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Abstract Euler’s celebrated buckling formula gives the critical load N for the buckling of
a slender cylindrical column with radius B and length L as

N/(π3B2) = (E/4)(B/L)2,

where E is Young’s modulus. Its derivation relies on the assumptions that linear elasticity
applies to this problem, and that the slenderness (B/L) is an infinitesimal quantity. Here
we ask the following question: What is the first non-linear correction in the right hand-side
of this equation when terms up to (B/L)4 are kept? To answer this question, we specialize
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the exact solution of incremental non-linear elasticity for the homogeneous compression of
a thick compressible cylinder with lubricated ends to the theory of third-order elasticity.
In particular, we highlight the way second- and third-order constants—including Poisson’s
ratio—all appear in the coefficient of (B/L)4.

Keywords Column buckling · Euler formula · Non-linear correction · Guided end
condition

Mathematics Subject Classification (2000) 74B15 · 74B10 · 74B20 · 74G05 · 74G15 ·
74G60

1 Introduction

One of the first, and most important, problems to be tackled by the theory of linear elasticity
is that of the buckling of a column under an axial load. Using Bernoulli’s beam equations,
Euler found the critical load of compression Ncr leading to the buckling of a slender cylin-
drical column of radius B and length L. As recalled by Timoshenko and Gere [1], Euler
looked at the case of an ideal column with (built in)-(free) end conditions. What is now
called “Euler buckling”, or the “fundamental case of buckling of a prismatic bar” [1] cor-
responds to the case of a bar with hinged-hinged end conditions. The corresponding critical
load is given by

Ncr

π3B2
= E

4

(
B

L

)2

, (1)

where E is the Young modulus. The extension of this formula to the case of a thick column
is a non-trivial, even sophisticated, problem of non-linear three-dimensional elasticity. In
general, progress can be only made by using reductive (rod, shells, etc.) theories. However,
there is another choice of boundary conditions for which the criterion (1) is valid: namely,
the case where both ends are “guided” or “sliding” (the difference between the two cases lies
in the shape of the deflected bar, which is according to the half-period of a sine in one case
and of a cosine in the other case). In exact non-linear elasticity, there exists a remarkable
three-dimensional analytical solution to this problem (due to Wilkes [3]) which describes
a small-amplitude (incremental) deflection superimposed upon the large homogeneous de-
formation of a cylinder compressed between two lubricated platens. In this case, the Euler
formula can be extended to the case of a column with finite dimensions, for arbitrary consti-
tutive law.

The exact incremental solution allows for an explicit derivation of Euler’s formula at the
onset of non-linearity, which combines third-order elastic constants with a term in (B/L)4.
In Goriely et al. [2], we showed that for an incompressible cylinder,

Ncr

π3B2
= E

4
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L

)2

− π2
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3

E + 9A
)(

B

L

)4

, (2)

where A is Landau’s third-order elasticity constant. This formula clearly shows that geomet-
rical non-linearities (term in (B/L)4) are intrinsically coupled to physical non-linearities
(term in A) for this problem. (For connections between Euler’s theory of buckling and in-
cremental incompressible nonlinear elasticity, see the early works of Wilkes [3], Biot [4],
Fosdick and Shield [5], and the references collected in [2].)
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Now, in third-order incompressible elasticity, there are two elastic constants [6]: the shear
modulus µ (= E/3) and A. In third-order compressible elasticity, there are five elastic con-
stants: λ and µ, the (second-order) Lamé constants (or equivalently, E and ν, Young’s modu-
lus and Poisson’s ratio), and A, B, and C , the (third-order) Landau constants. Euler’s formula
at order (B/L)2, (1), involves only one elastic constant, E. It is thus natural to ask whether
Poisson’s ratio, ν, plays a role in the non-linear correction to Euler formula of (B/L)4, the
next-order term. The final answer is found as formula (32) below, which shows that the
non-linear correction involves all five elastic constants.

2 Finite Compression and Buckling

In this section, we recall the equations governing the homogeneous compression of a cylin-
der in the theory of exact (finite) elasticity. We also recall the form of some incremental
solutions that is, of some small-amplitude static deformations which may be superimposed
upon the large compression, and which indicate the onset of instability for the cylinder.

2.1 Large Deformation

We take a cylinder made of a hyperelastic, compressible, isotropic solid with strain-energy
density W say, with radius B and length L in its undeformed configuration. We denote by
(R, $, Z) the coordinates of a particle in the cylinder at rest, in a cylindrical system.

Then we consider that the cylinder is subject to the following deformation,

r = λ1R, θ = $, z = λ3Z, (3)

where (r , θ , z) are the current coordinates of the particle initially at (R, $, Z), λ1 is the radial
stretch ratio and λ3 is the axial stretch ratio. Explicitly, λ1 = b/B and λ3 = l/L, where b and
l are the radius and length of the deformed cylinder, respectively. The physical components
of F, the corresponding deformation gradient, are: F = Diag(λ1,λ1,λ3), showing that the
deformation is equi-biaxial and homogeneous (and thus, universal).

The (constant) Cauchy stresses required to maintain the large homogeneous compression
are (see, for instance, Ogden [7]),

σi = (det F)−1λiWi, i = 1,2,3 (no sum), (4)

where Wi ≡ ∂W/∂λi . In our case, σ1 = σ2 because the deformation is equi-biaxial, and
σ1 = σ2 = 0 because the outer face of the cylinder is free of traction. Hence

σ1 = σ2 = λ−1
1 λ−1

3 W1 = 0, σ3 = λ−2
1 W3. (5)

Note that we may use the first equality to express one principal stretch in terms of the other
(provided, of course, that inverses can be performed).

2.2 Incremental Equations

Now we recall the equations governing the equilibrium of incremental solutions, in the
neighborhood of the finite compression. They read in general as [7]

div s = 0, (6)
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where s is the incremental nominal stress tensor. It is related to u, the incremental mechani-
cal displacement, through the incremental constitutive law,

s = B(grad u)T , (7)

where B is the fourth-order tensor of incremental elastic moduli and the gradient is computed
in the current cylindrical coordinates [8]. The non-zero components of B, in a coordinate
system aligned with the principal axes associated with the deformation (3), are given in
general by [7]

JBiijj = λiλjWij ,

JBijij = (λiWi − λjWj )λ
2
i /

(
λ2

i − λ2
j

)
, i #= j, λi #= λj ,

JBijji = (λjWi − λiWj )λiλj /
(
λ2

i − λ2
j

)
, i #= j, λi #= λj ,

JBijij = (Biiii − Biijj + λiWi)/2, i #= j, λi = λj ,

JBijji = Bjiij = Bijij − λiWi, i #= j, λi = λj

(8)

(no sums), where Wij ≡ ∂2W/(∂λi∂λj ). Note that here, some of these components are not
independent one from another because λ1 = λ2 and σ1 = σ2 = 0. In particular, we find that

B1212 = B2121 = B1221, B2323 = B1313 = B1331 = B2332,
(9)

B2222 = B1111, B2233 = B1133, B3232 = B3131, B1122 = B1111 − 2B1212.

2.3 Incremental Solutions

We look for incremental static solutions that are periodic along the circumferential and axial
directions, and have yet unknown radial variations. Thus our ansatz for the components of
the mechanical displacement is the same as Wilkes’s [3]:

ur = Ur(r) cosnθ cos kz, uθ = Uθ (r) sinnθ cos kz, uz = Uz(r) cosnθ sinkz,

(10)
where n = 0,1,2, . . . is the circumferential mode number; k is the axial wavenumber; the
subscripts (r, θ, z) refer to components within the cylindrical coordinates (r, θ, z); and all
upper-case functions are functions of r alone.

Dorfmann and Haughton [8] show that the following displacements U(1), U(2), and U(3)

are solutions to the incremental equations (6),

U(1)(r), U(2)(r) =
[
I ′
n(qkr),− n

qkr
In(qkr),− (B1111q

2 − B3131)

q(B1313 + B1133)
In(qkr)

]T

, (11)

and

U(3)(r) =
[

1
r
In(q3kr),−q3k

n
I ′
n(q3kr),0

]T

, (12)

where q = q1, q2 and In is the modified Bessel function of order n. Here q1, q2, and q3 are
the square roots of the roots q2

1 , q2
2 of the following quadratic in q2:

B1313B1111q
4 + [(B1133 + B1313)

2 − B1313B3131 − B3333B1111]q2 + B3333B3131 = 0, (13)
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and of the root of the following linear equation in q2

B1212q
2 − B3131 = 0, (14)

respectively.
From (7) we find that the incremental traction on planes normal to the axial direction has

components of the same form as that of the displacements, namely

srr = Srr (r) cosnθ cos kz, srθ = Srθ (r) sinnθ cos kz, srz = Srz(r) cosnθ sinkz,

(15)
say, where again all upper-case functions are functions of r alone. Then we find that the
traction solutions corresponding to the solutions (11)–(12) are given by

rS(1)(r), rS(2)(r)

=
[

2B1212I
′
n(qkr) −

(
2B1212

n2

qkr
+ qkrB1111 − krB1133(B1111q

2 − B3131)

q(B1313 + B1133)

)
In(qkr),

2nB1212

(
In(qkr)

qkr
− I ′

n(qkr)

)
,−krB1313

(
B1111q

2 − B3131

B1313 + B1133
+ 1

)
I ′
n(qkr)

]T

, (16)

and

rS(3)(r) =
[

2B1212

(
In(q3kr)

r
− q3kI ′

n(q3kr)

)
,

B1212

(
2q3k

n
I ′
n(q3kr) −

(
2n

r
+ q2

3k2r

n

)
In(q3kr)

)
,−kB1313In(q3kr)

]T

. (17)

The general solution to the incremental equations of equilibrium is thus of the form

rS(r) =
[
rS(1)(r)|rS(2)(r)|rS(3)(r)

]
c, (18)

where S ≡ [Srr , Srθ , Srz]T and c is a constant three-component vector. Note that we use the
quantity rS for the traction (instead of S), because it is the Hamiltonian conjugate to the
displacement in cylindrical coordinates [9].

Now when the cylinder is compressed (by platens say), its end faces should stay in full
contact with the platens so that the first incremental boundary condition is

uz = 0, on z = 0, l, (19)

which leads to [2, 8]

k = mπ/l, (20)

for some integer m, the axial mode number. From (15), we now see that on the thrust faces,
we have

srz = 0, on z = 0, l, (21)

which means that the end faces of the column are in sliding contact with the thrusting
platens. In other words, in the limit of a slender column, we recover the Euler strut with
sliding-sliding, or guided-guided end conditions. In Fig. 1, we show the first two axi-
symmetric and two asymmetric modes of incremental buckling.
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Fig. 1 First two axi-symmetric
and two asymmetric modes of
buckling for a compressed strut
with guided-guided end
conditions: n is the
circumferential mode number
and m the axial mode number.
For slender enough cylinders, the
n = 1, m = 1 mode is the first
mode of buckling

The other boundary condition is that the cylindrical face is free of incremental traction:
S(b) = 0. This gives

( ≡ det
[
bS(1)(b)|bS(2)(b)|bS(3)(b)

]
= 0. (22)

3 Euler Buckling

3.1 Asymptotic Expansions

We now specialize the analysis to the asymmetric buckling mode n = 1, m = 1, correspond-
ing to the Euler buckling with guided-guided end conditions, in the limit where the axial
compressive stretch λ3 is close to 1 (the other modes are not reached for slender enough
cylinders). To this end, we only need to consider the so-called third-order elasticity expan-
sion of the strain energy density, for example that of Landau and Lifshitz [10],

W = λ

2
(trE)2 + µ tr(E2) + A

3
tr(E3) + B(trE)tr(E2) + C

3
(trE)3, (23)

where E = ET is the Lagrange, or Green, strain tensor defined as E = (FT F − I)/2, λ and µ

are the Lamé moduli, and A, B, C are the Landau third-order elastic constants. (Note that
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there are other, equivalent, expansions based on other invariants, such as the ones proposed
by Murnaghan [11], Toupin and Bernstein [12], Bland [13], or Eringen and Suhubi [14], see
Norris [15] for the connections.)

To measure how close λ3 is to 1, we introduce ε, a small parameter proportional to the
slenderness of the deformed cylinder,

ε = kb = πb/l. (24)

Then we expand the radial stretch λ1 and the critical buckling stretch λ3 in terms of ε up to
order M ,

λ1 = λ1(ε) = 1 +
M∑

p=1

αpεp + O(εM+1), λ3 = λ3(ε) = 1 +
M∑

p=1

βpεp + O(εM+1), (25)

say, where the α’s and β’s are to be determined shortly. Similarly, we expand ( in powers
of ε,

( =
Md∑

p=1

dpεp + O(εMd+1),

say, and solve each order dp = 0 for the coefficients αp and βp , making use of the condition
σ1 = 0. We find that αp and βp vanish identically for all odd values of p, and that λ1 and λ3,
up to the fourth-order in ε, are given by

λ1 = 1 + α2ε
2 + α4ε

4 + O(ε6), λ3 = 1 + β2ε
2 + β4ε

4 + O(ε6), (26)

with α2 and α4 given by

α2 = ν

4
,

(27)
α4 = −ν(1 + ν)

32
− (1 + ν)(1 − 2ν)

16E
[ν2 A + (1 − 2ν + 6ν2)B + (1 − 2ν)2 C] − νβ4,

wherein

β2 = −1
4
,

(28)

β4 = 29 + 39ν + 8ν2

96(1 + ν)
+ 1

16E
[(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3 C].

Note that we switched from Lamé constants to Poisson’s ratio and Young’s modulus for
these expressions, using the connections ν = λ/(2λ + 2µ) and E = µ(3λ + 2µ)/(λ + µ).

3.2 Onset of Non-linear Euler Buckling

The analytical results presented above are formulated in terms of the current geometrical
parameter ε, defined in (24). In order to relate these results to the classical form of Euler
buckling, we introduce the initial geometric slenderness B/L. Recalling that ε = πb/l,
λ3 = l/L, and b = λ1B , we find that

ελ3 = πλ1(B/L). (29)
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We expand ε in powers of B/L, and solve (29) to obtain

ε = π(B/L) + (α2 − β2)π
3(B/L)3 + O((B/L)4)

= π(B/L) + (1 + ν)(π3/4)(B/L)3 + O((B/L)4). (30)

Second, we wish to relate the axial compression to the current axial load N . To do so, we
integrate the axial stress over the faces of the cylinder,

N = −2π

∫ b

0
rσ3dr = −πb2σ3 = −πλ2

1B
2σ3, (31)

because σ3 is constant, given by (5)2.
Finally, in order to write the nonlinear buckling formula, we expand λ1 and λ3 in (31),

using (26), and then expand ε in powers of the slenderness (B/L), using (30). It gives the
desired expression for the first non-linear correction to the Euler formula,

Ncr

π3B2
= E

4

(
B

L

)2

− π2

96
δ NL

(
B

L

)4

, (32)

where

δ NL = 2
13 + 12ν − 2ν2

(1 + ν)
E + 12[(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3 C]. (33)

We now check this equation against its incompressible counterpart (2). Theoretical con-
siderations and experimental measurements [6, 17–19], show that in the incompressible
limit, E and A remain finite, ν → 1/2, (1 − 2ν)B → −E/3, and (1 − 2ν)3 C → 0. It is
then a simple exercise to verify that (32) is indeed consistent with (2) in those limits.

3.3 Examples

To evaluate the importance of the non-linear correction, we computed the critical axial
stretch ratio of column buckling for two solids. In Table 1, we list the second- and third-
order elastic constants of five compressible solids, as collected by Porubov [16] (in the
Table we converted the “Murnaghan constants” given by Porubov to the Landau constants
A, B, C ). Figure 2 shows the variations of λ3 with the squared slenderness (B/L)2, for pyrex
and silica (two last lines of Table 1).

Table 1 Lamé constants and Landau third-order elastic moduli for five solids (109 N·m−2)

Material λ µ A B C

Polystyrene 1.71 0.95 −10 −8.3 −10.6

Steel Hecla 37 111 82.1 −358 −282 −177

Aluminium 2S 57 27.6 −228 −197 −102

Pyrex glass 13.5 27.5 420 −118 132

SiO2 melted 15.9 31.3 −44 93 36
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Fig. 2 Comparison of the different Euler formulas obtained by expanding the exact solution to order 2
(classical Euler buckling formula, plot labeled “Euler2”) and to order 4 (plot labeled “Euler4”), for pyrex (on
the left) and for silica (on the right)

4 Conclusions

The present analysis provides an asymptotic formula for the critical value of the load for the
Euler buckling problem, with guided-guided (sliding-sliding) end conditions. This formula
was checked both in the incompressible limit and on particular cases against the exact value
of the buckling obtained from the exact solutions. Not surprisingly it reinforces the universal
and generic nature of the Euler buckling formula as the correction is small for most systems
even when nonlinear elastic effects and nonlinear geometric effects are taken into account.
It would be of great interest to see if these effects could be observed experimentally.
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original manuscript.
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