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ABSTRACT

Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS vis-
coelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and cer-
tain shortcomings of the ABAQUS model.

INTRODUCTION

As the demand for fuel efficient cars intensifies, tyre manufacturers are trying harder to esti-
mate accurately the energy dissipation of their products. However, the mechanics of tires is a
most complex topic due to the variety of mechanical factors involved, such as structural inho-
mogeneities, complicated geometries and nonlinear material behavior, including hyperelasticity,
viscoelasticity and hypoelasticity, for example. Consequently, advanced finite element codes are
often called upon to simulate the behavior of tires in real-world applications, and, in particular,
to evaluate their energy efficiency. These commercial codes are often used as “black boxes”, and
the validity of the results is rarely questioned, even though they might provide a decisive argu-
ment in favor of, or against, the viability of a given tire model.

In this note we examine the current implementation of nonlinear viscoelastic effects in the
ABAQUS Finite Element Analysis (FEA) package because we have noticed certain discrepan-
cies in the model used.** In particular, the ABAQUS model leads to results that are not consis-
tent with the thermomechanically-based Quasi-Linear Viscoelastic (QLV) model. In Section
"Finite Viscoelasticity Models" we therefore present both models and highlight their main dif-
ferences. We then investigate two prototype experiments, for which purpose we use the incom-
pressible Yeoh material for the elastic part of the material response in each case. In Section
"Simple Tension" we discuss the uniaxial tension test, while in Section "Simple Shear" the sim-
ple shear test is examined. The ABAQUS model predicts somewhat different stress components
for each of the considered motions and, more significantly, considerably larger dissipation rates
than the QLV model.

FINITE VISCOELASTICITY MODELS

First we introduce some notations. We denote by F the deformation gradient, which is
defined by F= ∂x/∂X, where x is the position vector in the current configuration of a particle
located at position X in the reference configuration. Let J denote its determinant (J = det F) and
B ≡ FFT, C ≡ FTF the associated (left and right) Cauchy-Green deformation tensors, where a
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superscript T signifies the transpose. We also introduce the velocity gradient D ≡ 1/2F
• 
F-1+1/2(F

• 
F-

1)T], where the superimposed dot represents the material time derivative. For an incompressible
material, every motion is isochoric, so that 

(1)

We recall that the internal rate of working of the stress per unit current volume is σ(t) • D(t)
≡ tr[σ(t)D(t)] where σ(t) is the Cauchy stress tensor at time t. Assuming for D(t) a periodic time
law, the time-averaged work Ed done per unit current volume over a period T starting at time T0,
is given by 

(2)

Since the elastic part of the stress does not contribute to this expression (2) represents the
energy dissipated in a cycle (which depends on T0 in general).

THE ABAQUS MODEL

Next, we present the ABAQUS model. Section 4.8.2 of the ABAQUS Theory Manual
(Hibbit et al. 2007) gives the constitutive relation for modeling nonlinear viscoelastic effects in
the form 

(3)

where σe is the instantaneous Cauchy stress response (elastic response at very short times), G is
the so-called memory kernel, which characterizes the stress relaxation and satisfies G(0) = 1, and
G
•

denotes the derivative of G with respect to its argument t-s. Also, “SYM’’ represents the sym-
metric part of the bracketed term; e.g., D = SYM{F

• 
F-1}. The constitutive relation (3) is valid for

compressible as well as incompressible solids since in the latter case the hydrostatic term -p̂I in
σe (where p̂ is a Lagrange multiplier) is a workless constraint stress in both the instantaneous
response and in the history term, as expected. Indeed, for an incompressible solid J = 1 for all
times and σe has the general form 

(4)

where Ψ1, Ψ2 are scalar functions of time and of the first and second principal invariants, I1, I2
of C (or equivalently B), which, for an incompressible material, are defined by I1= tr B, I2= tr (B-1).
Then (3) reduces to 

(5)
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where p(t) = p̂(t)+∫t0 G
•
(t-s)p̂(s)ds is arbitrary and remains to be determined from initial/boundary

conditions.

THE QLV MODEL

The ABAQUS model is reminiscent of, and similar to, a well-established model of finite vis-
coelasticity, namely the Pipkin – Rogers model (Pipkin and Rogers 1968), which reads in the
incompressible case as 

(6)

(see, for example, Wineman 1972, Johnson et al. 1996). Here p(t) is a Lagrange multiplier result-
ing from the internal constraint of incompressibility and R is a strain-dependent tensorial relax-
ation function having the form 

(7)

where φ0, φ1, φ2 are scalar functions of time t-s and of I1 and I2 at time s.
With an appropriate choice of φ0, φ1, φ2, the Pipkin-Rogers model reduces to the so-called

Quasi-Linear Viscoelastic (QLV) model, which has proved to be a successful phenomenological
model for describing the nonlinear viscoelastic behavior of solids (see references in Johnson et
al. 1996, Rajagopal and Wineman 2008, for example). Equation (6) is derived rigorously by suc-
cessive approximations from the basic physical requirements governing the behavior of solids
with memory, such as the principle of determinism and local action and the principle of materi-
al objectivity (see the review by Drapaca et al. 2007 and references therein).

On inspection of (5) and (6) it can be seen that there are two main differences between the
models. First, the integral term in equation (3) is generally non-symmetric, in contrast to the inte-
gral term in equation (6). This is taken care of in an ad hoc manner by using the “SYM’’ opera-
tor. Also, the history (time integral) term in the ABAQUS model terminates with F(t)-1 in con-
trast to the history term in the the QLV model, which terminates with F(t)T. The latter fits more
naturally with the usual expression for the traction σnda via Nanson’s formula FT nda = JNdA
connecting reference and deformed area elements (J = 1 here). In fact, the ‘push forward’ to the
configuration at time t from that at time s of the (symmetric) ‘Cauchy’ stress σe(s) should involve
F(t)F(s)-1σe(s)F(s)-TF(t)T rather than the F(t)F(s)-1σe(s)F(s)F(t)-1 that appears in (3). This change
would remove the need to apply the SYM operation. However, for an incompressible material
use of (4) then leads to a term in p̂ that doesn’t give a workless constraint stress. This can be cor-
rected by, for example, dropping this term from (4) in the integral, in which case (5) would be
replaced by 

(8)

with p(t) the arbitrary pressure. This is then a special case within the model (6).
To emphasize the differences between the models, we henceforth focus on an incompress-
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ible viscoelastic solid for which the instantaneous response is modeled by a two-term Yeoh
stress-strain relationship (a standard implementation in ABAQUS) 

(9)

where µ0 and α are positive constants (µ0 is the shear modulus in the reference configuration)
and I1(t) = tr[B(t)]. Also, for simplicity, the time relaxation of the solid is assumed to be governed
by a one-term Prony series expansion given by 

(10)

where µ∞ is the ultimate value to which the shear modulus settles after an infinite time and τ is
a characteristic time constant.

Then, for the ABAQUS model we have Ψ1(t) = µ0[1-3α+αI1(t)], Ψ2(t) = 0, and hence (5)
reduces to 

(11)

By contrast, for the QLV model we have 

yielding 

(12)

In this specialization the modification (8) of the ABAQUS model gives exactly the same
expression for σ(t) as (12). We now examine two simple examples of motions.

SIMPLE TENSION

In a simple tension test of an incompressible isotropic solid the (homogeneous) motion is
described by 

(13)

where λ(t) (≥1) is the stretch ratio in the direction of the uniaxial tension σ11(≥ 0). The resulting
deformation gradient has the diagonal form 
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(14)

Vanishing of the lateral stresses σ22 = σ33 = 0 determines the Lagrange multiplier p(t), and
elimination of p(t) yields 

(15)

for the ABAQUS model, and 

(16)

for the QLV model. The difference between these models is now clear, and it reflects signifi-
cantly on the rate of working, as we confirm numerically below.

From an experimental point of view, it is common practice to employ a dynamic displace-
ment superimposed on a large static deformation. Here we consider that the Yeoh solid is
deformed in tension to a stretch of 1.3 from time t = 0 to time t = 1, and then made to oscillate
with a superimposed amplitude such that the stretch λ(t) ranges from 1.1 to 1.5. Thus, 

(17)

For numerical purposes the stresses are non-dimensionalized by dividing by µ0. For the
remaining parameters we set 

(18)

except that we retain ω as a free parameter in investigating the frequency dependence of the
energy dissipation rate. For these values Figure 1 shows how the predictions of the ABAQUS
model for the dimensionless stress σ11(t)/µ0 differ from those of the QLV model. This difference
is not huge, but, in contrast, the predictions of the energy dissipation are very different, as we
now illustrate. 
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The numerical results have been obtained from ABAQUS 6.7-1 using a single CPS4 element
(4 nodes, bilinear, plane stress) with an implicit solution scheme. As a check the same test was
done with a 3D brick element C3D8H (8 nodes, linear, hybrid) and the same results were
obtained. Note that in both cases, we used a single element and since the deformation is uniform,
the integration is always exact and it doesn’t depend on the element order.

The results settle very rapidly to the steady state so that the expression (2) becomes essen-
tially independent of T0. Figure 2, in which Ed/µ0 is plotted against frequency in the steady state,
shows clearly that the ABAQUS model overestimates the steady state energy dissipation sub-
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FIG. 1. — Dependence of the dimensionless axial tension on time for the ABAQUS FEA model (solid curve),
the ABAQUS output (dotted curve) and the QLV model (dashed curve).

FIG. 2. — Dependence of the rate of working per unit volume in dimensionless form on
frequency over a single period in the steady state for the ABAQUS model (solid curve), for the ABAQUS

output (dotted curve) and for the QLV model (dashed curve) in the case of uniaxial tension.



stantially (by a factor of 4 to 5) compared with the QLV model.

SIMPLE SHEAR

We now consider a simple shear motion of the form 

(19)

where γ(t) is the amount of shear. The (non-symmetric) deformation gradient has components 

(20)

Simple calculations reveal that a sheared solid described by the ABAQUS model or by the
QLV model is in a state of plane stress (σij ≠ 0 for i, j∈{1,2}; σ3j = 0 for j = 1,2,3) when the
Lagrange multiplier is taken as 

(21)

Note that the combination of plane strain and plane stress (in the plane) is permissible for
an incompressible material provided p(t) (and hence σ11(t) and σ22(t)) is (are) adjusted accord-
ingly. Then, for the ABAQUS model we obtain 

(22)

and for the QLV model 

(23)

Note that Rivlin’s universal relation σ11-σ22 = γσ12 from isotropic elasticity holds also for the
present Yeoh-based viscoelastic model. The expressions in (23) are expected intuitively for the
Yeoh model because for its instantaneous response at very short times the Cauchy stress has com-
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ponents σe11 = µ0γ
2(1+αγ2), σe12 = µ0γ(1+αγ2), σe22 = 0. By contrast, the ABAQUS model gives

rise to a component generated purely by the viscoelastic effects, in which case the relaxation
process creates such a component ex nihilo! However, since simple shear is a displacement con-
trolled motion the stress components adjust automatically to accommodate the geometry and
they are therefore very much dependent on the form of the constitutive law. The difference in the
shear stress, however, has serious consequences for the rate of working, and hence the dissipa-
tion, because here 

(24)

and hence σ • D = σ12(t)γ
•(t), which is obviously not the same for both models.

We confirm these findings by testing the ABAQUS software against the formulas (22)–(24).
We take the amount of shear to vary as 

(25)

with the other parameters given by (18). Figures 3 and 4 display the variations of the σ12 and σ22
components computed from (22) and (23) in dimensionless form. As in the case of simple ten-
sion there is not a great difference in the active stress (in this case σ12) between the two models,
but the reactive stress σ22 is very different. Finally, as also for simple tension, we find that the
ABAQUS model overestimates the rate of working with respect to the QLV model (by a factor
of 2 to 3), as shown in Figure 5, again in dimensionless form with Ed/µ0 plotted against frequency
ω in the steady state. Using the ABAQUS software, we recovered the thick curves (in Figures 3
and 4), which confirms that equation (3) is actually implemented in the ABAQUS code.
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FIG. 3. — Dependence of the dimensionless shear stress on time in simple shear for the ABAQUS analytical model
(solid curve), the ABAQUS output (dotted curve) and the QLV model (dashed curve).
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FIG. 4. — Dependence of the dimensionless normal stress in 2-direction on time in simple shear
for the ABAQUS FEA model (solid curve), the ABAQUS output (dotted curve) and the QLV model (dashed curve).

The latter is zero for all times.

FIG. 5. — Dependence of the rate of working per unit volume in dimensionless form on frequency over
a single period in the steady state for the ABAQUS model (solid curve), for the ABAQUS
output (dotted curve) and for the QLV model (dashed curve) in the case of simple shear.
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