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Surface Instability of Sheared
Soft Tissues
When a block made of an elastomer is subjected to a large shear, its surface remains flat.
When a block of biological soft tissue is subjected to a large shear, it is likely that its
surface in the plane of shear will buckle (appearance of wrinkles). One factor that
distinguishes soft tissues from rubberlike solids is the presence—sometimes visible to the
naked eye—of oriented collagen fiber bundles, which are stiffer than the elastin matrix
into which they are embedded but are nonetheless flexible and extensible. Here we show
that the simplest model of isotropic nonlinear elasticity, namely, the incompressible neo-
Hookean model, suffers surface instability in shear only at tremendous amounts of shear,
i.e., above 3.09, which corresponds to a 72 deg angle of shear. Next we incorporate a
family of parallel fibers in the model and show that the resulting solid can be either
reinforced or strongly weakened with respect to surface instability, depending on the
angle between the fibers and the direction of shear and depending on the ratio E /�
between the stiffness of the fibers and that of the matrix. For this ratio we use values
compatible with experimental data on soft tissues. Broadly speaking, we find that the
surface becomes rapidly unstable when the shear takes place “against” the fibers and
that as E /� increases, so does the sector of angles where early instability is expected to
occur. �DOI: 10.1115/1.2979869�

Keywords: soft tissues, large shear, extensible fibers, mechanical instability
Introduction

Rubberlike solids and biological soft tissues can both be effi-
iently modeled within the framework of finite elasticity, which
an account for large deformations, physical nonlinearities, in-
ompressibility, residual stresses, viscoelasticity, etc. One of the
ost salient differences between the two types of solids is that at

est, elastomers are essentially isotropic while soft tissues are es-
entially anisotropic because of the presence of collagen fiber
undles. In that respect, it is worthwhile to consider the effect of
ncorporating families of parallel fibers into an isotropic matrix
nd see if it can model some striking differences between the
echanical behavior of elastomers and that of soft tissues. Con-

ider, for instance, the large shear of a solid block. When the block
s made of an elastomer such as silicone, its surface remains
table; when it is made of a biological soft tissue such as a skeletal
uscle, its surface wrinkles for certain ranges of orientation be-

ween the direction of shear and the �presumed� direction of fibers
see Fig. 1�. Here we show that one of the simplest models of
nisotropic nonlinear elasticity, which requires only knowledge of
he fiber/matrix stiffness ratio, is sufficient to successfully predict
hese behaviors.

To model the isotropic elastomer �Sec. 2�, we take the incom-
ressible neo-Hookean solid and find that it does not suffer sur-
ace instability unless it is subjected to a substantial amount of
hear �critical amount of shear: 3.09; critical angle of shear:
2 deg�. In that case the wrinkles are aligned with the direction of
reatest stretch. �The wrinkling analysis relies on the incremental
heory of nonlinear elasticity; see, for instance, Biot �1� or Ogden
2��. Next, we introduce one family of parallel fibers into the
odel �Sec. 3�. To model biological soft tissues with one pre-

erred direction �Sec. 4�, we take the incompressible neo-Hookean
train energy density, augmented by the so-called “standard rein-
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forcing model”: this model has only two parameters, namely, the
shear modulus � of the soft �neo-Hookean� matrix and the fiber
stiffness E.

With respect to surface instability, only the ratio E /� of these
two quantities plays a role. We take it to be equal, in turn, to 40.0,
20.0, and 10.0, in agreement with the range of experimental mea-
sures found in the literature. We then find that when the angle
between the direction of shear and the direction of the fibers is
small, the solid is much more stable than the isotropic solid ob-
tained in the absence of fibers; when the angle increases but is less
than 99.0 deg �for E /�=40.0�, 102.8 deg �for E /�=20.0�, and
108.1 deg �for E /�=10.0�, the solid remains more stable than the
isotropic solid; however, when the angle exceeds those values, the
critical amount of shear for surface instability drops to extremely
low levels, indicating the appearance of wrinkles as soon as shear-
ing occurs. In that case, the wrinkles are found to be almost or-
thogonal to the fibers, in accordance with visual observations.

It is hoped that the paper provides a greater understanding of
the causes of certain instabilities in soft tissues and a quantitative
tool to measure what deformations �critical amounts of shear� are
permissible and in which directions. Surface instability has a di-
rect connection to slab and tube buckling, which in biomechanics
may potentially translate into aneurysm formation, arterial kinking
and tortuosity, brain trauma, and many other, still not well under-
stood, pathologies.

2 Surface Instability of a Sheared Isotropic Solid
First, we recall known results in the theory of surface wrinkling

valid for isotropic solids.
Consider a semi-infinite body made of an incompressible iso-

tropic neo-Hookean solid, for which the strain energy function W,
written as a function of the principal stretch ratios �1, �2, and �3,
is given by

W = ���1
2 + �2

2 + �3
2 − 3�/2 �1�

Here � is the shear modulus, and �1�2�3=1 by the incompress-
ibility constraint. Then subject the solid to a large homogeneous
static deformation, such that �2 is the stretch ratio along the nor-

mal to the free surface. It has long been known that the surface
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ecomes unstable when the following wrinkling condition is met:

�1
2�3 = �0 �2�

here �0�0.296 is the real root of �3+�2+3�−1=0 �Green and
erna �3�; Biot �1��.
In the following plane strain situation:

�1 = �, �2 = 1, �3 = �−1 �3�
he critical stretch of compression found from Eq. �2� is clearly

1=�0�0.296 �and then �3=�0
−1�3.38�. The conclusion is that

hen a semi-infinite neo-Hookean solid, which is neither allowed
o expand nor contract along the normal to its boundary, is com-
ressed by 71% in a given direction �lying in the boundary�, it
uckles with wrinkles developing along the direction orthogonal
o the direction of compression. Equivalently, when it is stretched
y 238%, it buckles with wrinkles parallel to the direction of
ension. Figure 2 summarizes these results.

It is natural to wonder whether the surface might have become
nstable in other directions earlier, that is, at compressive ��1�
atios larger than 0.296 or at tensile ��1� ratios smaller than 3.38.
lavin �4� showed that wrinkles develop parallel to the direction,
aking an angle � with the principal direction of strain associated
ith the stretch ratio �3 when the following wrinkling condition is
et:

ig. 1 Shearing „along the arrows… a block of silicone of ap-
roximate size 15Ã10Ã1.5 cm3 and a block of mammalian
keletal muscle „beef… of approximate size 15Ã10Ã3 cm3. One
oes not exhibit surface instability, the other does.

extension

compression

1

1
1

(a)

Fig. 2 Large plane strain deformation of a unit c
ible neo-Hookean solid. When the solid is compr
its surface wrinkles. Note that the analysis quanti

wrinkles.
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�1
2�3

2��1
2 cos2 � + �3

2 sin2 �� = �0
2 �4�

In the plane strain situation �Eq. �3��, this condition is quadratic in
�2,

�4 cos2 � − �2�0
2 + sin2 � = 0 �5�

It has real roots provided that � is in the range −�0����0 or
� /2−�0���� /2+�0, where �0= �1 /2�sin−1 �0

2�2.51 deg. In
the former range, the compressive critical stretch found from the
biquadratic equation �Eq. �5�� turns out to be smaller than 0.296
and, in the latter range, to be larger than 3.38. Thus surface insta-
bility for the plane strain equation �Eq. �3�� occurs when the iso-
tropic neo-Hookean half-space is in compression at a ratio �0 or,
equivalently, in tension at a ratio �0

−1. The wrinkles are parallel to
the direction of greatest stretch and orthogonal to the direction of
greatest compression.

Now simple shear belongs to the family of plane strains �Eq.
�3��, with the following connection between the principal stretches
and the amount of shear K �see Ogden �2�, for instance�:

K = � − �−1, � = K/2 + �1 + K2/4 �6�

Also, the direction of greatest stretch is at an angle � with the
direction of shear, where �� �0,� /4� is given by

tan 2� = 2/K �7�

Clearly �	1 here, and so surface shear instability occurs in ten-
sion when the amount of shear is equal to K0=�0

−1−�0�3.09.
The corresponding critical angle of shear is then tan−1 K0
�72.0 deg �see Fig. 3�. This is a quite large shear.

3 Sheared Fiber-Reinforced Solids

3.1 Finite Simple Shear. Now we consider a semi-infinite
composite incompressible solid made of an isotropic matrix rein-
forced with one family of parallel extensible fibers, themselves
parallel to the boundary of the solid. In the undeformed configu-
ration, we call �X1 ,X2 ,X3� the set of Cartesian coordinates such

0.296

1

3.38

b)

e near the surface of a semi-infinite incompress-
ed by 71% „or, equivalently, stretched by 238%…,
neither the amplitude nor the wavelength of the
(

ub
ess
fies
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hat the solid is located in the X2�0 region. We denote by E1, E2,
nd E3 the orthogonal unit vectors defining the Lagrangian �ref-
rence� axes, aligned with the X1, X2, and X3 directions,
espectively.

When the solid is sheared in the direction of E1, the particle at
moves to its current position x. We call F=�x /�X the associ-

ted deformation gradient tensor and B=FFT the left Cauchy–
reen strain tensor. We then call �x1 ,x2 ,x3� the Cartesian coordi-
ates, aligned with �X1 ,X2 ,X3�, corresponding to the current
osition x. In the current configuration, the basis vectors are e1,
2, and e3, and here they are such that ei�Ei �i=1,2 ,3�. The
imple shear of amount K is described by

x1 = X1 + KX3, x2 = X2, x3 = X3 �8�
e thus find, in turn, that

F = I + Ke1 � E3, B = I + K�e1 � e3 + e1 � e3� + K2e1 � e1

�9�
he principal stretches are given by Eqs. �3� and �6�, and the first
rincipal isotropic invariant I1=tr B is given here by

I1 = 3 + K2 �10�

ote that for shear, the second principal isotropic invariant, I2
�I1

2−tr�B2�� /2 is also equal to 3+K2.

3.2 One Family of Fibers. For solids reinforced with one
amily of parallel fibers lying in the plane of shear, we work in all
enerality and consider that the angle 
 �say� between the fibers
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Fig. 3 Large simple shear of a unit square in the surface o
solid is sheared by an amount K0¶3.09 „figure on the righ
tan−1 K0¶72.0 deg, which is physically abnormally large.
tension, which makes an angle �0¶16.5 deg with the direc
sheared faces….

0

0.20.2

0.40.4

0.60.6

0.80.8

1

0.20.2 0.40.4 0.60.6 0.0.8 1 1.21.2 1.41.4

M

?Φ

X3

X1

Fig. 4 A unit square lying on the surface of a
fibers „thin lines… and subject to a simple shea
¶26.6 deg… in the X1 direction. In the reference
M at the angle �=60 deg with the X1-axis. In the
vector n is orthogonal to the wrinkles’ front „w

with the direction of greatest stretch; it is at an an

ournal of Biomechanical Engineering

aded 24 Nov 2008 to 137.43.122.35. Redistribution subject to ASME
and the X1 direction can take any value. In other words, the unit
vector M �say� in the preferred fiber direction has components

M = cos 
E1 + sin 
E3 �11�

in the reference configuration. Simple shear is a homogeneous
deformation, and so M is transformed into m=FM in the current
configuration, that is,

m = �cos 
 + K sin 
�e1 + sin 
e3 �12�

Without loss of generality, we take the ranges K�0 and 0�

��, which cover all possible orientations of the fibers with re-
spect to the direction of shear.

To fix the ideas, consider Fig. 4. There we shear the half-space
by a finite amount K=0.5, in the direction making an angle 

=60 deg with the fibers. Notice that a unit vector n making an
angle � with the direction of shear is also represented in the cur-
rent configuration. This is the normal to the wrinkles’ front; in the
next section we look for surface wrinkles in all directions �the
angle � spans the interval �0 deg, 180 deg��, and we determine
which is the smallest corresponding critical amount of shear.

Finally we introduce the anisotropic invariants I4�m ·m and
I5�Fm ·Fm; in particular, we find

I4 = 1 + K sin 2
 + K2 sin2 
 �13�

Recall that I4 is the squared stretch in the fiber direction �5�. In
particular, if I4�1 then the fibers are in extension, and if I4�1
then they are in compression. Clearly here, when 0�
�� /2, the
fibers are always in extension but when � /2�
��, there exists

1.61.6

x1

semi-infinite incompressible neo-Hookean solid. When the
its surface wrinkles. The corresponding angle of shear is
en the wrinkles are parallel to the direction of greatest
of shear „and so, the wrinkles are almost aligned with the
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0.20.2 0.40.4 0.60.6 0.80.8 11 1.21.2 1.41.4 1.61.6
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ψ

mi-infinite solid reinforced with one family of
f amount K=0.5 „the angle of shear is tan−1 K

nfiguration, the fibers are along the unit vector
rrent configuration, they are along m. The unit
they exist…. Finally, the dashed line is aligned
1.41.4

f a
t…,
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tion
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certain amount of shear �explicitly, −2 / tan 
� below which the
bers are in compression.

3.3 Constitutive Assumptions. In general, the strain energy
ensity W of a hyperelastic incompressible solid reinforced with
ne family of parallel extensible fibers depends on the isotropic
nvariants I1 and I2 and on the anisotropic invariants �Spencer �5��
4 and I5. We assume that W is the sum of an isotropic part and an
nisotropic part. For the isotropic part, modeling the properties of
he “soft” matrix, we take the neo-Hookean strain energy density
n order to make a connection with the results of Sec. 2. For the
nisotropic part, modeling the properties of the extensible “stiff”
bers, we take a function of I4 only, say, F�I4�. Hence, we restrict
ur attention to those solids with strain energy density,

W = ��I1 − 3�/2 + F�I4� �14�
his assumption is quite common in the biomechanics literature.
lthough it does not prove crucial to the analysis, it leads to

ompact and revealing expressions. �Note that the consideration
f a more general W poses no major extra difficulty but results in
uch longer expressions.�
The corresponding Cauchy stress tensor � is �see, e.g., Ref.

6��: �=−pI+�B+2F��I4�m � m, where p is a Lagrange multi-
lier introduced by the constraint of incompressibility. The surface
2=0 is free of tractions: here �12=�23=0 follows from B12
B23=0 and m ·e2=0 �see Eqs. �9� and �12��, while �22=0 gives
=�. Thus, the prestress necessary to maintain the shear �Eq. �8��

s

� = ��B − I� + 2F��I4�m � m �15�
howing that the directions of principal stress and strain do not
oincide in general �except when the preferred direction is aligned
ith principal directions of strain�.

Surface Instability

4.1 Incremental Deformations. We seek solutions to the in-
remental equations of equilibrium and incremental boundary
onditions in the form of sinusoidal perturbations whose ampli-
ude decays rapidly with depth. In contrast to the isotropic case of
ec. 2, we do not know a priori in which direction the wrinkles
hould be aligned, and we take the normal to the wrinkles’ front n
say� to lie in the �x1x3� plane at an arbitrary angle � with x1 �see
ig. 4�. Hence, we seek a perturbation solution u �mechanical
isplacement� and ṗ �increment of the Lagrange multiplier asso-
iated with incompressibility� in the form

�u, ṗ	 = �U�kx2�,ikP�kx2�	eik�cos �x1+sin �x3� �16�

here k is the “wave-number” and U and P are functions of kx2
lone.

The incremental equations read

sji,j = 0, uj,j = 0 �17�

here the comma denotes partial differentiation with respect to xj
nd s is the incremental nominal stress tensor. Its components are
2�

sji = A0jilkuk,l + puj,i − ṗ�ij �18�

here A0 is the fourth-order tensor of instantaneous elastic
oduli. In general it has a long expression for fiber-reinforced

olids, with possibly 45 nonzero components �see, for example,
efs. �7,8��. For W in the form of Eq. �14�, B by Eq. �9�, and M
y Eq. �11�, we find the following components:

A0jilk = ��ikBjl + 2F��I4��ikmjml + 4F��I4�mimjmkml �19�

see Merodio and Ogden �9��. Clearly, these components have the
ymmetries A0jilk=A0lkji and A0jilk=A0jkli. We end up with 23

onzero components, several of which are equal to one another �in

61007-4 / Vol. 130, DECEMBER 2008
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toto there are 13 different components�.
Clearly, if u and ṗ are of the form of Eq. �16�, then by Eq. �18�

sji are of a similar form, say,

sji = ikSji�kx2�eik�cos �x1+sin �x3� �20�

where Sji are functions of the variable kx2 only. By a systematic
procedure, first laid down by Chadwick �10� �see also Refs.
�11–14��, we can eliminate P and write the incremental equations
of equilibrium as a first-order differential system. This is known
as the Stroh formulation of the problem,


U�

S�
� = iN
U

S
� where U = �U1

U2

U3



�21�

S = �S21

S22

S23

, N = 
N1 N2

N3 N1
�

and the symmetric 3
3 matrices N1, N2, and N3 are given by

− N1 = � 0 cos � 0

cos � 0 sin �

0 sin � 0

, N2 = �1/� 0 0

0 0 0

0 0 1/�



�22�

− N3 = �� 0 �

0 � 0

� 0 �



with

� = �A01111 + 3��cos2 � + 2A01131 cos � sin � + A03131 sin2 �

� = A01212 cos2 � + 2A01232 cos � sin � + A03232 sin2 � − �

� = A01313 cos2 � + 2A01333 cos � sin � + �A03333 + 3��sin2 �

� = A01113 cos2 � + �2A01133 + 3��cos � sin � + A03133 sin2 �

�23�

Notice how all the information relative to anisotropy is located in
the N3 matrix.

The solution to the system of Eq. �21� is clearly an exponential

�U,S	 = �U0,S0	eikqx2 �24�

where U0 and S0 are constant vectors and q is an eigenvalue of N.
The characteristic equation associated with N is a bicubic �8�,

q6 − �2 −
� + �

�
�q4 + �1 +

� − 2�

�
+

�� − �2

�2 �q2 +
��� + ��

�2 = 0

�25�

where the quantity � is defined by

� = � cos2 � − 2� cos � sin � + � sin2 � �26�

The existence of real roots in this equation corresponds to the loss
of ellipticity of the governing equations �material instabilities�.
This possibility has been thoroughly investigated before �see Refs.
�9,15,16��. Here we focus on complex roots and keep those satis-
fying Im q	0 for a surface-type bifurcation, which decays with
depth �geometric instability�.

4.2 Wrinkling Condition and Resolution Scheme. Over the
years, many schemes have been developed to solve surface
boundary problems using the Stroh formulation; we used, in turn,
the determinantal method �17�, the Riccati matrix equation of sur-

face impedance �13,14�, and explicit polynomial equations �18� in
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rder to double check our numerical computations.
The crucial boundary condition is to find the amount of shear at

hich the surface of the sheared solid is free of tractions. The
afest way to express this is

det Z = 0 �27�

here Z is the �Hermitian� surface impedance matrix, which re-
ates tractions to displacements through S= iZU. We remark that
he schemes are not as safe in surface stability problems as they
re in the surface wave theory because of incompressibility
13,14� and nonmonotonicity of det Z with K.

Once Eq. �27� is reached, we can construct an incremental so-
ution to the equations of equilibrium, which is adjacent to the
arge shear equilibrium and signals the onset of surface instability.

e adopted the following strategy:

�i� Fix 
, the angle between the direction of shear and the
preferred direction.

�ii� Fix �, the angle between the direction of shear and the
normal to the wrinkles’ front.

�iii� Find �if it exists� the corresponding critical amount of
shear such that Eq. �27� is satisfied.

Then repeat steps �ii� and �iii� for other angles � until the entire
urface is spanned, and keep the smallest critical amount of shear
cr �say� for the angle 
 chosen in step �i�. Then take a different
alue of 
 until all possible fiber orientations are covered. In fine
graph of Kcr as a function of 
 is generated.

Numerical Results for Biological Soft Tissues
We take the standard reinforcing model,

W = ��I1 − 3�/2 + E�I4 − 1�2/4 �28�

here E is an extensional modulus in the fiber direction. This

0

1

2

3

4

5

20 40 6

Kcr

Fig. 5 Variations in the critical amount of shear for surfa
and the fibers. The solid is modeled as a neo-Hookean ma
model…; the ratio of the matrix shear modulus to the fiber
graphs coincide as long as 0<�<�0, where �0=99.0 deg
space switches from being very stable „Kcr>3.09… to being
to Kcr>5 is not shown for physical and visual reasons.
odel has been used for several soft tissues, such as papillary

ournal of Biomechanical Engineering
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muscle �19�, myocardium �19�, skeletal muscles �20�, or brain-
stem �21�.

That latter reference examines the ability of the constitutive
model �Eq. �28�� to describe the mechanical response of porcine
brainstem specimens. Recall that large deformations, particularly
large shears, of brain tissues are often associated with traumatic
brain injuries �Doorly and Gilchrist �22��. Ning et al. �21� found
that the model provides good agreement with experimental data;
they estimate that for 4 week old pigs, E is about 20 times larger
than �. In a recent review on physical properties of tissues for
arterial ultrasound, Hoskins �23� emphasized the need for consti-
tutive models of a nonlinear elastic behavior. He also collects
available data for arterial walls: in particular, for abdominal aortic
aneurysms, ex vivo measurements indicate that E is about 10
times larger than �, while for human atherosclerotic plaque, E
seems to be more than 40 times �. For our numerical computa-
tions, we take in turn the values E /�=40.0, 20.0, and 10.0 and
collect the corresponding results in Fig. 5.

Broadly speaking, we find a region where the solid is strongly
reinforced by the family of fibers, followed by an abrupt drop in
the value of the critical amount of shear for surface instability,
which occurs earlier as E /� increases.

When the fibers are aligned with the direction of shear, they are
not stretched and they play no role; thus it is appropriate that at

=0.0 deg, we find Kcr=3.09, the critical amount of shear for an
isotropic neo-Hookean half-space �see Sec. 2�.

Next we find that Kcr shoots up to unrealistic values when 

�0.0 deg: for instance, Kcr=32.48 when 
=3.0 deg �not repre-
sented for visual convenience�. Hence, the solid is strongly rein-
forced with respect to surface stability when the shear takes place
more or less along the fibers: wrinkling is prevented.

As the angle 
 between the shear and the fibers increases, the
critical amount of shear goes through a maximum, then a mini-
mum, always remaining above 3.09, the value for an isotropic

80 100 120

Φ

E/µ = 40.0

E/µ = 20.0

E/µ = 10.0

Φ = 99.0°

Φ = 102.8°

Φ = 108.1°

instability with the angle between the directions of shear
reinforced with one family of fibers „standard reinforcing

iffness is taken in turn as 40.0, 20.0, and 10.0. The three
02.8 deg, and 108.1 deg, respectively. At �¶�0, the half-
sily unstable „Kcr<0.3…. The part of the plot corresponding
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02.8 deg, 108.1 deg, approximately, for E /�=40.0, 20.0, and
0.0, respectively. It is worth noting that in the range 90.0 deg

�
0, the fibers undergo a slight compression at low shear

evels and are then in extension until the critical amount of shear
s reached; even when the fibers are compressed, the half-space
emains stable.

When the angle 
 is large, 
0�
�180.0 deg, the half-space
ecomes unstable at low amounts of shear. For instance, at 

99.07 deg, we find that Kcr=0.153 when E /�=40.0; note that in

eaching that critical amount of shear, the fibers are compressed
y less than 1.3%. The switch from high to low critical amounts
f shear is abrupt due to the nonmonotonicity of det Z with K: this
uantity has a minimum in the high range �K	3.09�, which is
lways negative �indicating the existence of a root to Eq. �27��,
ut it can also have a minimum in the low range �K�0.3�. This
inimum is positive when 
�
0 �no root in Eq. �27�� but nega-

ive when 
	
0, hence the jump in Kcr.
Finally we note that in the range 
0�
�180.0 deg, the angle
normal to the wrinkles’ front is close to 
 �within 2 deg�, indi-

ating that the wrinkles are almost at right angle with the fibers;
hese predictions are in accordance with the observation of Fig. 1.

Discussion
We developed a quantitative methodology to understand the

ormation of wrinkles in some biological soft tissues. The analysis
llowed us to model some visual observations of a sheared elas-
omer versus a sheared piece of skeletal muscle based on a simple
onlinear anisotropic constitutive law �requiring the knowledge of
nly one quantity, E /��.

Studying the geometry and mechanics of wrinkles is relevant to
any biomechanical applications such as the treatment of scars,

nd our results may provide some help in developing rational
pproaches to these problems. The next logical step is to apply
nd generalize this methodology to model the wrinkling of skin
nd other biological membranes. These may require more work
han presented here, with the consideration of two families of
arallel fibers �the collagen network�, but the methodology re-
ains essentially the same. It is also exact, versatile, and more

onvenient to apply than methods based on approximate theories
e.g., Föppl–von Kármán plate equations� because it can easily
ccommodate anisotropy, nonlinear constitutive laws, finite thick-
ess, and large homogeneous predeformation.
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