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Consider the constitutive law for an isotropic elastic solid with the strain-energy function expanded up
to the fourth order in the strain and the stress up to the third order in the strain. The stress—strain rela-
tion can then be inverted to give the strain in terms of the stress with a view to considering the incom-
pressible limit. For this purpose, use of the logarithmic strain tensor is of particular value. It enables
the limiting values of all nine fourth-order elastic constants in the incompressible limit to be evaluated
precisely and rigorously. In particular, it is explained why the three constants of fourth-order incom-
pressible elasticity u, A, and D are of the same order of magnitude. Several examples of application of
the results follow, including determination of the acoustoelastic coefficients in incompressible solids
and the limiting values of the coefficients of nonlinearity for elastic wave propagation.
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I. INTRODUCTION 1
v— = e=——tr(6)0 +——a0, 4)

Extracting the condition for incompressibility from a
stress—strain relation can be an ambiguous process because it
leads to an infinite limit for one (or more) of the elastic stiff-
nesses and, eventually, to the appearance of a hydrostatic
stress term proportional to an arbitrary Lagrange multiplier
(to be determined from boundary and/or initial conditions).'*
In linear isotropic elasticity, the relation between the infini-
tesimal stress ¢ and the infinitesimal strain € reads

and there is no arbitrary quantity.

Turning now to nonlinear isotropic elasticity, we must
first of all make a choice of the measures of stress and strain.
Physicists and acousticians seem to favor the pair consisting
of the Green—Lagrange strain tensor € and the second Piola—
Kirchhoff stress ¢, and they expand, in the so-called weakly
nonlinear theory, the strain-energy density W in terms of
three isotropic invariants of the strain. Hence, the Landau
o = Ltr(€)d + 2pe, (D and Lifshitz* expansion can be conducted to fourth order as’

where /4 and p are the Lamé coefficients and ¢ is the identity. A A Cy
W =1+ ul +§13 + Bl +§11 + ELI; + FITh

The incompressible limit is equivalent to the condition tr € 2
= 0, which leads to the limiting case + szz + gfll’ (5)
4 — 00, 6 = —pd + 2ue, (2)  where A, B, and C are the three third-order constants, E, F,

G, and H are the four fourth-order constants, and
where p is an arbitrary scalar. By way of contrast, a strain— B B B
stress relation is more amenable to the imposition of incom- I = t(e), I = tr(éz)a I = tr(é3), (6)
pressibility, because it leads to unambiguous, finite limit(s)
for one (or several) compliance(s).3 Hence, in linear iso-
tropic elasticity, we go from

are, respectively, of first, second, and third order in the
strain. (Note that we have placed overbars on the elastic con-
stants so as to avoid conflict with the standard notation E for
Young’s modulus, which is used extensively in what fol-
o, 3) lows.) Thus, the terms in /. 12 and I, are “second-order” terms,
the terms in I3, I;15, and I3 are “third-order” terms, and so
on. However, the incompressibility limit is not easily imple-
mented with this choice, because it is a combination of the
invariants,® specifically

1+v
E

€= —% tr(a)d +

where v is Poisson’s ratio and E is Young’s modulus, to the
limiting case
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This, in particular, means that /; is now a second-order quan-
tity. This makes it complicated to arrive at the fourth-order
expansion of incompressible nonlinear elasticity, for which
the strain-energy function has the form

A
W = ul, +§13 + DI, ®)

where D is another constant.

However, it is advantageous to use, instead of Green—
Lagrange strain, an alternative measure of strain, namely the
logarithmic strain, since this leads to a very simple expres-
sion of the incompressibility constraint. The logarithmic
strain e is defined by

e= %ln(ﬁ + 2e), 9)

and we consider the three independent invariants

I = tr(e), I, = tr(e?), I; = tr(e?), (10)
respectively, of orders one, two, and three, analogously to I,
I, and I5. Then incompressibility is expressed exactly as

I, =0, Y

which must hold identically for all stresses and strains.

These considerations suggest the following protocol for
finding the limiting values of the elastic constants in incom-
pressible weakly nonlinear elasticity (Secs. II and III). First,
write down the relation between stress and strain. Since we
are considering isotropic materials, the relevant stress mea-
sure ¢ conjugate to logarithmic strain e is the Kirchhoff stress
tensor on rotated coordinates related to £ by ¢t = (0 + 2e)f
(for a general discussion of conjugate stress and strain ten-
sors see Ogden’). Then invert this relation to find the strain
in terms of the stress and, more particularly, /; in terms of
invariants of ¢. Finally, note that /; must be zero for all . In
what follows, we conduct this process explicitly for third-
order elasticity. Then we present the results of the fourth-
order case, omitting many of the (cumbersome and lengthy)
details of the calculations. In Sec. IV, we give a few exam-
ples of the applications, and we see that the results estab-
lished in compressible elasticity can be taken to their
incompressible limit, without having to re-write and re-solve
the equations of motion and boundary conditions.

Previously, Hamilton et al.® have shown that there
should remain only three elastic constants in the incompres-
sible limit of Eq. (5) (Ogden® had in fact proved this result
30 years earlier). They also found some limited information
on the behavior of the other six constants, by extending the
work of Kostek et al.'® from third-order to fourth-order elas-
ticity. Based on a comparison with the equation of state of
inviscid fluids, it was found that x and A remain, a new
fourth-order constant D emerges, and

see Zabolotskaya er al.'' and Jacob et al.® for the latter iden-
tity. However, the behavior of C, F, and H remains undeter-
mined. Moreover, the full comparison with fluids ultimately
leads to the identities: u = 0, A = 0, and D = 0, which, in
considering an elastic solid, are not satisfactory because they
imply that some information might be missing from the list
in Eq. (12), where u, A, and D could play a role. One can
only go so far in comparing the behavior of a solid to that of
a fluid; a particular disconnect emerges when comparing the
behavior of a solid in the incompressible limit, where the
speed of a longitudinal wave should tend to infinity, to that
of an isentropic liquid, where the speed of a longitudinal
wave is finite (Sec. IV D). The differences existing between
a compressible solid and its incompressible counterpart must
be tackled within the framework of solid mechanics.

In effect, many questions have remained open in the lit-
erature, as attested by the following comments. Domarski'>
remarks that “the details of the derivation [of Eq. (8)] are not
quite clear from the mathematical point of view,” and that
“surprisingly, the experiments confirm that, in spite of being
a combination of the higher order constants, the fourth-order
constant D is of a similar order of magnitude as the second-
order shear Lamé constant u and the third-order Landau con-
stant A.” Catheline ef al.'* measure A and B for agar—gelatin
based phantoms and note that “the huge difference between
these third-order moduli is striking since in more conven-
tional media such as metal, rocks, or crystals they are of the
same order.” They then propose an “intuitive justification”
for this difference, which “does not hold for a theoretical
explanation.” Jacob er al.° record that “surprisingly, the
experiments confirm that, although expressed as function of
compression moduli /4, B, G, the moduli D is of the order of
magnitude of the so-called shear moduli ji and A,” and add
that “no explanation has been given for this order of
magnitude.” We address each of these points in the course of
this paper.

Il. THIRD-ORDER INCOMPRESSIBILITY

In this section, we focus on third-order elasticity, so that
the strain-energy function (5) reduces to

- - A. . _ C-
W= 5112 +ub+ 31+ BLb +§113. (13)

At this order, the inversion of Eq. (9) gives € = e + €’
+ 2¢*/3, so that

_ 2 _ _
11=’1+12+§13, I, =1, +2Is, =1 (14

It follows that the third-order expansion of W in terms of the
invariants of the logarithmic strain e reads

_ _ 4) _ _ _ _
A — 00, B=—4, E=—, F=-C, L 5 A - C 5
, , 3 W =3I+l + 5+ 20 13+(B+}~)1112+§11,
5= D=-+B+G; 12
G ok > + B+ G; (12) (15)
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which is also written as

Ev E A
W= I? L+Z1
2 wi—2n " T2 023
C
+81112+§113, (16)

where E and v are second-order constants (Young’s modulus
and Poisson’s ratio) and A, B3, and C are third-order constants
with respect to the logarithmic strain, with the connections,

3] +2u y
E = : =,

A+ 2(A+ )
A=A+ 6y, B=B+1/, C=0C, (17)

to the Lamé and Landau coefficients. The (conjugate) stress
t = OW /0Oe then expands as

Ev
== i I?
! ((1+v)(12v)1+62+cl)6

E
— 28I 2, 1
+<1+v+ Bl>e+Ae (18)

Now we introduce the stress invariants 7, = tr(f) and
T, = tr(#), and it follows by taking in turn the trace of
Eq. (18) and then of its square that

Ti=1—-h+(2B+ 30)I7 + (A + 3B)I,
E? v(2—v
T, = . ( )21%+12 :
(14+v)" [(1—=2v)
E2
2 2
T? :mll, (19)

corrected to the second order in the strain. These can be
inverted to give [ 2 I, and then

Iy =oT + T, + Vle, (20)

where the constants o, f3, and y are given by

1—2v
o= )
E
2
a2
3
)= (A43p)2=V1=2) ”I)Egl =2 g4 aeL=2) ;32”) .
@D

For the exact incompressibility condition [Eq. (11)] to
hold for all stresses and strains, we must have o = f =y = 0.
First, o = 0 is clearly equivalent to either of

v—1/2, J — 00, (22)
while both E and u remain finite, with u — E / 3.
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Second, note that the stress must remain finite in the
incompressible limit. Hence, the last term in the expression
for t in Eq. (18) remains finite, so that A remains finite:

Aju=0(1). (23)

With these two conditions for incompressibility, the
expression for f§ in Eq. (21) reduces to

~27B(1 —2v)

b=

Notice that the first term in the expression for ¢ in Eq. (18)
must also remain finite, which means that (1 — 2v)~ '
remains finite. Clearly, the conditions “f = 0" and
“(1 — 2v)*1[3 is finite” are fulfilled simultaneously when 5
remains finite:

B/u=0(1). (24)

With the three conditions for incompressibility [Eqgs.
(22)—(24)], the expression for y in Eq. (21) reduces to

3¢(1 —2v)°

= (25)

y=-

Recall that (1 — 2v)71[1 and, hence, (1 — 2v)717) remains
finite. It follows that

(1-2v)’C—0, C/u=002/1P). (26)
In summary, the conditions given in Eqgs. (22)—(24) and (26)
are necessary and sufficient for incompressibility.

For an incompressible material (with /; = 0), the strain
energy W, therefore, reduces to

E A
W==-L+—-I 27
3 2+3 3 ( )

or equivalently, in terms of the invariants of the Green strain
tensor,

E. . A _ A
W =3 (L —25) + 55 = uh + 51, (28)

where we have used Egs. (14)—(17). We use Eqgs. (17) to find
that, in terms of Lamé and Landau constants, the incompres-
sible limits are Eqgs. (22) together with

A=A—6p=p0(1),
C=C=po(2/1?),
(1-2v)°C —0. (29)

B=DB-1=20(1),
(1 —2v)B — —E/3,

Notice that C varies in a quadratic manner with respect to 4
as it goes to infinity in incompressible solids, not in a linear
manner, as is incorrectly reported in Refs. 8, 14, and 15; see
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also Sec. IV D, where it is shown that if C were linear in 1,
then longitudinal waves would propagate with finite speed in
the incompressible limit.

Bearing in mind the advantage of the strain—stress rela-
tion (3) in the linear theory, we now take note of its counter-
part for the present theory. On use of the definitions of T
and T, and Eq. (19) we may, after lengthy algebra, invert the
stress—strain equation [Eq. (18)] to give

3
—1+vt—7T15_A(17+V)t2
E E3
( E3) [vA — (1 —2v)B](2T ¢t + T»0)
1
23 BBY(2 = v)(1 - 2v) = 347 = C(1 - 2v)"]T7o.

(30)

In the incompressible limit, as embodied in Eqs. (22)—(26),
this reduces to

1 27A 1

-T —-T

3 ‘5> BE3 ( 3 25)

€1y}

from which it follows immediately that tr(e) = 0
Conversely, the stress—strain relation must accommo-
date the internal constraint of incompressibility by introduc-
ing a Lagrange multiplier, denoted by p, in the following

e:%(2E2+3AT1)(t—

expansions:
2E
= —pdt+—Se+ Ae?,
f=—p(6+2¢)" +2ue+Aé, (32)

for the stresses, where we recall that for an isotropic mate-
rial, t = (8 + 2e)t.

lll. FOURTH-ORDER INCOMPRESSIBILITY

We now extend the above analysis to include fourth-
order terms in the strain-energy function, as in Eq. (5), and
we work in terms of the logarithmic strain tensor and its
invariants. We use the fourth-order expansion & = e + e’
+2¢3/3 +¢*/3 and the identity® tr(e*) = (1/6)I} — I?1
+ (1/2)15 + (4/3)1115 to establish the following connections
between the invariants of e and those of e:

_ 2 4 1 1 1
=L+bL+=+-Il;—=PL+-I?+—I

| 1+2+33+913 312+62 180

_ 7 28 7 7

L=15+2;—~PhL+=—L+-1>+—1I"

» =50 +23 312+9 13"‘62"'1817

T 2 3 2 14

L =1 +4L1; — 31, +512 +§11. (33)

The strain energy may then be expressed as a function
of the invariants of e, in the form
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P
WZEII"':“IZ"_

+ G5 + MY, (34)

A C
31+ B+ g1? + &L + FLIL

where, in addition to the connections (17), the elastic con-
stants are given by

4A 28,u 2 _—  _ Tu

E+2B =F —A——

E=E+2B+— 3 +— 9 3 ,  F +C 3
- }u A_ Tn A Tu

G=G+ 2 2+6’ H = +6+18 (35)

Note that it is a simple matter to invert these relations using
Egs. (17) to give

4A 44,u 4/ - Hpu

E= 2B——+—+—, F=F- -

E-28 3 9 + 3 F-C+ 3
= A 1lp 4 A 1lp
G—Q-B—;-f—?-ﬁ-i H—*‘FTS (36)
The stress ¢, to third order in e, is then given by
t = A0+ 2ue + B(1d + 2l1e) + Ae* + CI36

+ E(I36 + 311€%) + 2F (1,10 + Ie)

+4Ghe + 4HI3 6. (37)

By defining T} = tr(¢), T, = tr(#), and T5 = tr(£), similarly
to Sec. II, by manipulating the equations to third order, and
after some considerable algebra (which is omitted), we
obtain an extension of the expansion (20) to give

Iy = oy + BTy + 9T + T + BT T2 +9'T;, (38)

where «, f8, and 7y are as given by Eq. (21), while o/, f/, and
7' are defined via

ESd = (14v)*(1 —2v)[2(1 +

ESB = (14+v)*(1 — 2v){2(A +3B)
X [(1—2v)(5 — 40)B+3(1 —2v)’C — v(4 + v) A]
— E[B3(1 = 5v)& +2(1 — 2v)(3F + 26)]},

WAA + 3B) — 3E€],

ES =222 = v)(1 — 20)* (A +3B)> —6v(1 — v)
x (1 —2v)*(A+3B)(2B +30C)

+ 2(1 = 2v)>(2B +3C)* + 3v*(1 — 2v)

X [2(1 + v)A(A +3B) —3EE] — v(2 — v)(1 — 2v)°
x [6(14v)(A+3B)B — E(3E + 6F +4G)]

+ 2(1 = 2v)*[(1 + v)(A + 3B)C — E(F + 6H)).

(39)

The exact incompressibility constraint [Eq. (11)] is enfor-
ced for all stresses whena = ff=y=0and o/ = =7 =0.
The first three conditions lead to the limits, Eqs. (22)—(26),
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thereby bringing great simplifications in the expressions
above. Hence in the incompressible limit, we have

81
E*y = -5 (1—2v)E, (40)
which must tend to zero as v — 1/2. However, on inspection
of Eq. (37), it can be seen immediately that for the stress to
remain finite in the incompressible limit, we must have that
£ is finite,

E/u=0(1), (41)

and o/ above does indeed tend to zero as v — 1/2. As in
Sec. II, we see that the first term in Eq. (37) remains finite in
the incompressible limit when (1 — 2v)_1I | remains finite.
Clearly here, (1 — 2v) " 'o/ remains finite.

Equally, for the term in G in Eq. (37) to remain finite, G
must itself be finite in the limit:

G/lu=0(1). (42)
Now we find that in the incompressible limit, ' behaves as

E'f = — 277 (1 —2v)*F. (43)

For f' to tend to zero, and (I — 2v)~'f’ to remain finite, we
must enforce the following behavior for F:

(1-2v)’F =0,  F/u=00/n). (44)
In these limits, the /,/,F-term in the expression [Eq. (37)]
for the stress remains finite, while the I%}" -term vanishes.

It remains to consider H. Using the limits above, we see
that 7' behaves as

EY = —12(1 — 2v)*H. (45)

For this to tend to zero and (1 — 2v) 'y’ to remain finite, we
require

(1—20)*"H -0,  H/u=0Z/id). (46)

We may then check that the limiting value of the last term in
Eq. (37) is finite.

In summary, we must have for the fourth-order
constants associated with the logarithmic strain

E/u=0Q1),  Flu=00/w),  G/u=0(1),

H/u= 01 /i), 47)
which are necessary and sufficient for incompressibility at
this order.

For the fourth-order constants associated with the Green
strain, we use Egs. (36) to find

E/u=0(2/p),
G/u=0(/n),

Flu=0(2/1),
Hip=0(2/11), (48)

3338  J. Acoust. Soc. Am., Vol. 128, No. 6, December 2010

and, specifically,

(I—ZV)EH%, (1-2v)G — —. (49)

o

For incompressible solids, /; = 0 for all stresses, and the
fourth-order expansion [Eq. (34)] reduces to

A
W=puh+3h+ Gz, (50)

and only three constants remain.” Equivalently, in terms of the
invariants of the G_reen strain tensor, the expansion of W reads
as Eq. (8), where D is defined by Eqgs. (12) or, equivalently, by

_ A 1y
D=G——+— 51

G-+ G
making it explicit that it is of the same order as u (and thus,
as A):

D/u=0(1). (52)

Turning our attention to the stress, we see that all the
terms multiplying d in Eq. (37) are absorbed by the arbitrary
hydrostatic stress, to give, in the limit,

t = —pd +2ue + Ae* + 4Ghe. (53)

By the Cayley—Hamilton theorem, we have (for an incom-
pressible material where /1 = 0)

1 1
3_ _
e = 2128+3135, (54)

and hence we have
2 3 2
t=—pd+2ue+ Ae” +4G| 2e —§[36 , (55)

and finally, by adjusting the hydrostatic term by introducing
p' =p+8Gl/3,

t=—p'o+2ue+ Ae* +8Ge’, (56)

where only the three constants of fourth-order incompressi-
ble elasticity appear and no invariant. We recall that the cor-
responding measure of stress conjugate to the Green strain is
given by the connection # = (6 + 2¢)”'t, which applies for
an isotropic material, yielding

f=—p/(6+20)" +2ue+ A& + 8D . 7)

Note that the Lagrange multiplier p’ must figure in the expres-
sions for the stress [see also Eq. (32)] but has been omitted in
the expression for the stress in several papers.®'"'%!7

The counterpart of the strain—stress relation [Eq. (30)]
for the fourth order is very lengthy and is not written here.
We note, however, that the contribution to e additional to the
first and second-order terms in Eq. (30) for the third order in
the stress has the structure

M. Destrade and R. W. Ogden: Fourth-order incompressible elasticity
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a1t3 + (12T1t2 + (03T% + a4T2)t + (a5T3 + a¢T\T> + a7Tf)5,
(58)

where ay, as, ..., a; are constants that are collectively func-
tions of u, A (or E, v), A, B, ..., H. With the exception of
a, = A?/164°, these expressions are very lengthy and there-
fore omitted. However, in the incompressible limit, the
strain—stress relation simplifies substantially and the exten-
sion of Eq. (31) becomes

3 1 27A 1
27 1
+ 05 (T% —3T,)(8EG — Az) <t - §T15>. (59)

As in the third-order case, it is seen immediately that tr(e) = 0.
In deriving Eq. (59), we have used the Cayley—Hamilton
theorem for ¢ to eliminate £°.

IV. EXAMPLES
A. Acoustoelasticity of bulk acoustic waves

Hughes and Kelly'® used the acoustoelastic effect to
evaluate experimentally the third-order elasticity constants,
by measuring the speed of infinitesimal bulk homogeneous
plane waves propagating in a solid subject to a small pre-
stress. We summarize their results in Table I, where we use
the layout of Norris'® and the definition

d(pv?)
do |,

K = (60)

of the acoustoelastic coefficient K, where p is the mass den-
sity in the unstrained state and o is the pre-stress (which is
either hydrostatic or uniaxial).

The incompressible counterparts to these formulas are
readily established by use of Egs. (22) and (29). They appear

in an incompressible solid. The formulas for shear waves are
in accord with those established using different means by
Gennisson et al.?’ and by Destrade et al.>" in the case of uni-
axial pre-stress. For hydrostatic pre-stress, we note that the
speeds of the shear waves are unaffected by the hydrostatic
stress, which is also to be expected for an incompressible
material.

B. Acoustoelasticity of surface acoustic waves
(SAWSs)

Hayes and Rivlin*? computed the acoustoelastic coeffi-
cient for SAW propagation. For a wave propagating in the
direction of uniaxial pre-stress of (small) magnitude o, it
is defined by Eq. (60) where v is now the SAW speed.
Using the results of Tanuma and Man,>*** we present it in
the form

K=1—ayy, —byy—cy33 —dyy (61)

for a compressible isotropic elastic solid, where the y’s are
defined in terms of the Lamé constants by

72 = (A+2p)[=8(4 + u) +2(57 + 6p)X
—(22+3u)X?] /A,

Y3 =441 = X)[4(A+ p) — (A 4+ 2w)X]/A,

73 = [1 = uX/(A+2p)]/ A,

Vaa = —8(A+ 2 — pX)[2(A + p) — (44 21)X]/A,

A=A+ p)[8(32+4u) — 16(A+2u)X +3(A+2p1)X?],
(62)

and the nondimensional quantity X is the unique real positive
root to Rayleigh’s cubic,?

in the last column of the table. In particular, it is seen X3 —8x2+8 37+ 4u _ Atu -0 (63)
. . . . . 1 ?
that the speed of longitudinal waves is infinite, as expected A4 2u A+2p
TABLE I. Acoustoelastic coefficients for bulk acoustic waves in compressible and incompressible solids (here 3k = 34 + 2p).
Stress Mode Propagation Polarization K (compressible) K (incompressible)
I _ -
Hydrostatic Longitudinal Arbitrary |n ~ (724 10p + 2A + 10B + 6C] 00
1 _ _
Hydrostatic Transverse Arbitrary 1ln A [34+6u+ A+ 3B] 0
1 - - 4 _ -
Uniaxial Longitudinal || Stress | n i {z y2B 20+ 2" T s Ay 23)} 00
u
o - 20 o i, A
Uniaxial Longitudinal L Stress | n T +C— " A2+ ) +B 00
1 A+2 _ A
Uniaxial Transverse || Stress Lln —— [4(A+p) + i KivB — |1 +—=
3K 4u 12u
1 A+2 - A
Uniaxial Transverse 1 Stress || Stress —— [A+2u+ * Yy -
3K 4u 12
. 1 A A
Uniaxial Transverse 1L Stress L Stress —|2A+-—A—-B I+—
3K 2 6
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and a, b, ¢, and d depend on the second- and third-order con-
stants according to

(A3 (A+2u)  2(A+pA
(B34 + 2 (B4 +2u)u
20/ +3WB  2C
Bl+2Wu  34+2u’

(A+wi  (A+2uB 2C
B+ 2Wp (BA+F2mpu 3a+2u’
oo 2 w(t2y JA
(34 +2u)u (32+2u)u
~2(A-pB 2C
(Bl 42w 3442’
LY (h+2w)A B 64
(BA+2u)p  4BA+2u)p  32+2pu

Substantial simplifications occur when the incompressible
limits (22)—(29) apply. In particular, X is now a definite num-
ber,”” namely X ~ 0.9126, the root of X> — 8X* + 24X — 16
=0, and 73 = —753/2 = 733 = 2(X — 1)(4 — X) /(26 — 16X
+ 3X?). Because of these latter relationships, the limit of
K remains finite since, even though each of a, b, and ¢ goes to
infinity as O(//u), the combination ¢ — 2b + ¢ tends
to a finite limit, specifically a —2b+ ¢ — A/(3p), while
d — A/(12u). The final result is that the acoustoelastic coeffi-
cient for SAWs in incompressible media is

A
K=1+09126—, (65)
12u

as established differently by Destrade er al.>' We emphasize
that this result applies for the situation in which the stress is
uniaxial. It is interesting to note in passing that in the corre-
sponding plane strain problem [in the (1, 2) plane with stress
o in the x; direction], it can be shown that K = 1 — X/2,
which is independent of the third-order constant A.

C. Solitary waves in rods

Porubov®® showed that the propagation of nonlinear

strain waves in an elastic rod with free lateral surface is gov-
erned by the so-called double-dispersive equation (DDE). For
solids with the third-order strain-energy density Eq. (13), the
DDE is

2
Vie — 0 Vyx — OCZ(V )Xx — 03Viur + %4V = 0, (66)

for the strain function v = v(x,f), where x is the space vari-
able in the direction of propagation, ¢ is time, and the sub-
scripts denote partial differentiation, and

E _ b
p _2p7 I 2 )

(67)

3340  J. Acoust. Soc. Am., Vol. 128, No. 6, December 2010

Here E is Young’s modulus, v is Poisson’s ratio, R is the rod
radius, p is the mass density, and f is the nonlinear parame-
ter. [Note that this f is different from the f defined in Eq.
(21).] Explicitly,

B=3E+(1—-2v)(B+C)+2(1—-2v)
x (14 v)(A+2B) + 6v?A. (68)

Now, in the incompressible limit described by Egs.
(22)—(29), this nonlinear parameter reduces to the very sim-
ple expression

(4u + A), (69)

[\SROS)

=

and the o’s simplify accordingly. The analysis of Porubov
can then be carried through, particularly to study solitary
waves and solitons. It should be pointed out that the sign of
p can be determined for all incompressible third-order solids.
Indeed, it is well known that, at the same level of approxima-
tion, the model described by the Mooney—Rivlin strain-
energy density

W = Cyo[tr(C) — 3] + Coy[tr(C™") — 3], (70)

where C = 2e + 4, is the right Cauchy-Green strain tensor
and Cyp and Cy; are constants, is equivalent to the strain-
energy density Eq. (28), with the connections
pn=2(Cio+Co), A= —8(Cip+2Cq1). (71)
Clearly, it follows that here we have f = — 32C,,. However,
it is also well known that the governing equations of motion

for Mooney—Rivlin solids are strongly elliptic when?’” Cy,
> (. Provided that this condition is satisfied, we deduce that

B <0, (72)

for all incompressible third-order solids and, therefore, that a
compressive solitary wave emerges from an initial localized
compressive input.?

In fact, Porubov and Maugin28 show that fourth-order
elasticity is required to account for the possibility of simulta-
neous compressive and tensile solitary waves. They use the
Murnaghan® counterpart to Eq. (5), where the expansion is
carried out in terms of the principal invariants of e, which
we write as

[(tr &)* — tr(&%)], i3 = det e.

(73)

| =

ip=tre, Ih =

The Murnaghan strain-energy function is then given by

A+2u . . I+2m
=— iy — 2uir + 3

+ Vzl‘%ig + v3iqiz + V4l§, (74)

w

i — 2miyip + niy + vii}
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where m, [,..., v4 are constants. The correspondence
between the Landau and the Murnaghan constants is easy to
establish. We find the connections

A - _ _
mzz—i—B, n==A, =B+ C,
w=E+F+G+H, = —3E —2F — 4G
V3 = 3E7 V4 :46, (75)

and thus, the incompressible limits
nfu=0(1), 1/u=0(/i?),
v/u=02 /1),

va/ = O(1/ ), (76)

m/p= 04/ ),

vi/u=0(2/1r),

vi/i=O(1/),
with the specific limits

(1 =2v)m — —E/3, (I —2v)vs — 4E,
(1 —2v)vy — 2E/3. 77)

Now, when fourth-order terms are taken into account, the
corresponding DDE has an extra term”® and becomes

*s (V3 )xx = O’
(78)

2
Vo — %1 Vax — 02 (V ) o %3V + 0y Virxr —

where o4, o, o3, and o4 are still given by Eqgs. (67) and a5
= 7/(3p), with y (different from the y in Sec. II), is given by
(1—2v)(1+v)°

Ey=E*—81*(1 —2v)>(1 4+ v) — 32m*v*

)
— 82V (1 —2v)(1 +v) + 4(1 — 2v)°
)

x {E —4v(1 +v)[2m(1 4 v) — n]} + 8m(E + 4nv?)
X (1 —=2v)(14+v)> + 120EV? + 8v, E(1 — 2v)*

— 8, E(1 —2v)(2 — v)v 4 8v3E(1 — 2v)1?

+ 8V4E(2 — )}, (79)

Clearly, the limits [Eqgs. (76) and (77)] do not give a definite
incompressible limit for y. In particular, the terms propor-
tional to (1 — 2v)m? and to vy tend to infinity, and the limits
of the terms proportional to (1 — 2v)3lm and to (1 — 2v)2v2
are not known. When y is written in terms of the Landau
constants [using the inverse of Eq. (75)], similar ambiguities
arise. However, if the expression for v is further transformed
in terms of A, B, ..., H, the nonlinear constants associated
with the logarithmic strain, then it is a simple matter to find
its unequivocal incompressible limit. In the end, we find that
y tends to

11E
=5 —3A+ 18, (80)
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or equivalently, in terms of the incompressible Landau con-
stant A and the constant D defined in Eq. (12),

7 = 141+ 6A + 18D. (81)

D. Nonlinear plane waves

Wochner et al.'®>® also use the notation f§ to identify
the coefficient of cubic nonlinearity for shear waves. Again,
this f3 is different from that used previously in this paper and
is given by

(A+2u+A/2+B)
At

3 _ _ _

(82)

According to the first, second, and fifth limits ig Egs. (12),
this quantity should collapse to f=3(2u-+A)/(4p) for
incompressible solids. In fact, the true limit is!

3 A+2D
ﬁ:§(1+ 2 ) (83)

because D, as defined in Eq. (12), should remain finite,
although until now, this behavior had not been proved rigor-
ously. An alternative means of finding the correct limit is to
rewrite the expression for f§ in terms of the constants associ-
ated with the logarithmic strain, as

3(1+v) E 2(1+v)(1 —2v)
b= {M_ 6(1+v) E
A E \°
(Ferom) |
Then the limit is clearly f = 9(2G — E/9)/(4E), which is

the same as Eq. (83).

Note that Wochner er al.'® also provide f, the
Gol’dberg®! coefficient of nonlinearity for longitudinal
waves, as

3 A+3B+C
B = > Py (85)
If, as is incorrectly reported in Refs. 8, 14, and 15, C were to
behave as C/u = O(4/p), then B; would remain finite in the
incompressible limit, suggesting that longitudinal homoge-
neous plane waves are possible. As we have established in
Eq. (29), C/u behaves as O(4*/u?), and f; therefore blows
up in the incompressible limit, as should be expected,
thereby precluding the existence of such waves.

V. CONCLUDING REMARKS

Using the logarithmic strain measure, we are able to
determine the exact behavior of the elastic constants of sec-
ond, third, and fourth orders in the incompressible limit, as
collected below. For the second-order Lamé constants
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Lo, w—E/3, (86)

as is well known; for third-order Landau constants,

Alu=0(1),  B/u=0(/p),

Clu=0(2/i), (87)
and for the fourth-order Landau constants,
Flu=0(2/1),
Hlu=0(/iP). (88)

E/u=0(2/p),
G/u= 00/,

For the constants which vary linearly with 4 as it goes to
infinity, the specific limits are

(1—2v)B — —E/3, (1-2v)E — 4E/3,
(1-2v)G — E/6, (89)

as the Poisson ratio v — 1/2.

We have used these limits to show that it is easy to take
known results of elastic wave propagation in compressible
materials to the corresponding incompressible limits. In fact,
other types of internal constraints could be accounted for
just as easily.*>

We conclude the paper with two remarks. The first is
technical: It should not be forgotten that the hydrostatic
term in the stress-logarithmic strain relation of an incom-
pressible solid is an arbitrary Lagrange multiplier, to be
determined from initial/boundary conditions. This Lagrange
multiplier also appears in the stress-Green strain relation,
see Egs. (32) and (57). Omission of this term would there-
fore lead to incorrect solutions of the equations. The second
is semantic: One gets the impression from reading the
acoustics literature that “soft” and “incompressible” are
two interchangeable adjectives. It should be clear that they
are not, and nature and engineering provide many examples
of hard materials which are incompressible (such as fully
saturated soils in undrained conditions*) and of soft
materials which are compressible (such as polyurethane
foams™).
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