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Compact travelling waves in viscoelastic solids
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Abstract – We introduce a model for nonlinear viscoelastic solids, for which travelling shear
waves with compact support are possible. Using analytical and numerical methods, we investigate
the general case of this model, and an exact, kink-type travelling-wave solution is obtained as a
special case result. Additionally, we derive and examine a new Burgers’ type evolution equation
based on the introduced constitutive equations.
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Introduction. – A compact wave is a nonlinear soli-
tary wave with a definite amplitude that exists within
the confines of a compact support; outside that support,
it vanishes identically. Compact waves can be used to
describe patterns with a compact support and sharp
fronts. While ubiquitous in Nature, compact waves are
difficult to model mathematically. The motivation behind
the modeling of such waves was the 1993 discovery of
compactons by Hyman and Rosenau [1]. A compacton, in
full analogy with the definition of a soliton, is a compact
wave that preserves its shape and amplitude after a colli-
sion with another compact wave.
Compact waves emerge essentially from a mathematical

degenerancy in the equations of motion, leading to a local
loss of uniqueness, which enables the patching together of
two or more different solutions with a certain degree of
regularity. This point may be clarified and made rigorous
in several ways; see, e.g., Saccomandi [2] and Destrade
et al. [3], who employed the classical Weierstrass criterion
to generate compact waves, and also Gaeta et al. [4].
From a purely mathematical point of view, there exist

several equations that are factories of compact waves, such
as, e.g., the family of equations K(m,n) noted in [1]. On
the other hand, there exist very few examples of physically
based equations which are capable of generating compact
waves within the framework of a rigorous theory of mate-
rial behavior. For solids, three examples of such rigorous
derivations have been presented thus far: i) in 1998,

(a)E-mail: pjordan@nrlssc.navy.mil

Dusuel et al. [5] showed that, in the continuum limit, the
generalized Φ-four, or double-well model with nonlinear
coupling, can exhibit compacton-like kink solutions when
the nonlinear coupling term is dominant; ii) Destrade
and Saccomandi [6] used a nonlinear theory of dispersion
compatible with the axiomatic foundation of simple mate-
rials; and iii) Duričković et al. [7] extended the theory
of rods to nonlinear material laws. In the case of fluids,
the emergence of compact coherent structures, mainly via
asymptotic methods, has been a more investigated topic;
see, e.g., [8]. The reader is also referred to Saccomandi and
Sgura [9], who analyzed nonlinear stacking interactions
in simple models of double-stranded DNA.
Here, we show that it is possible to generate compact

waves in the framework of the nonlinear theory of visco-
elasticity. To this end, we consider a special viscoelastic
theory of incompressible isotropic solids for which the
viscous part is that of the Navier-Stokes theory, with a
shear-dependent viscosity —a common assumption in non-
Newtonian fluid mechanics.
In this framework, for a special class of constitutive

equations, we provide a rigorous existence result, an exact
(albeit implicit) travelling-wave solution, and approxima-
tions for a particular compact kink. Moreover, we derive a
new generalized Burgers’ equation as an asymptotic reduc-
tion of the full equation for the propagation of shear waves.

Governing equations. – We call X the position of a
particle in the solid in (Br), the reference configuration,
and x the position of that particle at time t in (B), the
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current configuration. A motion of the body is the one-to-
one mapping χ such that x=χ(X, t). The deformation
gradient F and the left Cauchy-Green tensorB associated
with this motion are

F =
∂χ

∂X
, B =FF T , (1)

respectively, and the strain-rate tensor is defined as
D= 12 (Ḟ F

−1+F−T Ḟ T ), where the superposed dot
denotes the material time derivative. An incompressible
solid can undergo only isochoric motions, and this inter-
nal constraint translates mathematically as: detF = 1,
trD= 0, at all times.
We are interested in viscoelastic materials of differential

type, with Cauchy stress tensor

T =−pI +2β1B− 2β−1B−1+2ν̂D. (2)

Here, p is the indeterminate Lagrange multiplier intro-
duced by the incompressibility constraint, β1 and β−1 are
the elastic response parameters, and ν̂ is the shear viscos-
ity coefficient. In all generality, βi = βi(I1, I2) (i=−1, 1),
where I1, I2 are the first two principal invariants of the
Cauchy-Green strain: I1 = tr(B) and I2 = tr(B

−1). We
assume that ν̂ = ν̂(tr(D2)), and moreover, that ν̂ > 0,
i.e. the model is dissipative.
The momentum equations, in the absence of body

forces, take the form divT = ρ∂v/∂t, where ρ is the mass
density and v= ∂χ/∂t is the velocity. Our aim is to inves-
tigate what happens in the shearing motion, specifically,
x=X + f(Z, t), y= Y , z =Z, where the function f is as
yet unknown. Straightforward computations give the
components as

(Bij) =



1+K2 0 K

0 1 0

K 0 1


,

and

2 (Dij) =



0 0 Kt

0 0 0

Kt 0 0


,

where K ≡ fZ is the amount of shear, and the subscript
denotes partial differentiation. Clearly we have now I1 =
I2 = 3+K

2 and tr(D2) =K2t /2.
With px ≡ 0, two of the three equations of motion

are identically satisfied. The remaining equation is ρftt =
∂T13/∂Z. Therefore the determining equation for the
amount of shear K becomes

ρKtt =
[
Q̂(K2)K + ν̂(K2t )Kt

]
ZZ

, (3)

where Q̂≡ 2(β1+β−1) is the generalized shear modulus.
The mathematical theory of quasilinear equations for
viscoelasticity of strain-rate type can be found in ref. [10].

In order to rewrite eq. (3) in a dimensionless form,
we need a characteristic frequency Ω(> 0) so that it is
possible to introduce the dimensionless time τ =Ωt; we
also need a characteristic length L so that we can introduce
the dimensionless length ζ =Z/L. Usually the length L
is determined by the geometry of the problem (e.g., the
thickness of a slab wherein the wave is propagating).
The characteristic frequency Ω may be introduced in
several ways: via the boundary conditions, by defining the
ratio Ω= µ̂0/ν̂0, where µ̂0 = limK2→0 Q̂ is the infinitesimal
shear modulus and ν̂0 = limKt→0 ν̂, or by a characteristic
(finite) time t∗ at which, for example, localization of the
solution occurs. Eventually, eq. (3) becomes

δKττ = [QK + νKτ ]ζζ , (4)

where δ= ρΩ2/µ̂0L
2, Q= Q̂/µ̂0, and ν =Ων̂/µ̂0.

As the final step, we specialize the equation of motion
(via the constitutive relations) to the case of fourth-order
elasticity. In particular, we take Q= 1+µ1K

2, where µ1 is
a constant (µ1 > 0 for strain-stiffening solids and µ1 < 0 for
strain-softening solids), and assume the simplest form of
shear viscosity dependence, namely, ν = ν0+ ν1K

2
τ , where

ν1 > 0 is a constant. Note that µ1 = (µ+A/2+D)/µ,
where µ,A, andD are the second-, third-, and fourth-order
constants of weakly nonlinear elasticity [11,12]. Under
these assumptions, eq. (4) reduces to

δKττ =
[
K +µ1K

3+ ν0Kτ + ν1K
3
τ

]
ζζ
. (5)

The existence and regularity of solutions of the Cauchy
problem for equations of this kind have been investigated
by Friedman and Necas [13]. More recently, Pucci and
Saccomandi [14] considered the quasistatic limit of eq. (5)
and studied the mathematical and mechanical properties
of the classical creep and recovery experiments.
Before beginning our analysis, it is important to point

out that eq. (5) is neither integrable nor exactly lineariz-
able1, as may be checked via symmetry arguments [15].
Thus, we do not expect the compact travelling waves that
we will encounter in the next section to preserve their
shape and amplitude after colliding. In all likelihood, these
waves are not the true compactons of ref. [1].

Kinks. – In this section, we seek travelling-wave solu-
tions (TWSs) of eq. (5) in the form of kinks; i.e.,
continuous, bounded, monotonic waveforms that tend to
constant, but unequal, limits at ±∞. It is known that
kinks may propagate in a viscoelastic medium; Jordan and
Puri [16,17] give an explicit characterization of such waves,
and a detailed survey of the various qualitative proper-
ties of travelling-waves solutions in viscoelasticity may be
found in [18].
We begin our search for TWSs with the following obser-

vation: since eq. (5) is invariant under the transformation

1In the sense that Burgers’ equation is via the Cole-Hopf
transformation.
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ζ �→ −ζ, we need only consider, without loss of general-
ity, right-travelling waves, i.e., solutions of the specific
form K(ζ, τ) = g(ξ), where g is a function of the single
variable ξ ≡ ζ − ct and the positive constant c denotes the
wave speed. Substitution of the travelling-wave ansatz into
eq. (5) results in the following nonlinear ordinary differen-
tial equation (ODE):

(1− δc2)g′′+µ1(g3)′′− ν0cg′′′− ν1c3[(g′)3]′′ = 0, (6)

where primes denote differentiation with respect to ξ.
Integrating this ODE twice, setting the first integration
constant to zero, and then enforcing the usual (kink)
asymptotic conditions2 yields

(g′)3+ ν̃g′ =
(1− δc2)g+µ1(g3+ g21g2+ g22g1)

ν1c3
. (7)

Here, ν̃ = c−2ν0/ν1 and the wave speed is given by

c= δ−1/2
√
1+µ1(g21 + g1g2+ g

2
2). (8)

Having obtained the first-order ODE satisfied by our
TWS and determined the wave speed, it is instructive to
now consider the cases ν̃ = 0 and ν̃ > 0, separately.

The case ν0 = 0. Focusing on this, the simplest case
first, we further simplify the analysis by taking g2 = 0 and
setting f = g/g1; in particular, c reduces to c1, where

c1 =
√
(1+µ1g21)/δ, (9)

and eq. (7) becomes

(f ′)3 =−σf(1− f2), f ∈ [0, 1], (10)

where we have set σ= c−31 µ1/ν1 for convenience. A stan-
dard stability analysis of eq. (10) reveals that f = 0, 1,
the equilibrium solutions relevant to our investigation, are
stable and unstable, respectively, for σ > 0. Henceforth
limiting our attention to only those dispersive solids that
stiffen in shear (i.e., those for which µ1 > 0), we separate
variables in eq. (10) and integrate. We are thus led to
consider the quadrature∫

df

[f(1− f2)]1/3 =−σξ+K, (11)

where the integration constant K will be chosen so that
the kink is centered at f(0) = 1/2.
Now because of the zeros at f = 0 and f = 1 in the

denominator of the integrand, the left-hand side of eq. (11)
is, in fact, a generalized integral (see [3]). Nevertheless,
it can be evaluated exactly in terms of special functions.
Omitting the detail, it is readily established that the exact,
albeit implicit, solution is given by

2F1
(
1
3 ,
1
3 ;
4
3 ; f

2
)
f2/3− 2F1

(
1
3 ,
1
3 ;
4
3 ;
1
4

) (
1
4

)1/3
=− 23σ1/3ξ,

(12)

2That is, g→ g1,2, as ξ→∓∞, where g1 > g2 � 0 are constants.
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Fig. 1: f vs. ξ for σ= 0.25 and ν̃ = 0. Solid curve: eq. (12) and
eq. (13). Broken curve (long dashes): eq. (17)1. Dots: eq. (17)2.
Broken curve (short dashes): eq. (17)3.

for ξ ∈ (ξ1, ξ0), while outside this interval we have

f(ξ) =

{
1, ξ � ξ1,
0, ξ � ξ0.

(13)

Here, 2F1 denotes the Gauss hypergeometric series and
the constants ξ1, ξ0 are defined by

ξ1 =
−2π√3+3B1/4

(
1
3 ,
2
3

)
6σ1/3

, ξ0 =
1
2σ
−1/3B1/4

(
1
3 ,
2
3

)
,

(14)
where

Bq(a, b)≡
∫ q
0

ϑa−1(1−ϑ)b−1dϑ, q > 0, (15)

denotes the incomplete beta function. Also, the shock layer
thickness, �, for this kink profile has the value

�=

[
lim
ξ→−∞

f(ξ)− lim
ξ→+∞

f(ξ)

]
/|f ′(0)|= 2(3σ)−1/3. (16)

If we now expand the first term on the left-hand
side of eq. (12) about f = 1, 12 , 0 and then neglect the
appropriate higher-order terms, the resulting expressions
can be solved for f in terms of ξ. Omitting the details, it
is a relatively straightforward task, using the Heaviside
unit step function, H(·), to construct the respective
approximations

see eq. (17) on the next page

As fig. 1 makes clear, the relatively simple approximate
expressions given in eq. (17) are in very good agreement
with the exact kink solution within, and even somewhat
outside of, their stated ranges of validity.
Remark 1 : From eq. (16) it is evident that our kink

“shocks-up,” i.e., the f vs. ξ profile tends to a step
function, as σ→∞ since �→ 0 in this limit (see fig. 2). In
contrast, our kink solution does not exhibit acceleration
waves, also known as “weak discontinuities” ([19], §89), at
ξ = ξ1,0 because f

′(ξ)∈C(R); however, it should be noted
that max

ξ∈R
|f ′| →∞ as σ→∞ (again, see fig. 2).
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f(ξ)�




H(ξ1− ξ)+H(ξ− ξ1)
×
{
1−

√
2
27

[
2π
√
3− 3B1/4

(
1
3 ,
2
3

)
+6σ1/3ξ

]3/2}
, ξ <− 12�;

1
2 (1− 2ξ/�), |ξ| � 1

2�;

H(ξ0− ξ)
[
2F1
(
1
3 ,
1
3 ;
4
3 ;
1
4

) (
1
4

)1/3− 23σ1/3ξ]3/2, ξ > 1
2�.

(17)
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Fig. 2(a)–(c): Plotted for σ= 0.025, 0.25, 2.5, respectively, and
ν̃ = 0. Solid: −f ′ vs. ξ. Broken: f vs. ξ.

The case ν0 > 0. Assuming now ν0 > 0, we return
to eq. (7) and regard this ODE as a cubic polynomial
in g′. Using Cardano’s formula, the three roots of this
cubic, each of which is a function of the single variable g,
are readily determined. Fortunately, however, the cubic
discriminant, which we denote here as ∆, is always
positive. Hence, only one of the roots is real-valued.

Denoting this particular root by G(g), eq. (7) becomes

g′ = G(g)≡ 3

√
G/2+

√
∆− ν̃

3 3
√
G/2+

√
∆
, (18)

where ∆≡ (ν̃/3)3+(G/2)2 and G=G(g) denotes the
right-hand side of eq. (7). We observe here that G(g)
is strictly negative for g ∈ (g2, g1), by Descartes’ rule of
signs, and that g∗ = {−(g1+ g2), g2, g1} are the roots of
both G(g∗) = 0 and G(g∗) = 0, where −(g1+ g2) is an
extraneous root in the present context. It should also
be noted that the compact kink results discussed in the
previous subsection are recovered with little difficulty by
letting ν̃→ 0 (i.e., ν0→ 0).
For general values of ν̃, it is possible to show the

existence of a kink solution, but it does not appear
possible to determine its exact analytical representation.
On the other hand, because G =G/ν̃−G3/ν̃4+ · · ·, when
expanded about G= 0, it is clear that as ν̃→ 0, the points
where G= 0 are associated to a g′ which is more and more
vertical. This means that the kink compactifies as ν̃→ 0;
i.e., as the nonlinear viscoelastic part in the constitutive
function becomes more important with respect to the
linear part, the tails of the kink are of less importance.
The process just described is clearly illustrated in fig. 3,

where the parameter λ= ν̃/g21 has been introduced for
convenience. The sequence presented therein, which was
generated by solving the g2 = 0 special case of eq. (18)
numerically3, depicts the formation of the compact kink
profile shown in figs. 1 and 2(b) as ν̃→ 0.
Continuing under the assumption g2 = 0, and with g=

g1f , let us now expand G = G(f) about f = 0. On making
the additional assumption λ	 σ2/3 and neglecting terms
O(f4), eq. (18) is reduced to the following special case of
Abel’s equation: f ′ ≈−σλ−1(f − f3). Then, taking f(0) =
1/2, the “exact” solution of this ODE is easily found, using
eqs. (12)–(18) of ref. [16], to be

f(ξ)≈ 1√
1+3 exp(2σξ/λ)

(λ	 σ2/3), (19)

with a shock layer thickness of LAbel =
8
3λ/σ that can

never go to zero. Here, we observe that the graph of
eq. (19) is very similar, qualitatively speaking, to the one
shown in fig. 3(a).
Remark 2 : From eq. (19) we find that, for suf-

ficiently large values of λ, and a zero limit as ξ→+∞,
3Specifically, the NDSolve[ ] routine, which is provided in the

software package Mathematica (version 5.2), was employed here.
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Fig. 3(a)–(c): f vs. ξ for λ= 0.25, 0.05, 0.001, respectively, and
σ= 0.25. (Here, as before, f = g/g1.)

the viscoelastic model considered in the present letter
behaves very much like the cubically perturbed Kelvin-
Voigt model; see, e.g., ref. [16] and those therein.

A new Burgers’ equation. – Let us return to eq. (5)
and introduce the new independent variables θ= τ − a0ζ
and s= εζ, where a0 = δ

−1/2 and ε is a small parameter. If
we now set K(ζ, τ) = ε1/2κ(s, θ) for some function κ, then
eq. (5) can be approximated via a generalized form of the
modified Burgers’ equation (MBE)4, namely,

κs = µ̄1(κ
3)θ + ν̄0κθθ + ν̄1(κ

3
θ)θ, (20)

with the latter reducing to the former in the limit ν̄1→ 0.
Here, we have set µ̄1 = µ1a0/2, ν̄0 = ν0a0/2, and ν̄1 =
ν1a0/2; and we have assumed ν0 =O(ε). Additionally, we
4So referred to as by Lee-Bapty and Crighton in 1987; see

refs. [12,16] and those therein.

note that when ν0 = 0, the structure of the travelling-wave
solutions of eqs. (5) and (20) is exactly the same.
Moreover, because eq. (20) is an evolution equation,

which is simpler than the wave equation given in eq. (5),
other reductions to ordinary differential equations are
easily found. For example, when ν̄0 = 0, eq. (20) admits
solutions in the separable form κ(s, θ) = φ(s)ψ(θ), say. If
ν̄0 = 0 and µ̄1 = 0, then eqn. (20) is a degenerate diffusion
equation and the separable solutions are quite simple, with
an interesting structure. Indeed, we have

κ(s, θ) =
γ1(θ− γ2)2√
2γ(γ3− s)

. (21)

Here, γ is the separation constant and γ1, γ2, γ3 are inte-
gration constants such that 24γ21 ν̄1− γ = 0, and therefore
γ, γ3 > 0. Clearly, these solutions have a sharp front s= γ2;
and they blow-up in space for s= γ3.
It is interesting to consider the case of harmonic excita-

tion and the corresponding third-harmonic order genera-
tion. Given the initial condition κ(0, θ) = κ0cos(ωθ), where
κ0 is a positive constant, we assume the solution is given
by the sum of the fundamental and third-harmonic compo-
nents; i.e., κ= κ1+κ3, where

κ1(s, θ) = Re{κ̂1(s) exp(iωθ)}= 12 κ̂1(s) exp(iωθ)+ c.c.,
κ3(s, θ) = Re{κ̂3(s) exp(3iωθ)}= 12 κ̂3(s) exp(3iωθ)+ c.c..
Here, “c.c.” denotes the complex conjugate of the preced-
ing term and we require that |κ3| � |κ1|. By successive
approximation, we have

dκ̂1
ds
+ακ̂1 = 0, (22)

where α= ω2ν̄0, and

dκ̂3
ds
+9ακ̂3 =− 34ωκ̂31(iµ̄1−ω3ν̄1), (23)

where the latter is solved subject to κ3(0, θ) = 0.
Solving these ODEs in sequence using one of the many

standard methods, we find, in turn, that

κ1 = κ0e
−αs cos(ωθ),

κ3 =
κ30
8α
(e−3αs− e−9αs) (24)

×[µ̄1ω sin(3ωθ)+ ν̄1ω4 cos(3ωθ)].
These solutions reveal that the experimental measurement
of the third harmonic in soft solids with shear-dependent
viscosity gives direct access to the nonlinear shear wave
elastic parameter µ̄1 and nonlinear dissipation parameter
ν̄1. The former is measured in the low-frequency regime,
whilst the latter becomes dominant in the high-frequency
regime.
Remark 3 : If we let ν̄1→ 0, and make the associations

µ̄1 �→ − 13c−3β and ν̄0 �→ δ, then κ1 and κ3, respectively,
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reduce to v1 and v3, which correspond to the MBE, given
in [12], eq. (42).
Remark 4 : In attempting to satisfy |κ3| � |κ1|, it is

helpful to know that

max
θ>0
|κ3|� κ30

12α
√
3

{
ν̄1ω

4+ |µ̄1|ω
}
, (25)

where

max
θ>0
|κ3|= |κ3|

∣∣∣∣
θ=θ∗

=
κ30|ν̄1ω4 cos(3ωs)+ µ̄1ω sin(3ωs)|

12α
√
3

,

(26)

and where θ∗ = (6α)−1ln(3).
Remark 5 : The inequality max

θ>0
|κ3|< sup

θ>0
|κ1|(= κ0) is

satisfied ∀ω ∈ (0, ω+), where ω+ is the only positive root
of ν̄1ω

4+ |µ̄1|ω− 12κ−20 α
√
3 = 0.

Concluding remarks. – We have established an
important new constitutive framework that originates
field equations admitting compact kinks. This constitutive
framework, which provides one more example of how
compactification may arise in the modeling of real-world
wave phenomena, is relevant because it is a natural model
for nonlinear viscoelasticity; indeed, the mechanism of
compactification described here is directly linked to the
nonlinear viscosity term. We have also derived from this
model a new Burgers’ type evolution equation, of which
the MBE is a limiting case, that actually maintains the
compactification features of the general case. And by
adopting the usual successive approximation method used
to study harmonic generation in nonlinear acoustics, we
have shown that an important difference between our
model and the classical one occurs in the higher harmonics.
Lastly, it should be noted that the mechanism which

generates the compact waves described in this letter is
completely different from those presented in [3,7,9], where
the compactification arose from an interplay between non-
linearity and dispersion, and in [4], where compacti-
fication was made possible by considering non-smooth
potentials.
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