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On the basis of the nonlinear theory of elasticity, the general constitutive equation for an
isotropic hyperelastic solid in the presence of initial stress is derived. This derivation involves
invariants that couple the deformation with the initial stress and in general, for a compressible
material, it requires 10 invariants, reducing to 9 for an incompressible material. Expressions for
the Cauchy and nominal stress tensors in a finitely deformed configuration are given alongwith
the elasticity tensor and its specialization to the initially stressed undeformed configuration.
The equations governing infinitesimal motions superimposed on a finite deformation are then
used to study the combined effects of initial stress and finite deformation on the propagation of
homogeneous plane waves in a homogeneously deformed and initially stressed solid of infinite
extent. This general framework allows for various different specializations, whichmake contact
with earlier works. In particular, connections with results derived within Biot's classical theory
are highlighted. The general results are also specialized to the case of a small initial stress and a
small pre-deformation, i.e. to the evaluation of the acoustoelastic effect. Here the formulas
derived for the wave speeds cover the case of a second-order elastic solid without initial stress
and subject to a uniaxial tension [Hughes and Kelly, Phys. Rev. 92 (1953) 1145] and are
consistent with results for an undeformed solid subject to a residual stress [Man and Lu, J.
Elasticity 17 (1987) 159]. These formulas provide a basis for acoustic evaluation of the second-
and third-order elasticity constants and of the residual stresses. The results are further
illustrated in respect of a prototypemodel of nonlinear elasticity with initial stress, allowing for
both finite deformation and nonlinear dependence on the initial stress.
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1. Introduction

The presence of initial stresses in solid materials can have a substantial effect on their subsequent response to applied loads
that is very different from the corresponding response in the absence of initial stresses. In geophysics, for example, the high stress
developed below the Earth's surface due to gravity has a strong influence on the propagation speed of elastic waves, while in soft
biological tissues initial (or residual) stresses in artery walls ensure that the circumferential stress distribution through the
thickness of the artery wall is close to uniform at typical physiological blood pressures. Initial stresses may arise, for example, from
applied loads, as in the case of gravity, processes of growth and development in living tissue or, in the case of engineering
components, from the manufacturing process, either by design to improve the performance of the component or unintentionally
(which can lead to defective behaviour). Here we use the term initial stress in its broadest sense, irrespective of how the stress
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develops. This includes situationswhere the stress is due to an applied load leading to an accompanying finite deformation from an
unstressed configuration, in which case the term prestress is commonly used, and situations in which the initial stress arises from
some other process, such as manufacturing or growth, and is present in the absence of applied loads. If an initial stress is present in
the absence of applied loads (body forces and surface tractions) it is referred to as residual stress, as in the definition adopted by
Hoger [9].

In the context of finite deformation elasticity theory much motivation for the study of initial stresses, more especially residual
stresses, comes from soft tissue biomechanics, and for a recent discussion of residual stresses in artery walls we refer to Holzapfel
and Ogden [12] and references therein. The development of constitutive laws for residually stressed materials has been a focus of
much of the work of Hoger, as exemplified by Hoger [9–11] and Johnson and Hoger [14]; see also the recent paper by Saravanan
[22]. In the context of acoustoelasticity the work of Man and Lu [16] was based on the developments of Hoger, and it also relates to
the much earlier work of Biot. Biot's work was developed within the geophysical context and he was particularly concerned with
the effect of initial stress on the propagation of small amplitude elastic waves. He developed a static theory of small deformations
influenced by initial stress [1], followed by a corresponding theory for wave propagation [2], all of this work being conveniently
collected in his monograph [3].

Whatever the source of the initial stress and whether or not it is accompanied by a finite deformation, of particular interest
in many applications is the effect that the initial stress has on small deformations (static or time-dependent), specifically
deformations linearized relative to the initially-stressed state and often referred to as incremental deformations or motions. If there
is an accompanying finite deformation then the theory is often referred to as the theory of small deformations superimposed on
large deformations. This theory requires knowledge of the associated elasticity tensor, which in general depends on any finite
deformation present and on the initial stress. Thus, part of the purpose of the present work is to obtain the general form of the
elasticity tensor for an initially stressed material that is subject to a finite deformation where the initial stress is not itself
associated with an initial finite deformation. We shall be concerned primarily with the case in which the material possesses no
intrinsic anisotropy so that any anisotropy arises solely from the presence of initial stress, and we show how the components of
the elasticity tensor relate to those of the elasticity coefficients in Biot's isotropic theory. In the present paper we use the elasticity
tensor to examine the effect of initial stress on the propagation of small amplitude elastic waves for both finitely deformed and
unstrained materials, with reference to the associated strong ellipticity condition.

In Section 2, the basic equations for a (hyper)elastic material subject to initial stress are summarized together with the equations
governing equilibrium of the initially stressed and finitely deformed initially stressed configurations. The equations of incremental
motions superimposed on an initially stressed and finitely deformed equilibrium configuration are then given in Section 3, wherein
the elasticity tensor is derived and its general symmetry properties recorded. In Section 4 we then specialize the general theory and
focus on the development of the constitutive law for an initially stressed material that has no intrinsic anisotropy such as might be
associated with preferred directions, for example, and any anisotropy in its response relative to the initially stressed configuration is
entirely due to the initial stress. The constitutive law of the material is based on a strain-energy function (defined per unit reference
volume) that depends on the combined invariants of the right Cauchy–Green deformation tensor and the initial stress tensor. For a
compressible material there are 10 such independent invariants in the general three-dimensional case, a number which reduces to 9
for an incompressible material. Expressions for the Cauchy stress and nominal stress tensors and the elasticity tensor are given in
general forms for both compressible and incompressible materials and then specialized for specific applications by reducing the
number of invariants involved while ensuring that the effects of initial stress are adequately accounted for. Some details of the
calculations are relegated to Appendix A for convenience of reference.

In Section 5, the equations of motion are specialized in order to study the effect of initial stress on the speed of infinitesimal
homogeneous plane waves. First, we give results for the situation in which there is initial stress but no finite deformation. It is
noted, in particular, that the wave speed depends in a nonlinear fashion on the initial stress. Results are compared with those
arising from Biot's isotropic theory based on connections between the components of the elasticity tensor used here and those
used in Biot's theory. The general connection between these components, which was derived in a recent paper [21], is noted here
for reference. Also, within the present framework, by considering a linear elastic material, we confirm a formula given by Man and
Lu [16] in the general linear theory, which they attribute to Biot, concerning the effect of initial stress on the speed of homogeneous
plane waves and the acoustoelastic effect. Next, for the Murnaghan form of strain-energy function [17], which is appropriate for
second-order elastic deformations, and specializing to the case of a material without initial stress, we recover the results of Hughes
and Kelly [13] concerned with the second-order correction for the speeds of longitudinal and transverse waves in an isotropic
elastic material. The final illustration introduces a prototype nonlinear model of an elastic material with initial stress that allows
for both finite deformation and nonlinear initial stress.

2. Basic equations for an elastic solid with initial stress

Consider an elastic body in some reference configuration, which we denote by Br . Let X be the position vector of a material point
in Br . Any subsequent deformation of the body is measured from Br and we assume that there is an initial (Cauchy) stress τ in
this configuration. This initial stress is symmetric (rotational balance in the absence of intrinsic couple stresses) and satisfies the
equilibrium equation

Div τ = 0; ð2:1Þ
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in the absence of body forces, where Div denotes the divergence operator with respect to Br . If the traction on the boundary ∂Br

of Br vanishes pointwise then τ is referred to as a residual stress, and it is necessarily non-uniform [9,19]. If the traction is not
zero then the initial stress may or may not be accompanied by some prior deformation required to reach the configuration Br

from a completely unstressed configuration. Here we shall not be concerned with how the initial stress is produced.
Suppose now that the body is deformed quasi-statically into a new configuration Bwith boundary ∂B so that thematerial point

X takes up the new position x given by x=χ(X), where the vector function χ defines the deformation for X∈ Br . The so-called
deformationχ is required to be a bijection and to possess appropriate regularity properties, which need not be made explicit here.
The deformation gradient tensor, denoted F, is defined by F=Grad χ, where Grad is the gradient operator with respect to Br , and
the left and right Cauchy–Green deformation tensors are defined by

B = FFT; C = FTF; ð2:2Þ

respectively.
Letσ and S denote the Cauchy stress tensor and the nominal stress tensor, respectively, in the configuration B. For equilibrium

in the absence of body forces σ and S satisfy the equations

div σ = 0; Div S = 0; ð2:3Þ

and we note the standard connection σ=(det F)−1FS. For a material without couple stresses, σ is symmetric and hence we
have

FS = STFT: ð2:4Þ

For an elastic material we consider a strain-energy function W defined per unit volume in Br . This function depends on the
deformation gradient F and the initial stress τ. If τ depends on X, as would be the case for a residually-stressed material, then the
material is necessarily inhomogeneous, but if τ is independent of X the material is homogeneous unless its properties depend
separately on X. In either case we make the dependence on τ explicit and write

W = W F; τð Þ: ð2:5Þ

Of course, by objectivity, W depends on F only through C=FTF, but otherwise this form of W is completely general and no
material symmetry is invoked. Note, however, that in general, i.e. if τ is not a hydrostatic compression or tension, the presence of τ
induces some anisotropy in the material, even if the material has no intrinsic anisotropy. Thus, τ has an effect on the constitutive
law analogous to that of a structure tensor in anisotropic elasticity.

For a material not subject to any internal constraints, the nominal and Cauchy stresses are given by

S =
∂W
∂F F; τð Þ; σ = J−1FS = J−1F

∂W
∂F F; τð Þ; ð2:6Þ

respectively, where J=det F N 0. When evaluated in Br , these give the connection

τ =
∂W
∂F I; τð Þ; ð2:7Þ

where I is the identity tensor.
For an incompressible material, the internal constraint

J ≡ det F = 1 ð2:8Þ

must hold for all deformations and the counterpart of Eq. (2.6) in this case is

S =
∂W
∂F F; τð Þ−pF−1

; σ = FS = F
∂W
∂F F; τð Þ−pI; ð2:9Þ

where p is a Lagrange multiplier associated with the constraint. When evaluated in the residually stressed configuration, these
both reduce to

τ =
∂W
∂F I; τð Þ−p rð ÞI; ð2:10Þ

where p(r) is the value of p in Br .
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3. Incremental motion superimposed on an initially stressed configuration subject to finite deformation

Superimposed on the equilibrium configuration B defined by x=χ(X), we now consider an incremental motion ẋ X; tð Þ, where
t is time. Here and in the following a superposed dot indicates an incremental quantity, increments are consider ‘small’, and the
resulting incremental equations are linearized in the increments. Thus, ẋ represents the displacement from x, and we shall also
express it in Eulerian form by writing the displacement vector as a function of x and t, namely u=u(x, t). The corresponding
increment in the deformation gradient, Ḟ, is expressible as

Ḟ = LF; ð3:1Þ

where L=grad u is the displacement gradient.
The (linearized) incremental nominal stress takes the forms

Ṡ =
A Ḟ ;

A Ḟ + pF−1 ḞF−1 − ṗF−1;

(
ð3:2Þ

for unconstrained and incompressible materials, respectively, where

A =
∂2W
∂F∂F ; Aα iβj =

∂2W
∂Fiα∂Fjβ

; ð3:3Þ

is the elasticity tensor and, in component form, A Ḟ≡Aαiβj Ḟ jβ defines the product used in the above. Here and henceforth the
standard summation convention for repeated indices applies.We note in passing that Eq. (3.2) is applicable even if a strain-energy
function is not assumed, in which case themajor symmetry iα↔ jβ from Eq. (3.3) is lost; moreover, the theory could be considered
more general if the explicit dependence on structure tensors such as τ is omitted. The generality considered here, however, is
sufficient for our purpose.

For an incompressible material the incremental incompressibility constraint can be written in either of the forms

tr ḞF−1
! "

= tr L = 0; div u = 0: ð3:4Þ

In the absence of body forces the incremental motion is governed by the equation

Div Ṡ = ρrx;tt ; ð3:5Þ

where ρr is themass density in Br and a subscript t following a comma signifies thematerial time derivative, i.e. the time derivative
at fixed X, so that x,t=u,t is the particle velocity and x,tt=u,tt the acceleration. The incremental counterpart of the rotational
balance equation (2.4) is

FṠ + ḞS = ṠTFT + ST ḞT; ð3:6Þ

or, on use of Eqs. (2.6)2 and (3.1),

FṠ + JLσ = ṠTFT + J σ LT: ð3:7Þ

On introducing the ‘push forward’ Ṡ0 of Ṡ, defined by Ṡ0 = J−1FṠ, and the corresponding push forwardA0 of the elasticity tensor
such that Ṡ0 = A0L (or A0L + pL−ṗI in the case of an incompressible material) we may express Eq. (3.7) in the form

A0L + Lσ = A0Lð ÞT + σLT ð3:8Þ

for an unconstrained material, and as

A0L + L σ + pIð Þ = A0Lð ÞT + σ + pIð ÞLT; ð3:9Þ

for an incompressible material. In component form A0 is related to A via

JA0piqj = FpαFqβAαiβj; ð3:10Þ

with J=1 in the incompressible case.
For details of the background on the theory of incremental deformations superimposed on a finite deformation we refer to

Ogden [18,20], for example.
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From Eq. (3.8) we deduce that tr A0L + Lσð ÞW½ $ = 0 for any skew symmetric second-order tensor W, and since this and the
corresponding result from Eq. (3.9) holds for arbitrary L we deduce further that

A0W = −σW; A0W = − σ + pIð ÞW; ð3:11Þ

for an arbitrary skew symmetric W for unconstrained and incompressible materials, respectively. A formula equivalent to
Eq. (3.11)1 was derived by Hoger [10] by a different method and stated explicitly as the formula (2.2.2) in the latter paper for a
residually-stressed but undeformed configuration. Note that the derivation herein does not require the existence of a strain-
energy function. Another result in Hoger [10] is recovered by choosing L to be symmetric, which leads to

1
2

A0E− A0Eð ÞT
h i

=
1
2

σE−Eσð Þ; ð3:12Þ

for any symmetric E. This relation applies for both unconstrained and incompressible materials and corresponds to the formula
(2.2.3) in Hoger [10], the right-hand side of which contains a sign error.

Note that as well as possessing the major symmetry A0piqj = A0qjpi, which follows from Eqs. (3.3) and (3.10), A0 has the
property

A0piqj + δjpσ iq = A0ipqj + δijσpq; ð3:13Þ

for a compressible material, and

A0piqj + δjp σ iq + pδiq
! "

= A0ipqj + δij σpq + pδpq
! "

; ð3:14Þ

for an incompressible material. These formulas follow from Eqs. (3.8) and (3.9), respectively. Corresponding formulas for a pre-
stressed material in the absence of residual stress were given by Chadwick and Ogden [6] and Chadwick [5].

In Eulerian form, i.e. in terms of Ṡ0 and u, the incremental equation of motion (3.5) becomes

div Ṡ0 = ρu;tt ; ð3:15Þ

where ρ=ρr J−1 is the mass density in B. The (Cartesian) component form of this equation may be written, for an unconstrained
material, as

A0piqjuj;q

! "

;p
= ρui;tt ; ð3:16Þ

and for an incompressible material as

A0piqjuj;q

! "

;p
−ṗ;i + p; juj;i = ρrui;tt ; with ui;i = 0: ð3:17Þ

Suppose now that the material properties are homogeneous, implying, in particular, that the initial stress τ is uniform, and
that the deformation in B is homogeneous. Then,A,A0 and p are constant, and the equations of motion (3.16) and (3.17) reduce
to

A0piqjuj;pq = ρui;tt ; ð3:18Þ

and

A0piqjuj;pq−ṗ;i = ρui;tt ; ui;i = 0; ð3:19Þ

respectively, and we note that ρ=ρr in the latter case.
As already indicated, we are consideringA to depend on the deformation through F, on the initial stress τ, and on any material

symmetry present in the configuration Br . In what follows we consider the intrinsic properties of the material to be isotropic
relative to Br so that the only source of anisotropy is the initial stress. In order to account for the initial stress in the expressions for
the stress and elasticity tensors we base the development in the following sections on scalar invariants involving the right Cauchy–
Green deformation tensor C and the initial stress tensor τ.
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4. Invariant-based formulation

4.1. Invariants of C and τ

The strain-energy function W of an initially stressed material depends on τ as well as the deformation gradient F, and, by
objectivity, it depends on F only through C=FTF. For a material that is isotropic relative to Br in the absence of initial stress,W can
be treated as a function of three independent invariants of C, which are commonly taken to be the principal invariants defined
by

I1 = tr C; I2 =
1
2

tr Cð Þ2−tr C2
! "h i

; I3 = det C: ð4:1Þ

In the configuration Br these reduce to I1= I2=3, I3=1. If there is an initial stress τ in Br then, in general, the material response
relative to Br depends also on the invariants of τ and the combined invariants of τ and C. A possible set of independent invariants of
τ, including those that depend on C, is

tr τ; tr τ2
! "

; tr τ3
! "

; tr τCð Þ; tr τC2
! "

; tr τ2C
! "

; tr τ2C2
! "

: ð4:2Þ

Together, there are thus at most 10 independent invariants of C and τ in general, and for an incompressible material we have I3=1
and hence there are at most 9 independent invariants in this case. The number of independent invariants is reduced when the
dimension of the considered problem is reduced from three to two, as for a plane strain setting, for example. In the reference
configuration Br the fourth and fifth invariants listed in Eq. (4.2) reduce to the first, and the sixth and seventh to the second. For
relevant background on invariants of tensors we refer to Spencer [25] and Zheng [28]. For subsequent reference we introduce the
notation

I6 = tr τCð Þ; I7 = tr τC2
! "

; I8 = tr τ2C
! "

; I9 = tr τ2C2
! "

; ð4:3Þ

for the invariants that depend on both C and τ, noting that the notations I4 and I5 are not used since these tend to be associated
with a preferred direction in a transversely isotropic material.

Although not immediately obvious, it is worth noting that invariants such as tr(CτCτ) and tr(CτC2τ) may be expressed in terms
of the invariants listed above. Thismay be shown by first applying the Cayley–Hamilton theorem to C+λτ for an arbitrary scalar λ.
The coefficient of λ yields the identity

C2τ + CτC + τC2−I1 Cτ + τCð Þ− tr τð ÞC2− I1 tr τð Þ−I6½ $C + I2τ− I2 tr τð Þ−I1I6 + I7½ $I = 0: ð4:4Þ

Then, by multiplying by τ, for example, and then taking the trace of the result leads to

tr CτCτð Þ = 2I1I8−2I9−2I1I6 tr τð Þ + 2I7 tr τð Þ + I26 + I2 tr τð Þ2−tr τ2
! "h i

; ð4:5Þ

which shows how tr(CτCτ) depends on the other invariants.
The expressions for the stress and elasticity tensors given in Eqs. (2.6), (2.9) and (3.3) require the calculation of

∂W
∂F = ∑

i∈I
Wi

∂Ii
∂F ; ð4:6Þ

and

∂2W
∂F∂F = ∑

i∈I
Wi

∂2Ii
∂F∂F + ∑

i; j∈I
Wij

∂Ii
∂F ⊗ ∂Ij

∂F ; ð4:7Þ

where we have used the shorthand notations Wi = ∂W = ∂Ii;Wij = ∂2W = ∂Ii∂Ij; i; j∈I , and I is the index set {1, 2, 3, 6, 7, 8, 9}
(or {1, 2, 6, 7, 8, 9} in the case of an incompressible material). Although their derivatives with respect to F vanish and do not appear
in the above expressions, the invariants tr τ, tr(τ2) and tr(τ3) may nevertheless be included in the functional dependence ofW. In
the following we give explicit expressions for the stress tensors and the elasticity tensor based on these summations.

4.2. Stress tensors

For an unconstrained material the strain-energy function W depends on the seven deformation dependent invariants I1, I2, I3,
I6,…, I9 together, in general, with trτ, tr(τ2) and tr(τ3). From Eqs. (2.6) and (4.6) the nominal and Cauchy stresses are given
by

S =
∂W
∂F = ∑

i∈I
Wi

∂Ii
∂F ; σ = J−1FS: ð4:8Þ
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The corresponding expressions for an incompressible material are

S =
∂W
∂F −pF−1 = ∑

i∈I
Wi

∂Ii
∂F−pF−1

; σ = FS: ð4:9Þ

The required expressions for ∂ Ii/∂F are listed for convenience in Appendix A. In particular, these enable the Cauchy stress to be
expanded, so that

Jσ = 2W1B + 2W2 I1B−B2
! "

+ 2I3W3I + 2W6Σ + 2W7 ΣB + BΣð Þ + 2W8ΣB
−1Σ + 2W9 ΣB−1ΣB + BΣB−1Σ

! "
; ð4:10Þ

where the notationΣ=FτFT has been introduced andwe recall that B=FFT is the left Cauchy–Green tensor. For an incompressible
material Eq. (4.10) is replaced by

σ = 2W1B + 2W2 I1B−B2
! "

−pI + 2W6Σ + 2W7 ΣB + BΣð Þ + 2W8ΣB
−1Σ + 2W9 ΣB−1ΣB + BΣB−1Σ

! "
; ð4:11Þ

with I3≡1.
If we evaluate Eq. (4.10) in the reference configuration, it reduces to the appropriate specialization of Eq. (2.7), namely

τ = 2 W1 + 2W2 + W3ð ÞI + 2 W6 + 2W7ð Þτ + 2 W8 + 2W9ð Þτ2; ð4:12Þ

where all Wi; i∈ I , are evaluated for I1= I2=3, I3=1, I6= I7=tr τ, I8= I9=tr(τ2). This indicates that we should set

W1 + 2W2 + W3 = 0; 2 W6 + 2W7ð Þ = 1; W8 + 2W9 = 0 ð4:13Þ

there. In fact, if we require Eq. (4.12) to hold for all τ then the conditions in Eq. (4.13) necessarily follow. The corresponding
reduction for an incompressible material yields

τ = 2W1 + 4W2−p rð Þ
! "

I + 2 W6 + 2W7ð Þτ + 2 W8 + 2W9ð Þτ2; ð4:14Þ

which specializes Eq. (2.10), and the counterpart of Eq. (4.13) is

2W1 + 4W2−p rð Þ = 0; 2 W6 + 2W7ð Þ = 1; W8 + 2W9 = 0; ð4:15Þ

evaluated in the reference configuration.

4.3. The elasticity tensor

Next, we note that the elasticity tensor A is given by

A =
∂2W
∂F∂F = ∑

i∈I
Wi

∂2Ii
∂F∂F + ∑

i; j∈I
Wij

∂Ii
∂F ⊗ ∂Ij

∂F : ð4:16Þ
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This requires expressions for the second derivatives of the invariants, which are collected together for reference in Appendix A in
component form. Here we give the component form of A0:

JA0piqj = 2 W1 + I1W2ð ÞBpqδij + 2W2 2BpiBqj−BiqBjp−BprBrqδij−BpqBij

h i

+ 2I3W3 2δipδjq−δiqδjp
! "

+ 2W6Σpqδij + 2W7 ΣpqBij + ΣprBrqδij + BprΣrqδij + ΣijBpq + ΣpjBiq + ΣiqBpj

h i

+ 4W11BipBjq + 4W22 I1Bip−BirBrp

! "
I1Bjq−BjsBsq

! "

+ 4I23W33δipδjq + 4W12 2I1BipBjq−BipBjrBrq−BjqBirBrp

! "

+ 4I3W13 Bipδjq + Bjqδip
! "

+ 4I3W23 I1 Bipδjq + Bjqδip
! "

−δipBjrBrq−δjqBirBrp

h i

+ 4W16 BipΣjq + BjqΣip

! "
+ 4W17 Bip ΣjrBrq + BjrΣrq

! "
+ Bjq ΣirBrp + BirΣrp

! "h i

+ 4W26 I1Bip−BirBrp

! "
Σjq + I1Bjq−BjrBrq

! "
Σip

h i

+ 4W27 I1Bip−BirBrp

! "
ΣjsBsq + BjsΣsq

! "
+ I1Bjq−BjrBrq

! "
ΣisBsp + BisΣsp

! "h i

+ 4I3W36 δipΣjq + δjqΣip

! "
+ 4I3W37 δip ΣjrBrq + BjrΣrq

! "
+ δjq ΣirBrp + BirΣrp

! "h i

+ 4W66ΣipΣjq + 4W67 Σip ΣjrBrq + BjrΣrq

! "
+ Σjq ΣirBrp + BirΣrp

! "h i

+ 4W77 ΣirBrp + BirΣrp

! "
ΣjsBsq + BjsΣsq

! "
;

ð4:17Þ

and, in order to save space, terms involving derivatives with respect to I8 or I9 have not been included. Note, however, that it is
straightforward to include these terms, just by repeating the terms involving derivatives with respect to I6 and I7, replacing the
indices 6 and 7 by 8 and 9, respectively, and replacing Σ=FτFT by Fτ2FT. When there is no initial stress the above formula reduces
to the result for a prestressed isotropic elastic solid, as given in, for example, the classical paper by Hayes and Rivlin [8]; see also
Toupin and Bernstein [26] and Truesdell [27] for related basic theory.

The corresponding formula for an incompressible material is obtained by setting J=1 and I3=1 and omitting the terms
involving derivatives of W with respect to I3, and yields

A0piqj = 2 W1 + I1W2ð ÞBpqδij + 2W2 2BpiBqj−BiqBjp−BprBrqδij−BpqBij

h i

+ 2W6Σpqδij + 2W7 ΣpqBij + ΣprBrqδij + BprΣrqδij + ΣijBpq + ΣpjBiq + ΣiqBpj

h i

+ 4W11BipBjq + 4W22 I1Bip−BirBrp

! "
I1Bjq−BjsBsq

! "

+ 4W12 2I1BipBjq−BipBjrBrq−BjqBirBrp

! "

+ 4W16 BipΣjq + BjqΣip

! "
+ 4W17 Bip ΣjrBrq + BjrΣrq

! "
+ Bjq ΣirBrp + BirΣrp

! "h i

+ 4W26 I1Bip−BirBrp

! "
Σjq + I1Bjq−BjrBrq

! "
Σip

h i

+ 4W27 I1Bip−BirBrp

! "
ΣjsBsq + BjsΣsq

! "
+ I1Bjq−BjrBrq

! "
ΣisBsp + BisΣsp

! "h i

+ 4W66ΣipΣjq + 4W67 Σip ΣjrBrq + BjrΣrq

! "
+ Σjq ΣirBrp + BirΣrp

! "h i

+ 4W77 ΣirBrp + BirΣrp

! "
ΣjsBsq + BjsΣsq

! "
:

ð4:18Þ

When evaluated in the reference configuration, the moduli (4.17), with the missing terms included, reduce to

A0piqj = α1 δijδpq + δiqδjp
! "

+ α2δipδjq + δijτpq + β1 δijτpq + δpqτij + δiqτjp + δjpτiq
! "

+ β2 δipτjq + δjqτip
! "

+ β3τipτjq + γ1 δijτpkτkq + δpqτikτkj + δiqτjkτkp + δjpτikτkq
! "

+ γ2 δipτjkτkq + δjqτikτkp
! "

+ γ3 τipτjkτkq + τjqτikτkp
! "

+ γ4τikτkpτjkτkq;

ð4:19Þ

where the α's, β's, and γ's are defined by

α1 = 2 W1 + W2ð Þ; α2 = 4 W11 + 4W12 + 4W22 + 2W13 + 4W23 + W33ð Þ−2α1;
β1 = 2W7; β2 = 4 W16 + 2W17 + 2W26 + 4W27 + W36 + 2W37ð Þ;
β3 = 4 W66 + 4W67 + 4W77ð Þ; γ1 = 2W9;
γ2 = 4 W18 + 2W19 + 2W28 + 4W29 + W38 + 2W39ð Þ;
γ3 = 4 W68 + 2W69 + 2W78 + 4W79ð Þ; γ4 = 4 W88 + 4W89 + 4W99ð Þ;

ð4:20Þ
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all derivatives being evaluated in the reference configuration and use having been made of the connections (4.13). Note that in
general the expressions (4.20) may depend on the invariants tr τ, tr(τ2) and tr(τ3).

It is worth noting here that when referred to axes that coincide with the principal axes of τ, the only non-zero components of
Eq. (4.19) are given by

A0iiii = 2α1 + α2 + 1 + 4β1 + 2β2ð Þτi + β3τ
2
i + 2 2γ1 + γ2ð Þτ2i + 2γ3τ

3
i + γ4τ

4
i ;

A0iijj = α2 + β2 τi + τj
! "

+ β3τiτj + γ2 τ2i + τ2j
! "

+ γ3 τi + τj
! "

τiτj + γ4τ
2
i τ

2
j ;

A0ijij = α1 + τi + β1 τi + τj
! "

+ γ1 τ2i + τ2j
! "

= A0ijji + τi;

ð4:21Þ

where there are no sums on repeated indices, i≠ j, and τi (i=1, 2, 3) are the principal values of τ (in general, 15 non-zero
components of A0 in total). It is interesting, but not surprising, to note that for a prestressed isotropic elastic material the only
non-zero components of A0 are also A0iiii, A0iijj, A0ijij and A0ijji, i≠ j (see, for example, [18]).

For an incompressible material there is a further reduction of Eq. (4.19), leading to

A0piqj = α1 δijδpq + δiqδjp
! "

+ δijτpq + β1 δijτpq + δpqτij + δiqτjp + δjpτiq
! "

+ β2 δipτjq + δjqτip
! "

+ β3τipτjq + γ1 δijτpkτkq + δpqτikτkj + δiqτjkτkp + δjpτikτkq
! "

+ γ2 δipτjkτkq + δjqτikτkp
! "

+ γ3 τipτjkτkq + τjqτikτkp
! "

+ γ4τikτkpτjkτkq;

ð4:22Þ

since the term involving α2 may be dropped because it vanishes from the expression for the incremental stress by virtue of
the incompressibility condition. Here α1, β1, β3, γ1, γ3 and γ4 are unchanged, while β2 reduces to 4(W16+2W17+2W26+4W27)
and γ2 reduces to 4(W18+2W19+2W28+4W29). The terms β2δjqτip and γ2δjqτikτkp also vanish from the incremental stress for
the same reason but are retained here since otherwise the major symmetry would be lost. Note that the terms involving δjp in
Eq. (4.22) do not contribute to the equation of motion, again by virtue of the incompressibility condition.

5. The effect of initial stress on infinitesimal wave propagation

Now consider incremental motions in an infinite homogeneous medium subject to homogeneous deformation and/or
homogeneous initial stress. From Section 3 we recall that the equation of incremental motion is

A0piqjuj;pq = ρui;tt ; ð5:1Þ

for a compressible material, and

A0piqjuj;pq−ṗ;i = ρui;tt ; ui;i = 0; ð5:2Þ

for an incompressible material.
Consider a homogeneous plane wave of the form

u = mf n⋅x−vtð Þ; ð5:3Þ

wherem is a fixed unit vector (the polarization vector), f is an arbitrary function of the argument n⋅x−vt, n is a unit vector in the
direction of propagation, and v is the wave speed. For an incompressible material we also set

ṗ = g n⋅x−vtð Þ; ð5:4Þ

where g is a function related to f. Substitution into the equation of motion (Eq. (5.1)) (after dropping f″, which is assumed to be
non-zero) leads to

A0piq jnpnqmj = ρv2mi; ð5:5Þ

for a compressible material, and into Eq. (5.2)

A0piq jnpnqmj f ″−g′ni = ρv2mi f ″; mini = 0; ð5:6Þ

for an incompressible material, where a prime on f or g indicates the derivative with respect to its argument. By multiplying the
first equation in Eq. (5.6) by ni and using the second equation, we obtain

g′ = A0piq jnpnqmjni f ″; ð5:7Þ
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and upon substitution back in Eq. (5.6) for g′ and again dropping f″ we arrive at

A0piq jnpnq−A0pkq jnpnqnkni

! "
mj = ρv2mi: ð5:8Þ

It is convenient now to use the acoustic tensor Q(n), whose components are defined by

Qij nð Þ = A0piq jnpnq: ð5:9Þ

Then Eqs. (5.5) and (5.8) can be written in the compact forms

Q nð Þm = ρv2m; ð5:10Þ

Q nð Þm = ρv2m; m⋅n = 0; ð5:11Þ

for unconstrained and incompressible materials, respectively, where, noting that Im = m, with I = I−n⊗ n defined as the
projection operator on to the plane normal to n, the symmetric tensor Q nð Þ is defined as

Q nð Þ = IQ nð ÞI: ð5:12Þ

This is the projection of Q(n) on to the plane normal to n. The symmetrization of the acoustic tensor in the incompressible case is
attributed to Hayes in the Ph.D. thesis of Scott [23]1; see also Scott and Hayes [24] and Boulanger and Hayes [4].

For any given direction of propagation n we now have a symmetric algebraic eigenvalue problem for determining ρv2 and m,
which is three-dimensional in the compressible case and two-dimensional in the incompressible case. Because of the symmetry
there are three mutually orthogonal eigenvectors m corresponding to the direction of displacement in the compressible case and
two in the incompressible case, corresponding to transverse waves. The values of ρv2, three and two, respectively, are obtained
from the characteristic equations

det Q nð Þ−ρv2I
h i

= 0; det Q nð Þ−ρv2I
h i

= 0; ð5:13Þ

for compressible and incompressible materials, respectively.
If m is known then ρv2 is given by

ρv2 = Q nð Þm½ $⋅m; ð5:14Þ

which applies for either compressible or incompressible materials.
To examine plane waves in detail we need to calculate Q(n) for the forms ofA0 given in Section 4.3. We now do this explicitly

for the reference configuration Br . From Eqs. (4.19) and (5.9) we obtain

Q nð Þ = α1 + 1 + β1ð Þ n⋅τnð Þ + γ1 n⋅τ2n
! "h i

I + β1τ + γ1τ
2

+ α1 + α2ð Þn⊗n + β1 + β2ð Þ n⊗τn + τn⊗nð Þ + β3τn⊗τn

+ γ1 + γ2ð Þ n⊗τ2n + τ2n⊗n
! "

+ γ3 τn⊗τ2n + τ2n⊗τn
! "

+ γ4τ
2n⊗τ2n

ð5:15Þ

for compressible materials, and from Eqs. (4.22), (5.9), and (5.12), we obtain

Q nð Þ = α1 + 1 + β1ð Þ n⋅τnð Þ + γ1 n⋅τ2n
! "h i

I + β1IτI + γ1Iτ
2I + β3Iτn⊗Iτn

+ γ3 Iτn⊗Iτ2n + Iτ2n⊗Iτn
h i

+ γ4Iτ
2n⊗Iτ2n

ð5:16Þ

for incompressible materials. Note, in particular, the explicit nonlinear dependence of the acoustic tensors on the initial stress τ
(not forgetting that the α's, β's, and γ's may themselves be nonlinear in τ).

Example 1. Longitudinal and transverse waves in compressible materials

We consider the possibility of a pure longitudinal wave in the reference configuration (initial stress, no pre-strain), so that
m=n. From Eqs. (5.10) and (5.15) we obtain

a−ρv2
! "

n + bτn + cτ2n = 0; ð5:17Þ

1 We are grateful to a reviewer for bringing this reference to our attention.
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where the constants a, b, c are given by

a = 2α1 + α2 + 1 + 2β1 + β2ð Þ n⋅τnð Þ + γ1 + γ2ð Þ n⋅τ2n
! "

;

b = 2β1 + β2 + β3 n⋅τnð Þ + γ3 n⋅τ2n
! "

;

c = 2γ1 + γ2 + γ3 n⋅τnð Þ + γ4 n⋅τ2n
! "

:

ð5:18Þ

Several distinct cases arise for which a longitudinal wave can propagate provided the material parameters and the initial stresses
are such that ρv2N0. First, for the degenerate case inwhich b=c=0we have ρv2=a and a longitudinal wave can propagate in any
direction. Second, if c=0 and b≠0 then n is an eigenvector of τ. Recalling that τi, i=1, 2, 3, are the principal values of τ, a
longitudinal wave can then propagate along the i-th principal direction, i=1, 2, 3, with speed v given by ρv2=a+bτi. Third, if
c≠0 then we refer Eq. (5.17) to the principal axes of τ, leading to

a−ρv2 + bτi + cτ2i
! "

ni = 0; i = 1;2;3: ð5:19Þ

There are now different possibilities depending on the multiplicity of the eigenvalues of τ. If τi=τ say, i=1, 2, 3, then ρv2=a+
bτ+cτ2 and a longitudinal wave can propagate in any direction. If two of the eigenvalues are equal but distinct from the third,
say τ1=τ2=τ≠τ3, then a longitudinal wave can propagate along the 3 direction with speed given by ρv2=a+bτ3+cτ32 or in
the principal (1, 2) plane with speed given by ρv2=a+bτ+cτ2. There is also a special case in which if b+c(τ+τ3)=0 then a
longitudinal wave can propagate in an arbitrary direction with speed ρv2=a−cττ3. Finally, if the eigenvalues τi are distinct then,
for propagation in the i-th principal direction, the wave speed, expanded in full, is given by

ρv2 = 2α1 + α2 + 1 + 4β1 + 2β2ð Þτi + β3 + 3γ1 + 2γ2ð Þτ2i + 2γ3τ
3
i + γ4τ

4
i : ð5:20Þ

It is also easy to show that propagation is possible in any direction within an (i, j) principal plane if b+c(τi+τj)=0, in which case
the formula for the wave speed is ρv2=a−cτiτj.

Of course, a longitudinal wave is in general accompanied by a pair of transverse waves with mutually orthogonal polarizations.
In the casewhere a pure longitudinal wave exists and n is alignedwith the principal axis ei of τ, say, with i=1, 2 or 3, it follows that
the expression (5.15) for the acoustical tensor reduces to

Q eið Þ = α1 + 1 + β1ð Þτi + γ1τ
2
i

h i
I + β1τ + γ1τ

2

+ α1 + α2 + 2 β1 + β2ð Þτi + β3 + 2γ1 + 2γ2ð Þτ2i + 2γ3τ
3
i + γ4τ

4
i

h i
ei⊗ei:

ð5:21Þ

Hence, for a corresponding transverse wave with polarization m and speed v, we have, on use of Eq. (5.10),

α1 + 1 + β1ð Þτi + γ1τ
2
i

h i
m + β1τm + γ1τ

2m = ρv2m: ð5:22Þ

In general it does not follow that m is also a principal axis of τ. However, in the special case in which m is also a principal axis
of τ (in the plane normal to ei), let this correspond to principal initial stress τj, j≠ i. Then, the wave speed, denoted vij, associated
with m=ej is given by

ρv2ij = τi + α1 + β1 τi + τj
! "

+ γ1 τ2i + τ2j
! "

: ð5:23Þ

The difference

ρ v2ij−v2ji
! "

= τi−τj; ð5:24Þ

recalls the universal relationship established by Man and Lu [16] for the general linear theory. Note, however, that in Man and Lu
[16] the material was taken to be orthotropic with the principal axes of τ coinciding with the axes of orthotropy, whereas here the
orthotropy is associated with τ itself and the underlying material is isotropic. The principal axes are eigenvectors of Q in each case
although the values of the components Qij differ.

The situation is somewhat different if one starts by considering the existence of a pure transverse wave. There is then no
general result showing that such a wave must be travelling and/or polarized along a principal axis of initial stress. We do not
include here the details of this case, and refer instead to Man and Lu [16] for an example of a wave polarized along one principal
direction of stress and propagating in any direction in the plane normal to the polarization.
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In all the above examples, for a real wave to exist it is necessary that ρv2N0, which puts restrictions on the parameters and
initial stress components involved. In general this requirement may be stated in terms of the strong ellipticity condition, i.e.

m⋅ Q nð Þm½ $ N 0 for all non2zero vectorsm;n: ð5:25Þ

This also applies in the incompressible case, subject to the restriction m ⋅n=0.

Example 2. Connections with the results of Man and Lu

Suppose now that in Eq. (5.15) the coefficients α1, α2, β1, β2 are constants and only the terms that are linear in the initial stress τ
are retained. In particular, the terms with coefficients β3, γi (i=1, 2, 3, 4) are omitted. Then, referred to the principal axes of τ, the
components of Q(n) can be written compactly as

Qii = α1 + α1 + α2ð Þn2
i + 1 + β1ð Þ n⋅τnð Þ + β1τi + 2 β1 + β2ð Þτin

2
i ; i = 1;2;3;

Qij = α1 + α2 + β1 + β2ð Þ τi + τj
! "h i

ninj; i≠j;
ð5:26Þ

where τi (i=1, 2, 3) are the principal values of τ. These formulas are consistent with corresponding expressions for the
components of the acoustic tensor (or Christoffel tensor) obtained by Man and Lu [16] [their Eq. (18)] although this is not
immediately clear since the notation differs. The correspondence can be established by noting that the tensor L used by Man and
Lu [16] has components that are connected to those of A0 by Lijkl = A0ijkl−δjlτik.

Example 3. Connections with the classical theory of Biot

In the classical theory of Biot [1–3] the incremental stressmay bewritten (in the present notation) asBL or in index notation as
Bpiqjuj;q, where the coefficients Bpiqj satisfy the relations

Bpiqj = Bipqj = Bpijq; Bpiqj−Bqjpi = δipτjq−δjqτip; ð5:27Þ

the latter following from the existence of a strain-energy function. It was shown in [21] that the general connection betweenA0piqj
and Bpiqj may be written in the form

A0piqj = Bpiqj−
1
2
δpjτqi−

1
2
δpqτij−

1
2
δqiτpj +

1
2
δijτpq + δqjτpi: ð5:28Þ

It is worth noting that this connection does not depend on the existence of a strain-energy function and is independent of any
material symmetry. For the general expression (4.19) to reduce to the Biot form for isotropic response the material parameters in
Eq. (4.19) must be specialized to

α1 = μ; α2 = λ; β1 = −1= 2; β2 = 1; ð5:29Þ

where μ and λ are the Lamé moduli, and the terms which are of order higher than 1 in τ must be neglected. This corresponds to
Bpiqj having the form

Bpiqj = μ δijδpq + δqiδpj
! "

+ λδpiδqj + δpiτqj; ð5:30Þ

which satisfies the conditions (5.27).
Clearly, the formula (5.30) relies on the special identifications (Eq.(5.29)), and is verymuch a specialization of themore general

theory discussed here. In effect, if one was to linearize the general expression of the elastic moduli (4.19) with respect to the initial
stress, then the expansions

α1 = μ + α̂1τ; α2 = λ + α̂2τ; β1 = β̂1; β2 = β̂2; ð5:31Þ

would be required, where “τ” is a term of first order in τ, and the scalars with a hat are constants, which cannot be determined a
priori and must be measured experimentally. In conclusion, six material constants (λ, μ, α̂1, α̂2, β̂1, β̂2) are required to describe
the isotropic response of a compressible material with a small initial stress, not just the two Lamé coefficients as Biot implied. We
refer to Man [15] for a discussion of this point in relation to Hartig's law and a proof that four additional constants are needed to
describe the elastic response of currently known real materials.

Example 4. Second-order elasticity

Here we consider an isotropic elastic solid without initial stress and its specialization to second order in the components of the
Green strain tensor E = 1

2 C−Ið Þ, where C is again the right Cauchy–Green deformation tensor. An appropriate form of the elastic
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strain-energy function, which is correct to second order, is that due to Murnaghan [17]. When expressed in terms of the invariants
of C given by Eq. (4.1) the Murnaghan energy function has the form

W =
λ
8

I1−3ð Þ2 +
μ
4

I21−2I1−2I2 + 3
! "

+
l
24

I1−3ð Þ3 +
m
12

I1−3ð Þ I21−3I2
! "

+
n
8

I1−I2 + I3−1ð Þ; ð5:32Þ

where λ and μ are the classical Lamé constants of linear elasticity and l,m, n are the second-order constants of Murnaghan. For this
energy function we have W22=W13=W23=W33=0 and since we are not including initial stress the expression (4.17) reduces
to

JA0piqj = 2 W1 + I1W2ð ÞBpqδij + 2W2 2BpiBqj−BiqBjp−BprBrqδij−BpqBij

h i
+ 2I3W3 2δipδjq−δiqδjp

! "

+ 4W11BipBjq + 4W12 2I1BipBjq−BipBjrBrq−BjqBirBrp

! "
;

ð5:33Þ

and the remaining coefficients W1, W2, W3, W11 and W12 are simply obtained from Eq. (5.32). Then, with this specialization, the
wave speed v is given by

ρv2 = A0piqjnpnqmimi: ð5:34Þ

In working with second-order elasticity the corrections to the classical longitudinal and transverse wave speeds are obtained
to first order in E. We have C= I+2E and I1=3+2E, exactly, which we use together with the linear approximations I2≃3+4E,
I3≃1+2E, B≃C= I+2E, and we also note that ρ≃ρr(1−E), where E=tr E. To the first order in E we then obtain

W1 = μ +
1
8
n +

1
2

λ + 2μ + 2mð ÞE; W2 = −1
2
μ−1

8
n−1

2
mE; W3 =

1
8
n;

W11 =
1
4

λ + 2μ + 4mð Þ + 1
2

l + 2mð ÞE; W12 = −1
4
m:

ð5:35Þ

After some manipulations the above approximations enable us to obtain, to the first order in E,

JA0piqj = μ δijδpq + δiqδjp
! "

+ λδipδjq + 2μ 2δijEpq + δpqEij + δiqEjp + δjpEiq
! "

+ λ Eδijδpq + 2δipEjq + 2δjqEip
! "

+ 2lEδipδjq

+ m E δijδpq + δiqδjp−2δipδjq
! "

+ 2 δipEjq + δjqEip
! "h i

+
1
2
n δijEpq + δpqEij + δiqEjp + δjpEiq−2δipEjq−2δjqEip−E δijδpq + δiqδjp−2δipδjq

! "h i
;

ð5:36Þ

and hence, for any m, n pair satisfying Eq. (5.10), the wave speed is obtained via

ρrv
2 = μ + μ + λð Þ m⋅nð Þ2 + 2μ 2 n⋅Enð Þ + m⋅Emð Þ + 2 m⋅nð Þ m⋅Enð Þ½ $

+ λ E + 4 m⋅nð Þ m⋅Enð Þ½ $ + 2lE m⋅nð Þ2 + m E 1− m⋅nð Þ2
h i

+ 4 m⋅nð Þ m⋅Enð Þ
n o

+
1
2
n n⋅Enð Þ + m⋅Emð Þ−2 m⋅nð Þ m⋅Enð Þ−E 1− m⋅nð Þ2

h in o
:

ð5:37Þ

For a longitudinal wave with m=n this reduces to

ρrv
2 = λ + 2μ + λ + 2lð ÞE + 10μ + 4λ + 4mð Þ n⋅Enð Þ; ð5:38Þ

and for a transverse wave with m⋅n=0 and m×n= l,

ρrv
2 = μ + 2μ n⋅Enð Þ + λ + 2μ + mð ÞE−1

2
4μ + nð Þ l⋅Elð Þ; ð5:39Þ

where we have made use of the connection l ⋅El+m⋅Em+n⋅En=E. When n is specialized to the axis e1 and m is taken to be
e2 and e3 in turn, where e1, e2 and e3 are principal axes of strain, then these results agree with those obtained by Hughes and
Kelly [13] [their Eq. (11)].

It is straightforward to show that a longitudinal wave actually exists if either n is an eigenvector of E or the elastic constants
satisfy λ+2μ+m=0. For the existence of a transverse wave there are more options. First, in the special case when the elastic
constants are such that λ+2μ+m=0 and 4μ+n=0, a transverse wave exists for any direction of propagation n. Second, if
4(λ+μ+m)−n=0 and 4μ+n≠0 then a transverse wave exists only if m is an eigenvector of E. Third, if 4μ+n=0 and
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λ+2μ+m≠0 then a transverse wave exists for any n for which Em lies in the plane normal to n. Finally, if none of these very
special cases apply then the existence of a transverse wave requires that m be an eigenvector of E.

Note that the case of incompressible materials is treated elsewhere; see Destrade et al. [7] and references therein.

Example 5. A simple nonlinear model

The above examples have involved different specializations that consider the strain and/or the initial stress to be small. In this
final example we consider a finite deformation from a configuration that is subject to an initial stress that is nonlinear. For this
purpose it suffices to adopt a simple prototype incompressible form of strain-energy function, which is taken to be

W =
1
2
μ I1−3ð Þ + 1

2
μ I6−tr τð Þ2 +

1
2

I6−tr τð Þ; ð5:40Þ

where the first term represents the classical (isotropic) strain-energy function of a neo-Hookean material with shear modulus μ,
while the terms in I6 capture the effect of initial stress and satisfy Eq. (4.15)2. The constant μ has dimensions of [stress]−1. We
recall that I6=tr(Cτ), which may also be written as trΣ.

From Eq. (4.11) the Cauchy stress is then obtained as

σ = μB−pI + 1 + 2μ I6−tr τð Þ½ $Σ; ð5:41Þ

and from Eq. (4.18) the components of A0 reduce to

A0piqj = μBpqδij + 1 + 2μ I6−tr τð Þ½ $Σpqδij + 4μΣpiΣqj: ð5:42Þ

The corresponding components of the acoustic tensor are obtained from Eq. (5.9), and it is convenient to write it in tensor notation
as

Q nð Þ = αI + βΣn⊗Σn; ð5:43Þ

where for compactness of representation we have introduced the notations

α = μ n⋅Bnð Þ + 1 + 2μ I6−tr τð Þ½ $ n⋅Σnð Þ; β = 4μ: ð5:44Þ

Since we are considering an incompressible material we form the projection of Q(n) on to the plane normal to n according to
Eq. (5.12). This is

Q nð Þ = αI + βIΣn⊗ IΣn: ð5:45Þ

Next we solve Eq. (5.13)2 and find that the two solutions for ρv2 are

ρv2 = α; ρv2 = α + β n⋅Σmð Þ2; ð5:46Þ

and Eq. (5.11) becomes

αm + β n⋅Σmð ÞIΣn = ρv2m; m⋅n = 0: ð5:47Þ

Assuming that β≠0, for the solution ρv2=α this requires that either IΣn = 0 or n⋅Σm=0. If IΣn = 0 then n is an eigenvector of
Σ and both transverse waves have the same speed v, given by ρv2=α. If, on the other hand, n⋅Σm=0 and IΣn≠0 then the wave
speed corresponding to polarization m is given by ρv2=α, while for the second transverse wave, with polarization m′ say, the
wave speed is given by ρv2=α+β(n⋅Σm′)2.

As a simple illustration of the above results we now consider the initial stress to be uniaxial, of the form τ=τ1e1⊗e1, where e1
is a principal axis of B corresponding to principal stretch λ1. Then, Σ=τ1λ1

2e1⊗e1. It follows that n⋅Σm=0 and

ρv2 = μ + τ1ð Þλ2
1 + 2μτ21λ

2
1 λ2

1−1
! "

: ð5:48Þ

It now suffices to measure the wave speed for three different values of λ1 to evaluate the material constants μ and μ, and the initial
stress τ1. If the deformation is achieved by applying a uniaxial stress along e1 then the associated principal Cauchy stress σ1 is
obtained from Eq. (5.41) as

σ1 = μ + τ1ð Þλ2
1−p + 2μτ21λ

2
1 λ2

1−1
! "

: ð5:49Þ
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By symmetry, incompressibility and vanishing of the lateral stress it also follows from Eq. (5.41) that p=μλ1
−1. If this is used in

the above then the expression for the wave speed can be written simply as ρv2=σ1+µλ1
−1.
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Appendix A

A1. First derivatives of the invariants

Here we list the first derivatives of the invariants I1, I2, I3, I6,…, I9 with respect to the deformation gradient. These are

∂I1
∂F = 2FT ;

∂I2
∂F = 2 I1F

T−FTFFT
! "

;
∂I3
∂F = 2I3F

−1
;

∂I6
∂F = 2τFT; ∂I7

∂F = 2τFTFFT + 2FTFτFT ;

∂I8
∂F = 2τ2FT ;

∂I9
∂F = 2τ2FTFFT + 2FTFτ2FT;

from which we obtain the expressions

F
∂I1
∂F = 2B; F

∂I2
∂F = 2 I1B−B2

! "
; F

∂I3
∂F = 2I3I;

F
∂I6
∂F = 2Σ; F

∂I7
∂F = 2ΣB + 2BΣ;

F
∂I8
∂F = 2ΣB−1Σ; F

∂I9
∂F = 2ΣB−1ΣB + 2BΣB−1Σ;

required in the expansion of Cauchy stress, where Σ=FτFT and B = FFT. In the reference configuration Br these reduce to

∂I1
∂F = 2I;

∂I2
∂F = 4I;

∂I3
∂F = 2I;

∂I6
∂F = 2τ; ∂I7

∂F = 4τ; ∂I8
∂F = 2τ2; ∂I9

∂F = 4τ2:

A2. Second derivatives of the invariants

Here we present the second derivatives of the invariants in index notation, omitting the details of the calculations. In the form required for the calculation of
the components of A0 we have

FpαFqβ
∂2I1

∂Fiα∂Fjβ
= 2Bpqδij;

FpαFqβ
∂2I2

∂Fiα∂Fjβ
= 2I1Bpqδij + 4BpiBqj−2BiqBjp−2BprBrqδij−2BpqBij ;

FpαFqβ
∂2I3

∂Fiα∂Fjβ
= 4I3δipδjq−2I3δiqδjp;

FpαFqβ
∂2I6

∂Fiα∂Fjβ
= 2Σpqδij;

FpαFqβ
∂2I7

∂Fiα∂Fjβ
= 2ΣpqBij + 2ΣprBrqδij + 2BprΣrqδij + 2ΣijBpq + 2ΣpjBiq + 2ΣqiBjp :

The second derivatives of I8 and I9 can be deduced from those of I6 and I7, respectively, by replacing τ by τ2, or Σ by ΣB−1Σ. In the reference configuration Br these
reduce to

∂2I1
∂Fip∂Fjq

= 2δpqδij;
∂2I2

∂Fip∂Fjq
= 2δpqδij + 4δipδjq−2δiqδjp ;

∂2I3
∂Fip∂Fjq

= 4δipδjq−2δiqδjp ;
∂2I6

∂Fip∂Fjq
= 2τpqδij;

∂2I7
∂Fip∂Fjq

= 6τpqδij + 2τijδpq + 2τjpδiq + 2τiqδjp:
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