Onset of Nonlinearity in the
Elastic Bending of Blocks

The classical flexure problem of nonlinear incompressible elasticity is revisited assuming
that the bending angle suffered by the block is specified instead of the usual applied
moment. The general moment-bending angle relationship is then obtained and is shown
to be dependent on only one nondimensional parameter: the product of the aspect ratio
of the block and the bending angle. A Maclaurin series expansion in this parameter is
then found. The first-order term is proportional to p, the shear modulus of linear elas-
ticity; the second-order term is identically zero because the moment is an odd function of
the angle; and the third-order term is proportional to u(48 — 1), where B is the nonlinear
shear coefficient, involving third-order and fourth-order elasticity constants. It follows
that bending experiments provide an alternative way of estimating this coefficient and the
results of one such experiment are presented. In passing, the coefficients of Rivlin's
expansion in exact nonlinear elasticity are connected to those of Landau in weakly
(fourth-order) nonlinear elasticity. [DOIL: 10.1115/1.4001282]
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1 Introduction

The problem of flexure is one of the now classical problems of
the theory of nonlinear, incompressible elasticity. First formulated
and solved by Rivlin [1], it has since been studied extensively in
the literature, see for example, Green and Zerna [2] and Ogden
[3]. There is continuing theoretical interest in this problem, as can
be seen for example, in the recent study of Kanner and Horgan
[4]. The physical problem considered is easily visualized: a rect-
angular specimen is bent by equal and opposite terminal couples
applied on the end faces of a rectangular block while its other
faces remain free of traction. Rivlin [1] showed that if a circular,
annular sector is assumed for the deformed configuration, then an
elegant solution to the corresponding boundary value problem can
be found. We recall this derivation in Secs. 2 and 3.

Typically, the usual formulation of this boundary value problem
implicitly assumes that the terminal moments are specified. It is
shown here that specifying instead the bending angle through
which the block is bent results in a simpler mathematical formu-
lation and solution of the problem. We show that this solution
depends on only one nondimensional parameter: the product of
the aspect ratio of the block and the bending angle, which we
denote by e. If € is assumed small, then the solution at low orders
has a particularly simple form. Because € is the product of the
aspect ratio of the block and the bending angle, the lower-order
solutions are applicable in at least two distinct physical regimes:
the first corresponds to the bending of bars through an infinitesi-
mal bending angle and the second corresponds to the nonlinear
bending of thin sheets. Although these two subcases are the most
important, there are other possibilities: moderately thick blocks
could also be considered turned through moderate angles, pro-
vided the product € is small.

To analyze the problem, plane strain conditions can be as-
sumed. Hence, the technical interpretation of our results is that
they describe the bending of planar sections of infinitely wide
blocks. We assume that the plane strain results obtained are also
applicable to strips with a finite, out of the plane dimension larger
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than the block thickness, i.e., that the edge/anticlastic effects are
negligible. This assumption is motivated by observations and
measurements for the bending of rubber blocks, see Gent and Cho
[5]. Of course, this assumption is a limitation of Rivlin’s solution
because secondary fields are bound to be observed outside of a
central area in the bent block, see Fig. 1. Nonetheless, it must be
kept in mind that Rivlin’s solution is one of the very few universal
solutions, valid in principle for every incompressible isotropic
material, whatever the actual dimensions of the block and the
amount of bending. For more refined deformations, albeit limited
to certain types of geometries, the reader is referred to the ad-
vances obtained by Shield [6]. The other limitation of this solution
is that it might bifurcate, see Refs. [7-10] for an in-depth treat-
ment of this possibility.

Given that here, the deformation depends only on the bending
angle, the corresponding stress distribution can be easily deter-
mined. The most important functional of this stress distribution is
the moment that needs to be applied at the ends of the block to
effect the deformation. In Secs. 4 and 5, we show that the general
relation between applied moment and the parameter €, the main
relation of interest in this problem, can be expressed in a succinct
and elegant form. It is shown that this relation is an odd function
in €, which agrees with an intuitive expectation that the moment
should be an odd function of the angle since the moment required
to bend a block by an angle « say, is the opposite of the moment
required to bend it by an angle —a.

On expanding the moment in a Maclaurin series in € (Sec. 6),
we find that the first-order coefficient is proportional to w, the
shear modulus of linear elasticity. The second-order coefficient is
identically zero for all elastic materials because the moment is an
odd function in e. This suggests that the linearized moment-angle
relation is likely to be valid for € values beyond the infinitesimal
range, and this is verified numerically (see Fig. 3) and experimen-
tally (Table land Fig. 4). in Sec. 8. Prior to this, we show in Sec.
7 that the third-order term in the expansion is proportional to
u(4B-1), where B is the nonlinear coefficient of plane shear
waves [11-14]. Explicitly, 28=(u+.4/2+D)/ u, where A and D
are Landau third- and fourth-order elastic constants [15]. This
coefficient has been measured for agar-based gels, based on the
measurement of shear wave speeds in transient elastography [14],
or on the measurement of homogeneous plane strain deformations
[16]. Clearly, the information collected from the bending of a
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Fig. 1 Bending of a block of silicone rubber with length L
=24 cm and thickness 2A=2 cm. The dimension of each
square drawn on the top surface is 1X1 cm?. The picture on
the right shows that even for such a “homemade” bending ex-
periment, there exists a region about 3 cm wide around the
median where plane strain is respected.

block, such as that provided by a bending stiffness tester [17],
yields a simple and useful alternative to these protocols.

In Sec. 8, our main results are then compared with experimental
data obtained by performing a bending experiment on a polyure-
thane elastomer. We find that 8= 1.0.

2 Large Plane Strain Bending

The fundamental assumption introduced by Rivlin [1] to model
the nonlinear flexure of an incompressible block is that a block of
length L and thickness 2A is deformed under applied terminal
moments into a circular, annular sector. For definiteness, assume
that the faces X= * A are deformed into the inner and outer radii,
denoted by r, and r,, respectively, of the annular sector and the
faces Y=+ L/2 are deformed into the faces = = «, where a, the
bending angle, is a specified constant. Plane strain conditions are
assumed throughout. The bending angle « is restricted to lie in the
range

O=a=mw

(2.1)

which only allows a block to be bent into at most a circular an-
nulus, see Fig. 2.
Adopting the semi-inverse approach of Rivlin [1], assume that

r=rX), 0=0Y), z=Z (2.2)

where (X,Y,Z) and (r, 0,z) denote the Cartesian and cylindrical
polar coordinates of a typical particle before and after deforma-
tion, respectively. Incompressibility then yields

P =2BX+D, 60=Y/B+C, z=Z

where B, C, and D are constants.

As noted by Rivlin [1], symmetric boundary value problems
can be considered without loss of generality and therefore C=0.
The key element in our solution of the bending problem is that the
bending angle « is specified and not the applied moment, as is
usually assumed in most treatments, even if this assumption is
implicit. It therefore follows easily that B can be determined as

(2.3)

B=Lla (2.4)
This yields the nonhomogeneous deformation field
r=\2(L/&)X+D, 60=(a/L)Y, z=Z (2.5)

where D remains to be determined. Therefore, the inner and outer
radii of the deformed curved surfaces are determined by

rap=\D ¥ 2(L/a)A
Adding and subtracting these equations then yields

(2.6)

Table 1

Fig. 2 Sketch of Rivlin’s deformation for the bending of a
block made of an incompressible isotropic solid with length L
and thickness 2A into a circular annular sector with inner and
outer radii r, and r,, respectively. The angle « is the bending
angle. The deformation is plane strain but makes no assump-
tion about the dimensions of the block or the amount of
bending.

D=(r2+r)2 (2.7a)

rp—ri=4ALla (2.7b)

Hereafter we consider the boundary value problem where equal
and opposite moments are applied to the ends of the block at Y
== L/2. The other classical boundary value problem of flexure,
where one end is held fixed and a moment applied to the free end,
is a subregion of the problem considered here with the fixed end
described by 6=0.

3 The Stress-Free Boundary Conditions
The corresponding deformation gradient tensor F is given by
F =diag(\;,\y,\5) = diag(\, N1, 1) (3.1a)
where
N=L/(ar) (3.1b)

denoting the principal stretches by N, A,, and A5. It is now clear
that Rivlin’s solution (2.5) is a plane strain deformation because
N3=1 at all times.

For homogeneous, incompressible, elastic materials, the corre-
sponding principal Cauchy stresses are given by

Trr=_p+)\lW,1’ (32)

where p is an arbitrary scalar field, W=W(\;,\,,\3) is the strain-
energy function and the comma subscript denotes partial differen-
tiation with respect to the appropriate principal stretch. The equa-
tions of equilibrium determine p as

Too=—p+NW,

p=J MW =MW rtdr+ MW, +K (3.3)

where K is an arbitrary constant. It therefore follows immediately
that

T,,:f()\IWJ—)\ZW’Z)r"ldr+K, Too=To+ MWy =N W,

(3.4)
Now define the function W(\) as

W) = WL )

which is assumed to be a convex function. Then

(3.5)

Experimental results collected for the bending of a polyurethane strip with aspect ratio A/L=0.35. The first line gives the

bending angle « in degrees and the second line gives a measure of the moment M up to a multiplicative factor.

a 3 4 5 7 10 15 20
MIM, 4 512 7 10 14 21

28 172

25 30 35 40 45 50 55 60
35172 43 51 59 67 76 85 93
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AW =N W, =\ W, (3.6)

where the prime denotes differentiation. The stress distribution
can then be written simply as functions of N\ as

T,=W+K (3.7a)

Tpo=W—-AW +K (3.7b)

The curved surfaces of the bent block are assumed to be free of
traction. This assumption then yields

K=-W(Q,) (3.8q)
W(\y) = WN,) (3.8b)

where
N.=L/(ar,), N,=Ll(ar,) (3.9)

No assumptions have been made thus far about material symme-
try. Only isotropic materials will be considered here. For these
materials, W(\;,\,,1)=W(\,, N\, 1) and so Egs. (3.8a) and (3.8b)

yield
W(L’ar“J) - W(% L,l) — W(L,%,l)

ar, L L ar, ar, L

ar, L
=Wl =1
L ar,

(3.10)

There are two obvious solutions to these equations: r,=r;,, which
is physically unacceptable and [1]

(3.11)

which is assumed henceforth. Solving for r, and substitution into
Eq. (2.7b) yields a quadratic equation for ri with the following
unique physically acceptable solution:

, L , L
ro=—|\/44%7+ 5 -24],
o 64

which completely determines the deformed configuration. Unusu-
ally, it is independent of the form of the strain-energy function
(provided that Eq. (3.11), which is sufficient for Eq. (3.10) to be
satisfied, is also necessary). Also note that for isotropic materials,
it follows immediately from Eq. (3.6) that

Prry, =12,

(3.12)

W(1)=0 (3.13)
Substitution of Egs. (3.11) and (3.12) into Eq. (3.9) yields the

following form for the stretches in terms of the nondimensional
parameter e€:

N=Wl+€+e N=Vl1+E€—-€=\;' (3.14)

where € is the product of the block aspect ratio by the bending
angle

(3.15)

€= —ua
L

Finally, the qualitative features of the stress distribution will be
determined. Equation (3.74) yields

dr 1 -~ T, 1 -
_rrz__ ! ” =—2 ’ 2 r
o rAW N, e rz( AW (N) + XMW’ (N))

(3.16)

It follows immediately from these, the assumed convexity of V~V,
and Eq. (3.13) that the radial stress has a unique minimum value

of —W()\a) at r=L/« and since the curved surfaces are assumed

stress-free, the radial stress is therefore compressive in the interior
of the bent block.

Journal of Applied Mechanics

Convexity also yields that the hoop stress is a monotonically
increasing function of r, compressive on the inner curved surface
and tensile on the outer.

4 Some Approximations of the Deformed Configura-
tion

Since the deformed configuration is independent of the form of
the strain-energy function, asymptotic expansions in € are valid
for all incompressible elastic materials. Expanding Eq. (3.12) and
its counterpart for ri in a Maclaurin series in € yields

L 1 1 L 1 1
ra== 1——e+—e2+0(é)], rb=—[1+—6+—62+0(€3)]
o 2 8 a 2 8

(4.1)
To the leading order, we have
r,=ry=Lla (4.2)
giving a curvature
k=alL (4.3)

Thus, infinitesimally thin sheets, strips, and wires are bent into a
circular arc whose radius is inversely proportional to the bending
angle.

Truncating the series after the linear terms in Eq. (4.1), and thus
we are now considering thin but not infinitesimally thin, sheets,
strips, and wires yields

ro=Lla—A, r,=La+A (4.4)

which are again remarkably simple and which tell us that the
thickness of the deformed block is still 2A.

Retaining the quadratic terms in the expansions (4.1) yields
that, again, r,—r,=2A.

5 Exact Results for the Moment

The associated stress distribution naturally requires specifica-
tion of the form of the strain-energy function in order to be deter-
mined. The most important functional of this stress distribution is
the moment M required to bend the block by an angle «. This

moment is given by
b
M= f T yordr

a

(5.1)

which can be rewritten in terms of the parameter € defined in Eq.
(3.15) as follows:

Ap
M _ f WO + € TW(N,) (5.2)

4A? N
where A\, and A, have been defined in terms of e through Eq.
(3.14). To derive this expression, we made use of Egs. (2.7a),
(3.1b), (3.8a), and (3.15). Note that in Ref. [3] (p. 293), the last
term of this expression is missing; note also that the expression of
M in terms of an integral in r can be found in Rivlin’s original
paper [1], see also Kanner and Horgan [4]. It follows trivially
from Egs. (3.8b) and (3.14) that M is an odd function of e.

We remark that in this paper, M is the applied moment per unit
width of the block: if the block’s width is H, then the total applied
moment is HM.

The integral term in Eq. (5.2) surprisingly means that explicit
relations between the moment and bending angle in terms of el-
ementary functions are difficult to obtain in general. Progress can
be made however for some forms of W. For example, Kanner and
Horgan [4] compute M for the Mooney—Rivlin material and for
the Gent [18] material.

We focus on the following Rivlin expansion of the strain-
energy density in the principal invariants of the Cauchy—Green
strain tensors [19]
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Fig. 3 Variations in the moment M with e, the product of the
aspect ratio by the bending angle, for the large bending of an
elastic block modeled by Rivlin’s strain-energy density (5.3).
Exact results in the cases where the nonlinear shear coefficient
B is equal to 0.0 (Mooney—Rivlin material), 0.1, 0.5, and 1.0. See
Fig. 4 for a comparison with experimental results when g=1.0.

W=Co(I=3)+ Co (I =3) + Cyo(I = 37+ C(I-3)(r-3)
+ Cop(I1 - 3)? (5.3)

where the C; j(i+ j=1,2) are constants to be determined from ex-
periments (see Erkamp et al. [16] for example) and

I=NT+ N3+ 05, =N+ N+ NS (5.4)
This strain-energy density is readily implemented in most finite
element analysis packages. It includes the neo-Hookean and
Mooney-Rivlin materials. In the case of plane strain, such as the
bending problem considered here /=II=\>+\"2+1 so that W re-
duces to

~ 1

W= EM[()\2+)\‘2—2)+/3()\2+)\‘2—2)2], (5.5)
where u=2(Cy+Co) >0 is the infinitesimal shear modulus, and
B=(Cy+C1;+Cqp)/ >0 is the nonlinear shear coefficient

[11-13]. Substitution into the general moment relation (5.2) then
yields the exact, nonlinear relation

M — — 8
2aA =(1-4B)[e*In(N1+ € -+ €'V + €]+ 3,85

(5.6)

The last term in this expression shows that M grows unbounded
with €, except in the special Mooney—Rivlin case for which 8
=0 and where the asymptotic value is M=2uA? [4].

In Fig. 3, we plot M/(2uA?) as a function of € for 8=0.0, 0.1,
0.5, and 1.0. A noteworthy feature of this plot is that there is a
linear response quite far beyond the origin. This is explained in
the next section.

6 Approximate Results for the Moment

Expanding the general expression (5.2) for the moment M in a
Maclaurin series in €, and noting both that M is odd in €, and Eq.
(3.13) yields

061015-4 / Vol. 77, NOVEMBER 2010

M o1~ - _ _
2= 3V ]e+ — I (1) +8W7(1) =37 ()] + ..
(6.1)

Recall that only isotropic, incompressible materials are being con-
sidered here. Differentiating Eq. (3.6) with respect to A and evalu-
ation in the reference configuration yields

W’(1)=W1+W2+W11+W22—2W12 (62)

where the partial derivatives of W are evaluated at (A\;,\,,\3)
=(1,1,1). The last of Egs. (6.1.88) of Ogden [3] then yields

W'(1)=4u (6.3)
The dependence of W on \ can be expressed in the form
W) = (N2 + N2 -2), (6.4)

for some function f, say. It then follows that W”(1)=8’(0) and
Wm(l)=—24f’(0)=—3ﬁ/,’(1) or

W"(1)=-12u (6.5)

So for isotropic materials the moment relation (6.1) can be written
in the form

M 4 1~
—=7ue+ —[W(1)-108ule + O(€
3= et 1ol (1) - 10841+ O()
which explains why the linear regime carries for moderate values
of € in Fig. 3.

(6.6)

7 Weak Nonlinear Elasticity

Because we are looking at small but not infinitesimal, elastic
effects, we place ourselves in the theory of weak nonlinear elas-
ticity [20]. There, the strain-energy density is expanded in terms of

(7.1)

where E is the Green-Lagrange strain tensor (with eigenvalues
()\1-2— 1)/2). For incompressible solids, Ogden [21] showed that the
expansion of W up to terms which are of order four or less in the
Green—Lagrange strain involves only three material constants. In
the notation of Hamilton et al. [15], it is written as

L=tr(E), L=t(E?, IL=t(E?

A 2
W=ul, + §I3+’DI2 (7.2)

where A and D are nonlinear Landau elasticity constants.

The Appendix shows that at the same order of approximation in
the strains, the Rivlin strain-energy density (5.3) coincides with
the fourth-order elasticity expansion (7.2) when

A =- S(CIO + ZC()I)a D= 2(C|0 + 3C0| + 2C20 + 2C|] + 2C02)
(7.3)

Conversely, we find that 8 introduced in Eq. (5.5) can be written

as
1 A2 +D

A= 5(1 * T)

in agreement with Zabolotzkaya et al. [11].

Consequently the general moment-€ relation (6.6) for fourth-
order elasticity has the form

(7.4)

M 4

2
P=§Me+g(M+A+2D)Q+O(é) (7.5)

or, in nondimensional form,
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%=i6+ %(4/3— e +0(e) (7.6)

MA= 35
We remark that this expansion is in agreement with the Maclaurin
series derived from the exact expression (5.6), see Rivlin [1]. We
also note that the fourth-order elasticity is necessary and sufficient
to express the onset of nonlinearity present in the coefficient of €
in Eq. (6.6): third-order elasticity cannot account for all the com-
ponents of that coefficient, and we checked that fifth-order con-
stants do not appear in it (these calculations are not reproduced
here).

Finally, we check that the expansion (7.6) is consistent with
classic elastic theory, which tells us that the total flexural moment
required to achieve a curvature x of a plate with width H and
thickness 2A is

HM = Elk, (7.7)

where E is Young’s modulus and / is the moment of inertia of
cross-sectional area. Here the block is rectangular and /
=H(2A)3/12. Also, the curvature is k=a/L, see Sec. 4. Moreover,
it is known that in classic plane strain theory, E=2u(1+v)/(1
—17%), where v is Poisson’s ratio. As we are dealing only with
incompressible solids, v=1/2, and we find that the linear term in
Eq. (7.6) or in Eq. (6.6) (or the term obtained from a linear ex-
pansion in € of Eq. (5.6)) is indeed given by Eq. (7.7).

8 Experimental Results

We conducted bending experiments on several strips of elas-
tomers, using a Tinius Olsen bending stiffness tester. That tester
meets the requirements of the ASTM standard test method E855
[17]. We used strips, which were about 4.5 mm thick. The tester
imposes a moment at two points of the strip separated by half-an-
inch. Hence the aspect ratio of the strips with respect to the bend-
ing experiments, was A/L=4.5/12.7=0.35. We bent the samples
by small, moderate, and large bending angles but noticed that at
large angles, pinching (and perhaps also wrinkling [8]) took place
on the inner face of the bent strip. Consequently we only retained
the data up to an angle of 60 deg, which gives the following range
for the expansion parameter: 0 = e=0.37.

In Fig. 4, we show the results of one representative experiment,
for a strip of polyurethane elastomer, shore hardness 40A. On the
vertical axis, the variable is a nondimensional measure of the
moment, M/M,,, where M,, is the maximum bending moment of
the tester’s pendulum (see ASTM standard test method E855 [17]
for details); the actual value of M,, is irrelevant, as we are only
interested in measuring the nondimensional parameter 8. On the
horizontal axis, the variable is e. The circles represent the re-
corded experimental data (16 measurements in the 0-60 deg range
for the angle of bending, see Table 1). The straight dashed line
corresponds to the fitting with linear elasticity theory (8=0, Eq.
(7.7)), and the full thick plot corresponds to the fitting with fourth-
order elasticity theory (7.6). Only one parameter () is to be de-
termined from the cubic relation (7.6), which ensures the exis-
tence and uniqueness of the fitting parameter 8. We obtained a
good agreement when 8=1.0.
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Fig. 4 Bending of a strip of polyurethane: variation in the non-
dimensional measure of the bending moment M/ M,, with ¢, the
product of the strip’s aspect ratio by the angle of bending.
Circles: experimental data; dashed straight line: linear elastic-
ity, Eq. (7.7); and full line plot: fitting of third- and fourth-order
elasticity effects with the data by adjusting the nonlinear pa-
rameter g to the value 1.0 in Eq. (7.6).

Appendix: Correspondence Between Exact Nonlinear
Elasticity and Weakly Nonlinear Elasticity

In the exact (finite) theory of nonlinear elasticity, there are no
restrictions to impose on the magnitude of the strain. Often the
strain-energy density W is written in terms of the first three prin-
cipal invariants of the Cauchy—Green right strain tensor C

I=r(C), II=%[(trC)2—tr(C2)], HI=detC (A1)

For incompressible solids, III=1 at all times and W=W(I,I) only.

In the weakly nonlinear theory of elasticity, W is expanded up
to a certain order in a certain measure of strain, and all higher-
order terms are neglected. Often the Green—Lagrange strain tensor
E=(C-1I)/2 is favored and the expansion is made in terms of the
quantities I, I,, and I3 defined in Eq. (7.1).

There exist of course connections between the two theories. For
instance, Rivlin and Saunders [22] show that the Mooney strain-
energy density of exact nonlinear incompressible elasticity

W=Co(I-3)+Cy(II-3), (A2)

coincides, at the same order of approximation with the general

weakly nonlinear third-order elasticity expansion,
A

W=ply+ 1y (A3)

The connections between the material constants Cy;, Cyg, t, and

A are

u=2(Cyg+ Cpp), A=-8(Cyp+2Cy) (A4)
or conversely
1 A 1 A
C10=§(2M+ Z>, C01=—§(,U«+ I) (AS)

see Goriely et al. [23], where there is a misprint. Now we show
how Rivlin’s strain-energy density (5.3) is connected to the
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fourth-order elasticity expansion (7.2) for incompressible solids.
The general relations between I, 11, and /1] and I, I,, and I are
well-known and straight-forward to derive

I=3+2I]

H=3+41, =21, + 21

8

HI=1+20+ 21 =2, + 31 - AL 1, + 314 (A6)

For incompressible solids, ///=1 is enforced at all times, and so

Li=—F+1-30+ 201, -5 (A7)
showing that /; is at least of order 2. Squaring gives
I} =1 +HOT (A8)

where “HOT” is the acronym for “higher-order terms” (here,
higher than fourth-order terms). Multiplying Eq. (A7) by I, yields
I11,=I5-E1,+HOT or using Eq. (A8)

I,I,=2+HOT (A9)
Substituting Egs. (A8) and (A9) into Eq. (A7) gives [15,14]
I=1, -3+ 5+ HOT (A10)

Hence, the relations (A6) reduce, for incompressible solids, to

[-3=20,- 3+ 25+ HOT

1-3=20,- 21+ 605 +HOT

(I-3)2=(I-3)II1-3)=(I-3)>=4+HOT (All)
and Rivlin’s strain-energy density (5.3) reduces to
8
W=2(Cyp+ Co))l - E(CIO +200))13
+2(C1o+3Cy +2Co0+2C +2C) 1. (A12)

Clearly, it coincides with the fourth-order elasticity expansion
(7.2) with connections (7.3).
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