability curves for the related bending problems discus§ed @ (
Following Haughton 10), we plot in Fig.5 the critical azimuthal stretch; on the inner face as a
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Fig. 5 A plot of critical values ofl1 = A(p1) against undeformed lengtty A for mode numbers ¥ n < 10
(see also Fig. 5 in1(0)). The arrow indicates the direction of increasimg

function of the inverse aspect ratjo® = L /A, for 1 < n < 10. Although a different formulation

of the eigenproblem was used in that work—without recourse to any potential function—the results
we show are the same (as they should be since the height of the rubber block was fairly large,
H/A = 10). The only exception is the unusual feature seen in that paparZof, which we did

not find with our model.

The response curves shown in Figare reminiscent of similar situations encountered in the
buckling of thin-walled structures (for exampl@5). For those particular problems,represents
the number of half waves of the instability pattern and plots like the one shown above can be used
to infer the wavelength of the buckling pattern from the knowledge of some aspect ratio (some
recent work in that direction can be found ihtp 3)). In the present context, such extrapolations
appear to provide misleading information for the obvious reasomtizatot the true mode number.
There are, however, some asymptotic features that can be gleaned from the plotbiarteghis
is explained next.

Triantafyllidis (7) and Gent and Chdlf) suggested that the inner face of the bent block wrinkles
due to a surface instability phenomenon. Bid4,(26) showed that if a semi-infinite neo-Hookean
solid is compressed in plane strain, it will undergo a surface instability when 0-544 or, more
precisely, wheri; is the positive root of the cubic

X4+ x24+x—-1=0 (3.1)

(cf. also Flavin 27)). This expectation is anticipated by the results of Big the limit » — oo and
corresponds tm — oo (see the lower-right asymptotic value of the thick curve). On the other hand,
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the same conclusion is not so obvious from Eidgpecause it proves to be very difficult to approach

the limit =1 — 0 much beyond of what is already shown there. Indeed, the differential equation
(2.12 becomes very stiff due to the presence of a BL neat pj, as it is explained in sectioh2
Nevertheless, based on the above discussion it is appropriate to conjecture that the left end points
of all curves in that plot will tend towards Biot’s surface instability thresholgas— 0; further
remarks on related stability problems where this crops up are includeg)in (

4. Stress concentration fom > 1

The mathematical structure of the boundary-value problem derived in s@d8akin to a number

of interesting situations investigated recently in the literature bgtrl. (18, 29) and Haughton and

Chen @9). Broadly speaking, these authors encountered a particular occurrence of turning points
(for example, 80)) or repeated roots in the characteristic equations associated with bifurcation
analyses for everted cylindrical/spherical shells. It was stated that such special points could aid in
detecting sites of high-stress concentration within elastic solids. Furthermore, in view of the recent
work on edge buckling of thin filmsl(to 3), it would appear reasonable to conclude that Fu's
observation might go a long way towards explaining the localised behaviour seen i Figat

this is not true we are going to see in secttb8 but before we pursue those issues it is important

to gain an understanding of the relevance of WKB techniques in the present context. According to
the previous interpretation of the parametgrs A/L andn (defined in 2.11)), the bifurcation of

a thick rubber block# > 1) can be understood by takimg= 1 and allowingn > 1.

4.1 WKB approach

The WKB method is a simple and efficient tool for dealing with variable-coefficient linear differen-
tial equations containing certain small or large parameters. We exploit the preseneeoh > 1
in our eigenproblem to describe the dependenaeydbr A1) on this large parameter.

A WKB solution of (2.12) is sought in the form

p
(p) = Y(p) exp <# / S(é’)dé> , (4.1a)
p

1

1 1
Y(p) = Yo(p) + ;Yl(p) + ?Yz(p) +os (4.1b)

whereS = S(p) is one of the roots of the characteristic equation

1
st— (a)(ZJpZ-szz) $+1=0
4
andYj(p) (j = 0,1,...) are functions that are to be determined sequentially by substituting the
ansatz 4.1) into (2.12, and then solving the differential equations obtained by setting to zero the
coefficients of like powers of.. The above bi-quadratic has four real roots, labelled

(+)( ) = Fwo () ( ) = ii
S P, S(p oop

and they lead to a set of linearly independent (approximate) solutiong.fti) (Given our expe-
rience with the direct numerical simulations of sectByrit is expected that only the exponentials
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corresponding t (_2) (p) need to be used in order to capture the through-thickness localised be-
haviour. We shall employ the superscripts ‘1’ and ‘2’ to identify quantities associated with these
characteristic exponents id.().

The determinantal equation that follows by imposing the boundary condittoh$) @t p = p1
on the WKB solutionsd® and®® has the form

U1(p1)Va(p1) — Uz(p1)Va(p1) = 0, (4.2)
where
i/ 2 iy ,u2 2 i
Uj(p) = 07 = | ofp® + — 5 | 0+ = { fp?+ — J oD, (43)
@op P @op
Y4 1 Y4 ,uz i .
Vi(p) =0 - =o' 4 S_al), j=12 (4.4)
P Wpp

When calculatingd) (j = 1, 2), terms of ordet) (x—2) and higher in the ansata.(Lb) will be ig-

nored. These solutions are fixed by routinely solving a series of non-homogeneous linear differential
equations (the so-called ‘transport equations’). Without loss of generality, the various multiplica-
tive and additive constants in the expressions of those functions can be chosen to be unity and,
respectively, zero; after some algebra,

_ 5wgp® + 1003p* - 3

v,y = P L Y@ = YO ().
0 (P) (1—CUSP4)1/2 1 (p) 4600p2(1—603p4)2 0 (p)
2 4 4

3wo(wgp™ + 1) 2

YP(p) = —L Y@ (p) = L T Iy Dy,

° e R 21~ wgph? °

and thus,
G0) () 1,30 P =) :
OV (p) =4 Y (p)+;Y1 (p) p exp| u S Qdc), j=L2 (4.5)
p1

It must be noted tha‘t’i(” (i=0,1;j =1,2) become singular whem =p = wgl € (p1, p2);in

the language of differential equations, this represents a (multiple) turning point of the differential
equation 2.12. Such points are usually defined as those values of the independent variable for
which some of the roots of the characteristic equation coalesce. For this particular example, both
Sf“) (p) = S§+) (p) and SE_) (p) = S%__) (p), that is, two pairs of roots merge. Strictly speaking, the
validity of the above formulae for.!) (i = 0,1; j = 1, 2) requiresip — 5| > u~%2. Although

p depends on the unknown eigenvalue, our numerical experiments suggest that the turning point
remains confined to the central part of the interyal, p2). The connection problem across the
turning point can be easily solved following the detailed analysis of Fu andli8nhbiut plays no

role in the sequel.
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On making use of4.5) into (4.2), we are able to expand the determinantal equation in decreasing
integral powers oft > 1,

T'o(41) + 't (wo, /11)/]; + I'2(wo, /11):2 4+---=0, (4.6)
with
To(z) =82+ 1> - +z+ )P +22+2-1),
I'1(wo, ) := 2wo(4z'? + 157'° + 2328 + 82 — 722 - 3)
and
I'2(wo, 2) @ (62%% — 1872°° — 3728 — 477716 — 1118%

T Z+DA2 -4
—930z'? — 600210 — 478 — 1202° — 1407* + 452% + 33).

The solution of 4.6) yields approximations for both the critical bending angteand the principal
stretchl1. For the sake of brevity, we record only the final results here:

_ Q1 O
o =00+~ 424, (4.7)
© o
Qo =0771844 O; = —1.305565 O, = 1539664
and
AL A
Ji=Ao+—+ 2+, (4.8)
uo o
Ao= 0543689 Aj— 0385922 A,— —4.184333

As expectedAg ~ 0-544 represents the critical value of the principal stretch for the surface insta-
bility of a compressed neo-Hookean half-space @4, 26)); the next-order corrections in formula

(4.8) account for the finite size of the rubber block. To assess the usefulness of the two asymptotic
results 4.7) and @.8), a set of comparisons with direct numerical simulations is recorded in Table
The agreement is excellent for bath and1; in particular, we find that the relative accuracy (RA)
associated witlwg ranges between4% (n = 7) and 08% (n = 20). The approximation of1 is

even better, for RA is at most4% (n = 7) in all cases considered.

The WKB analysis has the advantage of producing a robust approximatios f@r 11) with
minimum effort. However, the presence of the turning point is worrisome because it tends to ob-
scure the true nature of the localised behaviour exhibited2td/2y It is not immediately clear
whether such behaviour has anything to do with the turning point, and thus a change of tack is
imperative. Sectiod.2 shows that conventional BL techniques are better suited for understanding
the underlying mathematical structure responsible for the scenario depicted 4 Hig details of
that particular approach are now highlighted.
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Table 1 Comparisons between direct numerical simulations of the eigenprol@etd,((2.15

and the asymptotic results recorded in the formuld&)( (4.8). The bending angle and the
azimuthal stretch on the inner boundary associated with the former set of values are denoted by
wgum and, respectwely/l UM The corresponding asymptotic quantities are identified below

asy
aswg™ and >

wgum

asy
)

num
’11

asy
A 1

0744313103
0744272309
0744928414
0745886633
0746957132
0748046186
0749107553
0750119338
0751072409
0751964384
0752796399
0753571374
0754293016
0754965302

/33652725
36778030
r39453964
041762924
43772049
45533828
47090530
48474960
049714126
r50829238
51837997
52754745
/53591537
54358139

55301084
54325988
153494699
®52780068
52160229
51618218
51140475
350716526
®50337796
®49997574
149690282
49411416
®49157200
48924583

52585690
52419947
52104104
51733662
51352710
50981720
®50629796
50300415
49994245
®49710574
(49448050
®49205075
48980000
348771235

4.2 BL analysis

To begin, we introduce the stretched varialle= (1) such thatp = p1 + Xu~* and look for
solutions of .12 with

1 1
W(X) = Wo(X) + Wl(X); + WZ(X)F +--, (4.93)
Q Q
wo= Qo+ -+ e, (4.9b)
oo
Al A
pl_Ao+—+—2+ (4.9¢)

Although @.9b and @.99 are not independent, it helps to expandn the form suggested here.

Of course, when solving the governing equations for the coefficdfisX) (j = 0, 1,.

..) one

has to remember formul& (13 and replace the\i’s with their expressions in terms of th;

(i=01,...,

K).

On substituting4.9) into (2.12), we find a hierarchy of differential equations

k-1 3

LeL[Wi] = Z Z A.(Jk)

dXJ

0) b

(4.10)
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in which

d4 1) d?
Lol =———|B+5 | —+1
BL = 44 ((O+Cg> dxz+

is the BL differential operator angh := Ao€Qo. The quantitiesAi(}‘) = Ai(}‘)(X) will be introduced

as we go along, with the convention tmﬁ]p) = 0. In contrast to the WKB analysis, the general
solution of each one of the equations $X0 is trivially found, for Lg_ has constant coefficients.

Equations 4.10 are solved subject to two types of boundary conditions. The first set is obtained

from (2.15 with the help of the ansatz(9) and can be cast in the general form

k—1 (k)djVVi
Ha[Wi] =Z _Z B 5> forX=0, (4.11a)
i=0 j=0,1
k—1 i
diw
HoaWd =Y Y clV=" forx =0, (4.11b)
i=0 j=0,1 b odxl

where

Tmge T\ g ) ax M R gt

the remark made for thei(}‘)s applies to the boundary coeﬁ‘icierﬁg) andCi(jk) as well.
The second set of boundary conditions is motivated by the numerical experiments illustrated in
Fig. 4 and it involves the requirement that

diw
dxil -0 asX — oo, (4.12)
fori > 0,j =0,...,3.Itis also worth pointing out that the solution &.12 is exponentially

small in the outer layer (cf.sectighl), so that .12 can be viewed as matching conditions between
the inner and the outer solutions.

The leading-order problem fafp(X) is homogeneous and consists of the differential equation
(4.10 for k = 0, together with the boundary conditiors11). Rejecting the exponentially growing
contributions and imposing the normalisation conditg(X = 0) = 1, it follows that

2 1+ ( x>
Wo(X) = —— exp(—¢oX) — exp| —— ). 4.13
0( ) 1 (61 XFX ¢o ) 1_4_61 Xp Zo ( )

When this function is substituted into the boundary conditions, one obtains an algebraic equation
S+af-a+1=0,
whose left-hand side can be factorised in terms3of)(and two other polynomials which have no

positive roots different from unity. It remains that ~ 0-543689, a value identical thg found
in section4.1; the same turns out to be true fQg in (4.90) and, respective\g in (4.7).
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The next-order problem corresponds to taking- 1 in (4.10 and @.11). The coefficients that
appear in these equations are

M . 1(4 @._ 2 4 . 2
= o — 3, = —=(A0Q1+ A1Qo + Qo X)(¢y — 1), =—,

1 AOC& 0 2 Cg 0 3 Ao
gD ._ _0 4, g ._ 2 4_o

o0 = ——3 0+, 01 ‘= —3(A0Q1+ A1Q0)((y — 2),

¢o ¢o

ch = 2 (A0 + A1Qp). CU = 1A

00 -—?g 021 + Az 0), 01 '_E 3-

The first-order correctiof; in the expansion4.9b) of the eigenvaluey is recovered by enforcing
the Fredholm solvability condition on the non-homogeneous equation satisfié(®§). The task
is simplified by the observation that the homogeneous problemV§dK) is self-adjoint. Standard
calculations show that the constraint mentioned amounts to

d ? d
ol { GO+ (C8 - B Mo G20 - B w02

e 3 (1)djW0
- /0 Wo(&) Y AR o @k, (4.14)
=1

Note that the integral on the right-hand side 41 is evaluated analytically, and thus the solv-
ability condition will reduce to a linear equation ;. The solutionQ; ~ —1.305562 is, for all
practical purposes, identical to the WKB result obtained earlier.

The pattern of the BL approach for the pure bending problem is now clear: at each step, one has
to impose a solvability condition for findin@; that features in4.9b), and then solve (exactly)
a non-homogeneous fourth-order boundary-value problem t@/geX). The algebraic manipula-
tions become increasingly unwieldy as we move to further orders, but symbolic algebra packages
help considerably. We have imposed the solvability condition fortheproblem and found that
the value ofQ, predicted agreewith Q, to within five significant digits; for completeness, the
coefficients needed to set up that problem are recorded below:

@ ._ Q0,4 @ ._ A @ . A
Al =730 -3, Az =Ay Az i=Ag.
(o
2 1 2 2
Q= ?[QS(X AN +9) + 2108 + 3ol AR =~ (X + Ao,
0 0

1
Q = (280008002 + A2Q0) (¢ — 1) + [Q3(X + A1)? + A202) (8 + 3)
0

+4Q1(X + A1)(EG + Do — 3Q3¢E).
1
BSg = —?[Alﬂé(cs‘ —6) + 208 — 2o,
0

1
B = ?[Z(Aoﬂz + A2Q0)(¢5 — 2)¢0 + (AFQF + AZQF) (&3 + 6) + 441915 + 20l
0
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2 ._ @ 2 ._ p®
Big :=Boy> Bi7 == Bpys
1
C%=—?Bm$ﬁ+ﬁﬁé—%ﬂhm+A¢b—MﬂmL
0

@__M  L@Q_~0 ~Q_~0
Cor = TAZ Cio =Cop» Ci1 =Cor-
0
It might appear that our BL approach is a by-product of adopting the simple neo-Hookean form for
the constitutive response of the bulk material. However, this impression is only apparent, for when

choosing a strain energy function of the form
Wr, dg) x Gff + 29 = 2), (@ > D), (4.15)

the same mathematical structure persists. The corresponding analysis mirrors very closely that for
the present case and hence is omitted. By no means should this give the impression that the con-
stitutive behaviour is unimportant. As demonstrated in a recent study by Getiely (28), the
topology of the neutral stability curves for an inflated hyperelastic spherical shell depends on the
material non-linearity, but in the present context this would amount to considering expressions more
general than the power law.(L5).

5. Concluding remarks

We have re-examined the bifurcations in cylindrical bending of a thick rubber block under the
assumption of plane strain deformation. The constitutive behaviour was taken to be that of a neo-
Hookean incompressible solid, the reason for this being twofold: we wanted to (a) exclude any
material instabilities and (b) simplify our equations as much as possible. The outcome turned out to
be a fourth-order eigenproblem with variable coefficients. Direct numerical simulations and singular
perturbation methods were employed to unravel the origins of the rippling pattern triggered on the
compressed face of the block, when the bending angle is sufficiently large. It has been shown in
section3 that previous investigatord,(10, 15) misinterpreted the definition of the so-called ‘mode
number’ and thus made a number of inaccurate statements. In particular, we want to reiterate here
that blocks of large, but finite, thickness will always experience an Euler-type buckling instability
with a well-defined number of ripples. It is only in the (theoretical) limit of an infinitely thick block
that one finds the degenerate surface instability. Our results deal with the neo-Hookean material, but
it is believed that the above statement remains valid in other cases as well. Provided that material
instabilities are excluded, it seems unlikely that a different choice of constitutive law would have
gualitative repercussions on the main conclusions of the present investigation.

Our work has also demonstrated that the use of WKB methods in the context of incremental
elasticity is unnecessary and even misleading. The multiple turning point featuring in the present
eigenproblem has little to do with the tendency of the rippling deformation to confine itself near the
curved inner surface of the block. Interestingly, a simple-minded BL analysis was able to expose
the nature of the localisation in an almost trivial way. In spite of the original complexity of the
problem, we found that if the rubber block is sufficiently thick, its possible bifurcations from the
cylindrical configuration are governed by constant-coefficient differential equations—easily solved
in closed form. This has important overall implications since preliminary calculations indicate that
the problems taken up iig, 18, 19, 29) are amenable to a similar BL analysis. The details of those
investigations will be the subject of a forthcoming woB4).
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