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Rubber components and soft biological tissues are often subjected to large bending deformations while
‘‘in service”. The circumferential line elements on the inner face of a bent block can contract up to a cer-
tain critical stretch ratio kcr (say) before bifurcation occurs and axial creases appear. For several models
used to describe rubber, it is found that kcr ¼ 0:56, allowing for a 44% contraction. For models used to
describe arteries it is found, somewhat surprisingly, that the strain-stiffening effect promotes instability.
For example, the models used for the artery of a seventy-year old human predict that kcr ¼ 0:73, allowing
only for a 27% contraction. Tensile experiments conducted on pig skin indicate that bending instabilities
should occur even earlier there.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When an elastic block is subjected to severe bending, it is ex-
pected that its inner curved face will eventually become unstable.
This phenomenon is well captured by the theory of incremental
nonlinear elasticity, which can account for the appearance of
small-amplitude wrinkles, aligned with the axial direction of the
large bending. For a block made of rubber, Gent and Cho (1999) ar-
gue that this buckling should occur once circumferential line ele-
ments on the bent face are contracted up to the critical stretch
(kcr, say) of surface instability for a semi-infinite body. In that latter
case, the neo-Hookean model predicts (Biot, 1963) that kcr ¼ 0:54,
allowing line elements to be contracted by 46%. Analyses looking
into the bending instability (instead of the surface instability) of
neo-Hookean blocks show that the finite size of a block (as op-
posed to the infinite size of a half-space) introduces dispersion
(and thus links the size of a block to the number of wrinkles) but
has little effect on the amount of possible contraction, bringing
kcr from 0.54 to 0.56, irrespective of the dimensions of the block.

Now the neo-Hookean model is often used to describe solids
undergoing finite but moderate deformations. In fact, as recalled
in Section 2 below, it encompasses the most general incompress-
ible solid of third-order elasticity, as well as the Mooney-Rivlin
model for rubber, when the deformation is a plane strain such as
pure bending. For large strains however, the polymer chains in
ll rights reserved.
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elastomers and the collagen fiber bundles in soft tissues align
themselves with the direction of greatest stretch and their limiting
extensibility is strongly felt. This phenomenon is the so-called
strain-stiffening effect. In biological soft tissues the stiffening occurs
at markedly lower strain levels than in rubber-like solids: broadly
speaking, rubbers can be stretched at least 100%, whilst soft tissues
can be stretched at most 100%, before they stiffen.

There are two popular models of constitutive law to describe the
strain-stiffening effect: the Gent model, which introduces a limiting
chain parameter—and thus an upper bound for the range of possible
stretches—, and the Fung model, which exhibits an exponential in-
crease of stress with respect to strain—but no maximal stretch.
The two models are presented in Section 2, along with typical values
for the stiffening parameters of soft tissues. In particular, we con-
ducted tensile experiments on pig thoracic aortas and found good
agreement with data published previously in the literature.

Then in Sections 3 and 4, we show that when these two models
are adjusted to account for the actual physiological values of mam-
malian arteries, they predict that bending instabilities appear
early, at moderate amounts of bending. For example, the Gent
model, with a stiffening parameter adjusted to describe the tho-
racic artery of a seventy-year old human, predicts that kcr ¼ 0:73,
which means that circumferential line elements can be contracted
by 27% only, before instabilities arise. Further, the two models pre-
dict that stiffer tissues such as skin should become unstable almost
as soon as they are bent. To estimate the stiffening parameters in
those cases, we conducted tensile experiments on pig skin, and
present the corresponding data and curve fitting results at the
end of Section 4.
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These results suggest that other characteristics must be ac-
counted for in the constitutive modeling of arteries and skin. In
particular, other investigations, e.g. (Destrade et al., 2008) show
that the anisotropy displayed by biological soft tissues (as opposed
to the isotropy of elastomers) plays a most significant role in stabil-
ity studies.

2. Basic equations

2.1. Constitutive laws

We are interested in hyperelastic strain energy densities
(W ¼Wðk1; k2; k3Þ, where the k’s are the principal stretches) com-
monly used to model the behavior of strain-stiffening incompress-
ible solids. One of the simplest and best prototypes available to do
this is the Gent model (Gent, 1996),

W ¼ �lJm

2
ln 1� k2

1 þ k2
2 þ k2

3 � 3
Jm

 !
; ð1Þ

where l > 0 is the shear modulus for infinitesimal strains and
Jm > 0 is a stiffening parameter, associated with limiting chain
extensibility (Horgan and Saccomandi, 2006). Hence a solid behav-
ing according to this constitutive model cannot be stretched in uni-
axial tension beyond a maximal stretch km, say, which is the
positive root of

k2
m þ 2k�1

m � Jm � 3 ¼ 0: ð2Þ

Typically, rubbers attain maximal strains ranging from 5 to 15; in
contrast, biological soft tissues experience strain-stiffening effects
much earlier. For instance experimental data on young, healthy hu-
man (Horgan and Saccomandi, 2003) and bovine (Humphrey, 2003)
arteries show that they can be stretched up to a maximum of
km ¼ 1:4, or even 2.0, while older, stiffer arteries can be stretched
only up to 20% ðkm ¼ 1:2Þ. Accordingly, in what follows we take
20 6 Jm 6 200 as the typical range for rubbers, and we take
0:4 6 Jm 6 2:3 as the typical range for arteries. Other biological soft
tissues belong to that latter range, including caterpillar muscle
(Dorfmann et al., 2007), rabbit muscle (Davis et al., 2003), dura ma-
ter (Maikos et al., 2008), brain tissue (Franceschini et al., 2006), etc.

Another popular model in the biomechanics literature, which
reflects a less pronounced strain-stiffening effect than the Gent
model, is the Fung model,

W ¼ l
2b

ebðk2
1þk2

2þk2
3�3Þ � 1

h i
; ð3Þ
Fig. 1. Tensile test on a pig thoracic aorta: nominal stress versus stretch ratio. The thick l
Gent model (on the left) and the Fung model (on the right). Curve fitting analysis gives
where l > 0 is the shear modulus at small strains and b > 0 is the
stiffening parameter. For a human young thoracic artery, b ’ 1:0,
and for an older, stiffer artery, b ’ 5:5, typically (Horgan and Sacco-
mandi, 2003). Accordingly, we take 1:0 6 b 6 5:5 as the typical range
for arteries when using the Fung model. This range is also inclusive
of Fung model fitting for human cerebral veins ðb ’ 1:7Þ and cere-
bral arteries ðb ’ 4:4Þ, see Ho and Kleiven (2007).

Using a Tinus Olsen tensile machine, we conducted tensile tests
on several pig aortas, and found that their Gent and Fung parame-
ters did indeed belong to those ranges, see Fig. 1 for an illustrative
example.

Note that the Gent and the Fung models are both connected to
the so-called neo-Hookean model,

W ¼ lðk2
1 þ k2

2 þ k2
3 � 3Þ=2; ð4Þ

in the limits Jm ¼ 1; and b ¼ 0, respectively.
In this connection we mention the so-called third-order elasticity

model, often used to investigate the onset of nonlinear elasticity ef-
fects. When the general strain energy density of an incompressible
solid is expanded in terms of powers of E, the Green strain tensor,
it is found that at the third-order of truncation (Ogden, 1974;
Hamilton et al., 2004),

W ¼ l tr E2
� �

þ 1
3
A tr E3

� �
; ð5Þ

where l is the infinitesimal shear modulus of second-order (linear)
elasticity, and A is a Landau third-order elastic coefficient. Turning
to a representation in terms of the principal stretches, it is found
that at the same order,

W ¼ 2lþA

4

� �
k2

1 þ k2
2 þ k2

3 � 3
� �

� lþA

4

� �
k2

1k
2
2 þ k2

2k
2
3 þ k2

3k
2
2 � 3

� �
: ð6Þ

For a plane strain deformation such as pure bending, k3 ¼ 1 at all
times and then k2 ¼ k�1

1 by incompressibility. In that case, compar-
ison of (4) and (6) shows that the third-order elasticity model and
the neo-Hookean model coincide. Note that in finite elasticity, (6)
is the so-called Mooney-Rivlin strain-energy density, often used to
describe rubbers.

2.2. Pure bending of a block

We start with a straight block of thickness 2A, width 2L, and
height H, located in the region
ine corresponds to experimental data and the thin line, to the curve fitting using the
Jm ’ 1:4 with the Gent model and b ’ 1:3 with the Fung model.
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�A 6 X1 6 A; �L 6 X2 6 L; 0 6 X3 6 H; ð7Þ

where X1;X2;X3 are the coordinates in the rectangular coordinate
system aligned with the edges of the block, giving the position of
a material point in the reference configuration.

By applying surface tractions on the the faces at X2 ¼ �L, we
bend the block using the deformation (Green and Zerna, 1954)
(Fig. 2)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ 2X1=x

q
; h ¼ xX2; z ¼ X3; ð8Þ

where d is a constant (to be determined later), x is a prescribed
constant, and r; h; z are the cylindrical coordinates giving the posi-
tion of a material point in the deformed configuration. The bending
angle is u � 2xL. The bent block is confined to the region

ra �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 2A=x

q
6 r 6 rb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ 2A=x

q
; �xL 6 h 6 xL;

0 6 z 6 H; ð9Þ

where ra are rb are the radii of the inner and outer faces.
The corresponding principal stretches are

k1 ¼ ðxrÞ�1
; k2 ¼ xr; k3 ¼ 1; ð10Þ

showing that this is a plane strain deformation. These expressions
also show that the strain energy density Wðk1; k2; k3Þ is a function
of only one variable. Choosing it as k ¼ k1, we call R the function de-
fined by

RðkÞ ¼Wðk; k�1;1Þ: ð11Þ

Then Rivlin (1949) shows that the principal stress component r1 is
given by

r1 ¼ RðkÞ þ K; ð12Þ

where the constant K is to be determined from the boundary
conditions.

We assume that the bent faces at r ¼ ra and r ¼ rb are free of
normal tractions

r1ðraÞ ¼ r1ðrbÞ ¼ 0: ð13Þ

These two boundary conditions lead to the determination of the
constants d in (8) and K in (12) for the strain energy densities (1),
(3) and (4).

Take for instance the neo-Hookean form (4): the boundary con-
ditions read

l½ðxraÞ�2þðxraÞ2�2�þ2K ¼ 0; l½ðxrbÞ�2þðxrbÞ2�2� þ2K ¼ 0;

ð14Þ

from which follows that (Green and Zerna, 1954)

x2rarb ¼ 1: ð15Þ
H

2L 2A

Fig. 2. Pure bending of a thick block. Here the original length-to-thickness ratio is 2.0 an
are extended during bending; those on the inner face are contracted. Eventually, at a cr
Then we find d and K as

d ¼ ð1=x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2A2

q
; K ¼ �ðl=2Þ½x2ðr2

a þ r2
bÞ � 2�; ð16Þ

and the normal stress as

r1ðrÞ ¼ lx2 ðr2 � r2
aÞðr2 � r2

bÞ
2r2 : ð17Þ

For the Gent and Fung models, d is also given by (16)1, whilst r1ðrÞ
is equal to

�lJm

2
ln

Jm þ 2� rarb
r2 � r2

rarb

Jm þ 2� ra
rb
� rb

ra

" #
; and

l
2b

e
b r2

rarb
þrarb

r2 �2

� �
� e

b
rb
ra
þra

rb
�2

� �" #
;

ð18Þ

respectively, see Kanner and Horgan (2008) and Demiray and Levin-
son (1982) for details.

To complete the picture, we give expressions for r2, the princi-
pal Cauchy stress normal to the surfaces h ¼ const:, and for its mo-
ment M of the stresses on the faces h ¼ �xL about the origin:

r2 ¼ dðrr1Þ=dr; M ¼ H
Z rb

ra

rr2dr; ð19Þ

respectively.

3. Bending instability

Instability in bending is triggered by the apparition of wrinkles/
creases on the inner face of the bent block. Their existence is gov-
erned by the incremental equations of equilibrium and of incom-
pressibility (Ogden, 1984),

div _s ¼ 0; div u ¼ 0; ð20Þ

where _s is the incremental nominal stress and u is the incremental
mechanical displacement, and by the satisfaction of appropriate
boundary conditions.

In the present context of pure bending in nonlinear elasticity,
these equations have been written down several times (see (Co-
man and Destrade, 2008) and references therein), usually as a sec-
ond-order system of coupled differential equations for the
components of the incremental displacement field. Instead, we
present them here as a first-order system for the displacements
and the tractions: this is the so-called Stroh formulation, which
proves to be optimal for the subsequent numerical resolution of
the boundary value problem. Omitting the details, we find that if
the components u;v ;w of the mechanical displacement and
_srr ; _srh; _srz of the traction are in the form

fu; v;w; _srr; _srh; _srzg ¼ R UðrÞ;VðrÞ;0; SrrðrÞ; SrhðrÞ;0½ �einh
	 


; ð21Þ
ra rb

H

O
ϕ

d the bending angle is p=3. The circumferential line elements on the outer bent face
itical stretch of contraction, the inner face buckles and axial wrinkles appear.
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where U;V ; Srr ; Srh, are complex functions of r only, then two equa-
tions in (20) are identically satisfied and there remains four inde-
pendent equations, which can indeed be put in the Stroh form.
The constant n in (21) is the circumferential number, and is deter-
mined from the condition that there are no incremental normal
tractions on the end faces h ¼ �xL: this happens when (Haughton,
1999)

n ¼ pp=ðxLÞ; ð22Þ

for some positive integer p, which we call the mode number. Hence,
the solution (21) describes the p creases appearing on the inner sur-
face of the bent block.

Introducing the four-component displacement-traction vector
(Shuvalov, 2003)

g � ½U;V ; irSrr ; irSrh�t; ð23Þ

we find that the incremental equations of equilibrium can be ar-
ranged as

d
dr

gðrÞ ¼ i
r

GðrÞgðrÞ: ð24Þ

Here the matrix G has the following Stroh structure,

G ¼

i �n 0 0
�nð1� r1=aÞ �ið1� r1=aÞ 0 �1=a

j11 ij12 �i �nð1� r1=aÞ
�ij12 j22 �n ið1� r1=aÞ

2
6664

3
7775 ð25Þ

where

j11 ¼ 2ðbþ a� r1Þ þ n2 c� ða� r1Þ2=a
h i

;

j12 ¼ n 2bþ aþ c� r2
1=a

� �
;

j22 ¼ c� ða� r1Þ2=aþ 2n2ðbþ a� r1Þ; ð26Þ

and the quantities c;a, and b are given in turn by Dowaikh and
Ogden (1990) as

c ¼ kR0ðkÞ=ðk4 � 1Þ; a ¼ k4c; 2b ¼ k2R00ðkÞ � 2c: ð27Þ

In the case of the neo-Hookean model (4), and thus in the case of the
third-order elasticity model (5) in pure bending, these quantities
are

c ¼ lk�2; a ¼ lk2; 2b ¼ lðk2 þ k�2Þ: ð28Þ

These quantities have already been computed in (Destrade and
Scott, 2004; Destrade and Ogden, 2005) for the Gent material
in general. Specialized to the case of plane strain they reduce
to:

a ¼ lJmk2

Jm þ 2� k2 � k�2 ; c ¼ lJmk�2

Jm þ 2� k2 � k�2 ;

b ¼ lJm

2ðJm þ 2� k2 � k�2Þ
k2 þ k�2 þ 2ðk2 � k�2Þ2

Jm þ 2� k2 � k�2

" #
:

For the Fung material in plane strain they are:

a ¼ lk2ebðk2þk�2�2Þ; c ¼ lk�2ebðk2þk�2�2Þ;

b ¼ l
2
½k2 þ k�2 þ 2bðk2 � k�2Þ2�ebðk2þk�2�2Þ:

Now if the incremental equations of motion can be solved, subject
to the following boundary conditions of traction-free inner and out-
er faces:

Srr ¼ Srh ¼ 0 at r ¼ ra; rb; ð29Þ
then an infinity of equilibrium states exists adjacent to the large
bending, signaling the onset of instability (in the linearized sense).
When this solution is determined, we call kcr ¼ xra the value of
the azimuthal stretch k2 on the inner face. It is the critical stretch
of contraction of azimuthal line elements. Simple calculations show
that

xA ¼ ðk�2
cr � k2

crÞ=4; ð30Þ

which allows for the complete determination of the current (de-
formed) geometry, just prior to instability. In particular, the angle
of bending, and inner and outer radii follow as

u ¼ 2ðxAÞ L
A
;

ra

A
¼ kcr

xA
;

rb

A
¼ 1

xAkcr
; ð31Þ

respectively. Note that if it turns out that u P 2p, then the conclu-
sion is that the block can be completely bent into a cylinder without
encountering any instability phenomenon.

4. Numerics

The direct numerical resolution of the differential system (24) is
not easy to implement because of numerical stiffness issues, espe-
cially for thick blocks.

First, we use the compound matrix method (Haughton and Orr,
1997) which is rendered optimal here by the use of the Stroh for-
mulation. It gives direct access to the azimuthal critical stretch of
contraction.

Another option is to integrate numerically the non-linear Riccati
equation satisfied by the impedance matrix, see (Biryukov, 1985).
Here we use that integration to compute the full mechanical fields
inside the bent block.

4.1. Critical stretch

Let gð1ÞðrÞ and gð2ÞðrÞ be two linearly independent solutions to
the equations of equilibrium (24). Use them to calculate the fol-
lowing six compound variables /i,

/1 ¼
gð1Þ1 gð2Þ1

gð1Þ2 gð2Þ2

�����
�����; /2 ¼

gð1Þ1 gð2Þ1

gð1Þ3 gð2Þ3

�����
�����; /3 ¼ i

gð1Þ1 gð2Þ1

gð1Þ4 gð2Þ4

�����
�����;

/4 ¼ i
gð1Þ2 gð2Þ2

gð1Þ3 gð2Þ3

�����
�����; /5 ¼

gð1Þ2 gð2Þ2

gð1Þ4 gð2Þ4

�����
�����; /6 ¼

gð1Þ3 gð2Þ3

gð1Þ4 gð2Þ4

�����
�����:

ð32Þ

Now compute their derivatives with respect to r and find that they
satisfy

/0ðrÞ ¼ 1
r

AðrÞ/ðrÞ; where / � ½/1;/2;/3;/4;/5;/6�
t
; ð33Þ

and AðrÞ is called the compound matrix. Here we find that its non-
zero entries are

A21 ¼ A51 ¼ A65 ¼ A62 ¼ �j12; A66 ¼ �A11 ¼ r1=a;
A42 ¼ �A23 ¼ A45 ¼ �A53 ¼ nð1� r1=aÞ; A41 ¼ A63 ¼ j11;

A32 ¼ �A24 ¼ A35 ¼ �A54 ¼ n; A13 ¼ A46 ¼ �1=a;
A44 ¼ �A33 ¼ 2� r1=a; A31 ¼ A64 ¼ �j22: ð34Þ

At r ¼ a, we impose Srr ¼ Srh ¼ 0 (inner face free of incremental trac-
tion), so that /2 ¼ /3 ¼ /4 ¼ /5 ¼ /6 ¼ 0 there, and only /1 is non-
zero: this is the initial value,

/ðaÞ ¼ /1ðaÞ½1;0;0;0;0;0�
t
: ð35Þ

At r ¼ b, the tractions must also vanish so that /6 must be zero
there: this is the target condition,

/6ðbÞ ¼ 0: ð36Þ
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Integrating numerically the initial value problem (33)–(35) poses
no difficulty. Note that the Stroh formulation yields a most simple
and optimal form for the elements of the compound matrix (other
formulations, for example (Haughton, 1999; Coman and Destrade,
2008; Roccabianca et al., 2009) involve derivatives of the elastic
moduli with respect to r).

Once the dimensions of the block are given, and its strain en-
ergy density is fixed, it remains to adjust k so that (36) is satisfied.
This search yields the critical stretch of contraction for circumferen-
tial line elements on the inner face and by extension, the critical
angle of bending, see previous section. Note that to each mode
number p corresponds a different value of the critical stretch; how-
ever only the highest value is meaningful, as the others cannot be
reached once the buckling has occurred.

Take for instance the neo-Hookean model (4). Fig. 3 shows the
dependence of the critical stretch on the width-to-thickness ratio
L=A. Each curve corresponds to a different mode number, but only
a small part near its maximum is relevant, as highlighted by the
thicker stroke. To generate Fig. 3, the equations were non-dimen-
sionalized, and in the end, only kcr and L=ðpAÞ remained as un-
knowns. Then each curve in the figure is drawn by taking
p ¼ 1;2;3; . . . in turn and becomes a scaled version of the p ¼ 1
curve. As a consequence, the maximum of each curve is the same.
This scaling explains the general impression given by the figure:
although ‘‘dispersion” is introduced due to the characteristic
dimensions of the block, the value of the critical stretch itself is
quite insensitive to mode numbers, and remains in the neighbor-
hood of 0.562 approximatively (Haughton, 1999; Coman and Des-
trade, 2008).

For a specific example, take a block with aspect ratio
L=A ¼ 3:0. When it is modeled by the neo-Hookean, Mooney-Riv-
lin, or general third-order elasticity theory, the numerical calcula-
tions of the compound matrix method predict that it buckles in
bending when k2 ¼ kcr ¼ 0:5613, in mode p ¼ 7, see Fig. 3(a).
Then the formulas (31) give the bending angle as u ¼ 246�, and
the inner and outer radii as ra ¼ 0:78A, and rb ¼ 2:5A, respec-
tively, see Fig. 3(b).
0.556

0.554

0.552

0.55

0.548

0.546

0.544

0.542

0.538

0.54

1.5

0.562

0.536

2.5

0.564

0.20.5

0.558

0.56

1.0

λcr

p=1
p=2

a

Fig. 3. Bending instability of rubber: for the neo-Hookean model, the Mooney-Riv
circumferential line elements on the inner face can be contracted by 44% at most. Each
deduced from the first one by a scaling factor. (a) Reveals that a block with aspect ratio L
4.2. Mechanical fields

The compound matrix method is most appropriate to obtain
quickly and accurately the critical stretch of contraction—the
‘‘eigenvalue” of the Stroh problem (24). By establishing links be-
tween the equations satisfied by the compound variables and those
satisfied by the mechanical field variables, Haughton (2008) shows
that it is possible to determine those latter fields throughout the
bent block—the ‘‘eigenvectors”. Here we present a self-contained,
alternative protocol for finding the ‘‘eigenvalues” and the ‘‘eigen-
vectors”, based on the so-called impedance matrix. Fu (2005) dates
back this approach to Biryukov (1985).

First, we follow Shuvalov (2003) and call Mðr; raÞ the matricant
solution to (24); it is defined as the matrix such that

gðrÞ ¼Mðr; raÞgðraÞ; Mðra; raÞ ¼ Ið4Þ; ð37Þ

and it has the following block structure

Mðr; raÞ ¼
M1ðr; raÞ M2ðr; raÞ
M3ðr; raÞ M4ðr; raÞ

� 

; ð38Þ

say. We call S � ½Srr; Srh�t the traction vector, and U � ½U;V �t the dis-
placement vector, so that g ¼ ½U; irS�t . We use the incremental
boundary condition SðraÞ ¼ 0 in (37) and (38) to find that

rSðrÞ ¼ zaðrÞUðrÞ; where za � �iM3M�1
1 ð39Þ

is the conditional impedance matrix (Shuvalov, 2003) (here ‘‘condi-
tional” refers to the assumed inclusion of the traction-free incre-
mental boundary condition at r ¼ ra).

Substituting the impedance matrix za into the incremental
equations of equilibrium (24) gives

d
dr

U ¼ i
r

G1U � 1
r

G2zaU;
d
dr
ðzaUÞ ¼ 1

r
G3U þ i

r
Gþ1 zaU; ð40Þ

where G1;G2;G3, and Gþ1 � Gt
1 are the 2� 2 sub-blocks of G. Elimi-

nating U between these two equations results in the following Ricc-
ati differential equation for za,
3.53.0

L/A

p=3

p=4

p=5

p=6
p=7

p=8

b

lin model, and the general incompressible model of third-order elasticity, the
different plot corresponds to a different mode, here the first eight. Each plot can be
=A ¼ 3:0, say, is going to buckle in mode p ¼ 7. (b) Bent block just prior to buckling.



Fig. 4. Incremental buckling of a bent rubber block. Here the solid is modeled by the neo-Hookean, Mooney-Rivlin, or general third-order elasticity solid. Its original length-
to-thickness ratio was L=A ¼ 3:0. The theory predicts that seven creases appear on the inner face, once the critical angle of bending is reached.
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d
dr

za ¼ 1
r

zaG2za þ G3 � izaG1 þ iGþ1 za
� �

; zaðraÞ ¼ 0; ð41Þ
where the initial condition follows from (39)2 and (37)2. Note that
this Riccati equation is real because G2 and G3 are Hermitian, see
(25), and so is za (Shuvalov, 2003).

Now integrate (41) numerically, and adjust the azimuthal
stretch ratio so that the incremental boundary condition of a trac-
tion-free face is satisfied on r ¼ rb. In other words, find the critical
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Fig. 5. How strain stiffening affects bending instability: when the solid is described by th
of third-order elasticity, or a ‘‘rubber” Gent model ð20 6 Jm 6 200Þ, the instability occurs w
described by a ‘‘young artery” Gent model ðJm ¼ 2:3Þ, they can contract by 41% ðkcr ¼ 0:59
they can contract by 27% ðkcr ¼ 0:73Þ only, before bending creases form. The figures on
buckling.
value kcr for k2 so that det zaðrbÞ ¼ 0. Then SðrbÞ ¼ zaðrbÞUðrbÞ ¼ 0
means that

VðrbÞ
UðrbÞ

¼ � za
11ðrbÞ

za
12ðrbÞ

¼ � za
21ðrbÞ

za
22ðrbÞ

: ð42Þ

This ratio determines the shape of the axial creases on the outer
face of the bent block. Note however that their amplitude is not
known because the stability analysis is linear (that is, linearized
in the neighborhood of a large bending).
3.55 3.0

L/A

 =0.4

e neo-Hookean model, the Mooney-Rivlin model, the general incompressible model
hen the circumferential line elements are contracted by 44% ðkcr ¼ 0:56Þ; when it is
Þ. On the other hand, when it is described by an ‘‘old artery” Gent model ðJm ¼ 0:4Þ,

the right show how much a corresponding block with L=A ¼ 3:0 can be bent before
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In principle we should be able to integrate simultaneously (40)1

and (41)1 from rb to r in order to determine the displacement field.
In practice, this computation can run into numerical difficulties, by
encountering singularities (Biryukov, 1985). Instead, we use zb, the
other conditional impedance matrix, found from the condition that
SðrbÞ ¼ 0. We thus integrate simultaneously

d
dr

U ¼ i
r

G1U � 1
r

G2zbU;
d
dr

zb ¼ 1
r

zbG2zb þ G3 � izbG1 þ iGþ1 zb� �
;

ð43Þ
with initial conditions

UðrbÞ ¼ UðrbÞ 1;�za
11ðrbÞ=za

12ðrbÞ
� �t

; zbðrbÞ ¼ 0: ð44Þ

This procedure is robust, and it gives the entire mechanical dis-
placement field throughout the thickness of the bent block. Eq.
(39)1 then gives the incremental stress field. Alternatively, the
stress field can be found from the Riccati differential equations sat-
isfied by the conditional admitance matrices (Shuvalov, 2003).

Fig. 4 shows the L=A ¼ 3:0 rubber block of the previous section,
in its incrementally buckled state. Ten circumferential lines are
displayed, clearly showing the predicted seven axial wrinkles,
and the strong localization of the displacement near the inner bent
face. In particular, we find that the displacement amplitude on that
face is more than 3000 times the amplitude on the outer face.

4.3. Results for strain-stiffening models

In their study on the stability of compressed blocks, Gent and
Cho (1999) conjecture that it is ‘‘not generally necessary to con-
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Fig. 6. How strain-stiffening affects bending instability: here the solid is described by the
circumferential line elements can contract by 38% ðkcr ¼ 0:62Þ; For an ‘‘old artery” Fung
form.
sider stress-strain relations incorporating finite-extensibility
effects”, at least for normal Gent rubbery materials, for which Jm lies
between 20 and 200. Indeed, using the numerical techniques ex-
posed in the previous sections, we find that the bifurcation curves
for the Gent material (1) at Jm ¼ 200 are virtually indistinguishable
from those of the neo-Hookean material (which corresponds to
Jm ¼ 1). Even at Jm ¼ 20:0, the curves are very close to those of
the neo-Hookean solid, raising the average critical stretch ratio
from 0.562 to only 0.564.

However the situation is different for values of Jm compatible
with the tensile behavior of biological soft tissues. Hence for
Jm ¼ 2:3, a value measured for a young human thoracic aorta (Hor-
gan and Saccomandi, 2003), we find that the critical stretch ratio is
raised by a few percent, at around 0.59. For Jm ¼ 0:4, a value for a
seventy-year old human thoracic aorta (Horgan and Saccomandi,
2003), it is raised to 0.73 approximatively, showing that the earlier
the finite-extensibility effects are felt, the more unstable the block
is in bending.

We also find that the stiffer Gent materials buckle with less
wrinkles than the softer ones. Take again the block with length-
to-thickness ratio L=A ¼ 3:0. For Jm ¼ 1, 7 wrinkles appear when
/ ¼ 246�, see previous section; for Jm ¼ 20:0, 6 wrinkles appear,
at almost the same angle of bending; for Jm ¼ 2:3, we have 4 wrin-
kles, at / ¼ 215�; and for Jm ¼ 0:4, we are down to 2 wrinkles, at
/ ¼ 113�.

These results are reported in Fig. 5.
For the Fung material (3), the numerical results are remarkably

similar. Hence when the model is adjusted to account for the
behavior of a 21-year-old artery, the stiffening parameter is
3.02.0 3.52.5

ookean

b=1.0

b=5.5

L/A

Fung exponential model for arteries. For a ‘‘young artery” Fung model ðb ¼ 1:0Þ, the
model ðb ¼ 5:5Þ, they can contract by 28% ðkcr ¼ 0:72Þ only, before bending creases



Fig. 7. Tensile test on pig skin: nominal stress versus stretch ratio. Experimental data and curve fitting using the Gent model (on the left) and the Fung model (on the right).
Curve fitting analysis gives Jm ’ 0:08 with the Gent model and b ’ 21:5 with the Fung model.
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roughly b ¼ 1:0, and the critical stretch ratio of contraction is about
kcr ¼ 0:62; when it is adjusted for a 70-year-old artery, we find that
kcr ¼ 0:72, see Fig. 6.

For other, stiffer, soft tissues, the instability occurs even earlier.
Hence we conducted tensile tests on porcine skin, and estimated
that Jm < 0:1 when it is modeled with the Gent material, and that
b > 20 when it is modeled with the Fung material, see Fig. 7. Then,
the corresponding critical stretch of contraction is about kcr ¼ 0:80.
5. Concluding remarks

The neo-Hookean material, the Mooney-Rivlin material, and
consequently, the general third-order elasticity incompressible
material are not representative of strain-stiffening solids (for in-
stance, they do not stiffen in shear). For these classes, often used
to model rubbers or gels, the critical stretch of contraction for cir-
cumferential line elements in bending is kcr ¼ 0:56. In contrast, the
Gent and the Fung material are strain-stiffening materials par
excellence. When they are used to model stiff (old) arteries, the the-
ory of incremental instability gives kcr ’ 0:73. For pig skin, it is
even raised further, to about kcr ’ 0:8. We may thus conclude that
the strain-stiffening effect actually promotes bending instability.

Of course, these are theoretical and numerical predictions. Nev-
ertheless, it must be kept in mind that the Gent and the Fung mate-
rials are popular models in the biomechanics literature and in
bioengineering simulations. It must also be remembered that, irre-
spective of how advanced a Finite Element Analysis software pack-
age is, and of how precisely the image and geometry of a given soft
tissue are captured, numerical simulations are, in fine, as good—or
as bad—as the constitutive equations they rely upon.

If a biological soft tissue exhibits strain-stiffening effects, then
these must be integrated into the constitutive model. If the model
predicts instabilities when none are observed, then the model
must be refined or abandoned. In fact different models react differ-
ently to different types of instabilities, and trends or classifications
of models with respect to instabilities are hard to decipher in non-
linear elasticity (Goriely et al., 2006).

Another major effect exhibited by biological soft tissues is that
of anisotropy, due to the presence of collagen fiber bundles embed-
ded into an elastin matrix. The introduction of preferred directions
into a constitutive model can have dramatic repercussions with re-
spect to stability analysis (Destrade et al., 2008) and it seems cru-
cial to be able to incorporate and quantify this effect. Other
important differences between elastomers and soft tissues include
non-linear viscoelasticity, heterogeneity, growth, and spatial dis-
tribution of fibers.
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