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For homogeneous, isotropic, non-linearly elastic materials, the form of the homogeneous deformation
consistent with the application of a Cauchy shear stress is derived here for both compressible and
incompressible materials. It is shown that this deformation is not simple shear, in contrast to the
situation in linear elasticity. Instead, it consists of a triaxial stretch superposed on a classical simple
shear deformation, for which the amount of shear cannot be greater than 1. In other words, the faces of
a cubic block cannot be slanted by an angle greater than 45° by the application of a pure shear stress

alone. The results are illustrated for those materials for which the strain-energy function does not
depend on the principal second invariant of strain. For the case of a block deformed into a
parallelepiped, the tractions on the inclined faces necessary to maintain the derived deformation are

calculated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Batra [1] showed that in the framework of isotropic non-linear
elasticity a simple tensile load produces a simple extension deforma-
tion if the empirical inequalities hold. Here we consider the related
problem: if we apply a shear stress to a non-linearly elastic block,
what deformation is produced? To formulate this question mathe-
matically, we start by letting x(X) denote the current position of a
particle which was located at X in the reference configuration. Denote
the unit vectors associated with a fixed Cartesian coordinate system
in the reference configuration by (Ei,E;,E3) and in the current
configuration by (e;,e;,e3). Consider now a rectangular block of a
non-linearly elastic material, with edges aligned with E;, E,, and Es.
Batra [1] was interested in obtaining deformations x(X) associated
with a Cauchy stress tensor of the form

oc=T(e; ® €), (1.1)

where T is a constant, whereas here the concern is determining the
deformations associated with the Cauchy stress of the form

o=5( ®e,+e; e, (1.2)

where S is a constant. We call (1.2) a uniform shear stress [2,3],
although it is also denoted “pure shear” in the literature, e.g. [4-8].
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The problem being considered is therefore the stress formula-
tion of the problem of shear (the “most illuminating homogeneous
static deformation” according to Truesdell [9]). The approach
adopted here is the inverse of the classical strain formulation of
the same problem, first proposed by Rivlin [10]. In that approach,
the relative parallel motion of two opposite faces of a block is
considered. Motivated by linear elasticity and his own physical
insight, Rivlin proposed that the resulting deformation of the block
can be described by

x=X+KY, y=Y, z=2, (1.3)

where (X,Y,Z) and (x,y,z) are the Cartesian coordinates of a typical
particle before and after deformation, respectively, and K is the
amount of shear. Using his now classical constitutive theory, Rivlin
was able to calculate the stress distribution necessary to support
this deformation. This strain formulation of the simple shear
problem has since received much attention in the literature with
excellent summaries to be found, for example, in Atkin and Fox [6]
and Ogden [11].

Note that in the linear theory, these two formulations are
equivalent since an infinitesimal shear stress of the form (1.2) leads
to an infinitesimal deformation of the form (1.3) and vice versa. As
noted by Rivlin [10], this equivalence does not carry over to the
framework of finite elasticity. We address this problem here.

We point out that the dead-load traction boundary condition
in finite elasticity is the prescription of the first Piola-Kirchhoff
stress vector on the boundary of the undeformed body, but here
we focus on the application of the Cauchy shear stress, because it
gives a one-to-one mapping between a {deformation, traction)
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pair and a stress vector on a boundary. By contrast, the assign-
ment of a Piola-Kirchhoff traction leads to a many-to-one map-
ping and has thus an ambiguous physical meaning [12].

2. Invertibility of the stress-strain relation

Let B denote the left Cauchy-Green strain tensor. A homo-
geneous, isotropic, hyperelastic material possesses a strain-
energy density which may be written as W = W(ly,I,,I3), where
I1,I5,I3 are the three principal invariants of B, given by

L=trB, L=YE—tr(B*)], I5=detB. 2.1

The general representation formula for the Cauchy stress tensor
o is then

o =fol+pB+f_B", 2.2)
where

2 ow ow 2 aW 1/26W
Bo= 11/2 [12 +13 ol } 1= 1/2 En p_1=-2I 2.3)
It is assumed that the so-called empirical inequalities hold,
fo<0, p;>0, p_;<0. 2.4

If W is independent of I, then i_; =0 and it follows from
(2.3) that

B
B=-—""“1+— 2.5
By +ﬁ16 @)

Assume now that i_; <0. Then Johnson and Hoger [13] have
shown that

B=yol+y,6+y,6%, (2.6)

where

2
Yo :2‘<ﬁ(2)—2ﬁ—1/31 +12ﬁ%+13ﬁ/?ﬁ] +11ﬁ31 +Zﬁ0ﬁ_1>'

2
V= (2ﬁ0+13,f—+f—2 )
V=

—11/31—1351 Ty

These coefficients are all positive by virtue of the empirical
inequalities (2.4):

Yo>0, ¥;>0, y,>0. 2.8)

ﬂ]ﬁq- 2.7

For incompressible materials, only isochoric deformations are
admissible and I3=1 at all times. Then W = W(l;,5) only, and the
representation formula is given by
6=—pl+p,B+p_ B, 2.9

where p is the indeterminate Lagrange multiplier introduced by
the constraint of incompressibility and

ow ow
B = ZE' B = _ZE' (2.10)
The empirical inequalities in this case have the form
p1>0, p_1<0. (2.11)

The inverse form of this relation is given by (2.5) and (2.6) with f,
replaced by —p.

This invertibility of the classical stress-strain relation for both
compressible and incompressible materials plays a central role in
what follows.

3. Determination of the strain

The proof that a uni-axial tension load produces an equi-
biaxial contraction in isotropic finite elasticity is due to Batra [1].
An alternative proof is given here, based on the invertibility
relations of the last section. First note that a stress distribution
of the form (1.1), i.e.

T 0 O

s=|0 0 0], (3.1)
000

leads to the equi-axial deformation
[Bi17 O 0

B=| 0 B3 0|, 3.2
|0 0 By

as expected, where, if §_; <0,

Bii=Yo+ynT+Y,T%,  Bsz =y, (3.3)
and, if f_; =0,
Bi1 =(T—Po)/B1, Bsz=—Po/P1. 3.4

In both cases, By —Bss is of the same sign as T, owing to (2.8) and
(2.11), which shows that universally, a uni-axial tension (com-
pression) leads to a lateral contraction (expansion).

Following the same line of reasoning, we see that the shear
stress (1.2) leads to a left Cauchy-Green strain tensor of the form

Bi1n Bz O

B=|Biz Bi1 0 |, (3.5)
0 0 By

where

Bi1 = +¥,5% Bia=y4S, Bz =1, (3.6)
if f_.y<0and,if p_;=0,
B11 =B3z3=—py/B1, B12=S/p;. 3.7

This is not compatible with the left Cauchy-Green strain
tensor associated with the simple shear deformation (1.3) which
has the form

1+K2 K 0
B=| kK 1 0]. (3.8)
0 0 1

The strain (3.6) combines triaxial stretch with simple shear, a
type of deformation which has been investigated previously by
Payne and Scott [14], Varga [15], Wineman and Gandhi [16],
Rajagopal and Wineman [17], and Destrade and Ogden [18]. To
make this connection clear, we first note that By; > 0, B3, —B2, > 0,
B33 > 0, because the strain tensor is positive definite. It follows
that (3.5) can be written as

/3 2\1-0202 0
B=,2,/1-72;2 yE 0l (3.9)
0 0 2
where 4, = ,/(B?,—B2,)/B11, 22 = v/B11, and 43 = y/Bs3. (Here, and
henceforth, we assumed that S > 0. In the case S < 0, a minus sign

must be inserted in front of the square root.) A simple check
shows that B=FF' where the deformation gradient F can be
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decomposed as
1 /1-22:;% of[# 0 0O
F=|g 1 ol|0 4 0

: (3.10)

corresponding to a triaxial extension with principal stretch ratios
A, A3 > A1, A3, followed by a simple shear with amount of shear

«/1—&%&2’2. Here we notice a surprising universal result: the

material cannot be shared by an amount of shear greater than
1, independently of the magnitude of the shear stress; this limit

corresponds to a maximum shear angle of tan—1(1) =45".
The corresponding deformation is given by

X=X+I\1=73052Y, y=1Y, z=13Z

for compressible materials. The corresponding incompressible
form is given by

X=X+ J1=2222Y, y=7iY, z=27'7;'Z

The principal stretches of the deformation (3.11), p;,1, and ps
(say) can be computed from the general expressions found in
[17,18]. Here they are connected to the /’s through

(3.11)

(3.12)

2 1+ 15

=S
Kyl

For infinitesimal strains, u; = 1+g¢;, say, and the amount of shear

K =1/1-)32% becomes K ~ (¢; +&,)'/2. At the lowest order in K

(order 1), we find that 1; ~1, A, ~ 1, 1K ~ K, A3 ~ 1 and thus, that
the deformations (3.11) and (3.12) coincide with the small strain
simple shear deformation (1.3).

Finally, we note that since we have an expression for the
deformation gradient F in (3.10), it is a simple matter to compute
the components of the first Piola-Kirchhoff stress tensor
P = (detF)T(F )T corresponding to the shear stress (1.2). We find
that

B =ttty piz =73 (3.13)

0 21738 0
P= )53 —yi3\/1-22)5°S 0 (3.14)
0 0 0

4. Special materials

A wide class of isotropic materials is modeled by a strain-
energy density W which does not depend on I, the second
principal invariant of strain. This leads to f_;=0 and the
stress-strain inversion is given by (2.5).

It follows that B33 =Bj; in (3.5) and, further, that 1; = /3 in
(3.10). In other words, for materials such that 6W/al, =0, a shear
stress (1.2) produces a simple tension in the shear direction (with
tensile extension A; and lateral contraction A,), followed by a

simple shear of amount /1—21,2, yielding a deformation of the
form

X:)L]X—Fj.z\/l—),%)N;zY, y:;QY, Z:)QZ. (41)

This is a two-parameter deformation, entirely determined by
A1 and A,. These quantities are related to the shear stress and
the material response functions as follows:

_ =B, _ | B
M= 2T TRy “2)

where /A, is real by the empirical inequalities.
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Fig. 1. Cross-section of a unit block made of any generalized neo-Hookean
material, subjected to an increasing shear stress of the form S(e; ® e, +e; ® e;),
where the e; are aligned with the coordinate axes. The resulting deformation is a
simple shear combined with a uni-axial compression in the direction of shear
(here, successively of 0%, 20%, and 40% along e;). The face initially at X=0 cannot
be inclined beyond the diagonal dotted line at 45°.

In the incompressible case (the so-called generalized neo-
Hookean materials), W=W(I;) only, where I, is the first principal
invariant. Then we have a one-parameter deformation,

.3
x=ilx+\/1;—’“w, y=4"%Y, z=1;"7z, 4.3)
3|

with
1 1-2 o[ 0 0

F o 72 o 4.4
0 1 0 1 , 4.4)
0 0 1 0 0 21_1/2

and

_ p2_52
;"1 = ‘ 2pW/ (45)

Here, p is the Lagrange multiplier introduced by the constraint of
incompressibility. Note that the strain-stress relation is now

B=ﬁl+ﬁa. (4.6)
This yields, in particular, that p = 2W’Bs3, which is positive by the
empirical inequalities and the positive definitiveness of B.

Notice also from (4.3) that, in order for the deformation to be
well defined, 0 < 1; < 1. Therefore, for all generalized neo-Hookean
materials, a shear stress leads to a simple shear combined
with a uni-axial compression in the direction of shear (and thus, a
biaxial expansion in the transverse plane). In other words, the
gliding plane Y = const. is “lifted” by the application of the shear
stress (1.2), as can be seen in Fig. 1 and the plane of shear
Z= const. is pushed “outwards”.

5. Normal tractions

Somewhat counterintuitively in view of the assumed stress
distribution (1.2), if one deforms a cuboid (with faces at X= + A,
Y=+B, Z= +C, say) into a parallelepiped, as is usual when
visualizing simple shear, normal as well as shear tractions have
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to applied to the inclined faces in order to maintain the homo-
genous deformation (3.11).

It follows easily from (3.11) that the unit normal, n, in the
current configuration to the face originally at X=A is given by

% <1,_,/1_;ﬁ;.52,o>. (5.1)
£\ 2—277;

Let s denotes the tangent vector defined by
§ = (—nj3,n41,0). (5.2)

n=ng,n,0)=

The normal and shear tractions on the inclined face, originally at
X=A in the undeformed configuration, that are therefore neces-
sary to maintain the deformation (3.11) are given, respectively, by

5 [1-22152

n=n-en=25n1n; =

2-720,%
2252
s=s-on=Snj-n3)=S—1"2 . (5.3)
2—7975
It follows immediately from these that
-25<n<0, 0<s<S, (5.4

and so the necessary normal traction on the slanted face is always
compressive.

For generalized neo-Hookean materials, 1; = )q”z, and these
tractions therefore simplify to the following:
1-/3 23
A=n/S=-2 , §=s/S= 1. (5.5)
/ 2-13 / 2-13

These forms are independent of the specific form of the strain-
energy function and are plotted in Fig. 2. Note, in particular, the
rapid decay of the normal traction once loading begins. This
suggests that a normal compressive traction of the same order as
the shear stress has to applied to maintain homogeneity of the
deformation once shear loading begins. Application of the shear
traction is not as important.

There are two important geometrical idealizations where these
tractions on the inclined faces can be ignored. The first idealization
is that of a thin block, for which B> A. Here applying a constant
shear stress to the faces Y= + B generates the deformation (3.11).
The second important idealization is that of a half-space, with the
semi-infinite dimension in the Y direction. Application of a constant
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Fig. 2. Plots of the normal and shear components of the traction on slanted face
Versus Ai.

shear stress then at Y=0 (and the generation of an equilibrating
shear stress at infinity) again yields (3.11).

Finally we conclude by recalling that Lurie [4] shows that for
the shear stress (1.2), the two in-plane principal stresses are
aligned with the diagonals X + Y= const. and have both magni-
tude S/2.

6. Concluding remarks

Although all textbooks on non-linear elasticity explain that a
simple shear cannot be produced by shear forces alone, very few
allude to what deformation is produced by a pure shear stress. In
fact, we found only three such mentions, two correct: “In an
isotropic non-linear elastic medium the state of pure shear is not
accompanied by pure shear strain” [4] and “Pure shear is a
significantly more complicated deformation compared with sim-
ple shear” [5] and one incorrect: “A state of uniform shear stress
leads to a uniform (or simple) shear deformation” [3]. In this note
we derived the homogeneous deformation consistent with the
application of a shear stress.

We wish to emphasize that this is not a purely academic
problem. Indeed, in a laboratory it is the applied force that is
easily controlled, not the deformation. The displacement in
simple shear may be controlled only in special devices and in
special situations. As Beatty [19] put it: “In practice, [..] it is not
likely that a global simple shear deformation may be produced in
any real material”. Similarly, Brown explains in his handbook
Physical Testing of Rubber [20] that “With single and double
sandwich construction, there is a tendency for the supporting
plates to move out of parallel under load”, a phenomenon which
clearly corrupts the concept of simple shear. As a remedy, the
British Standard ISO 1827:2007 [21] advocates the use of quad-
ruple shear test devices. In those tests, however, the distance
between the plates is allowed to vary freely, and again, the simple
shear deformation is modified.

Therefore, the determination of the deformation field corre-
sponding to a simple shearing stress field, in the framework of
isotropic non-linear elasticity, should be useful in the designing
experimental protocols for real materials. We have shown that a
pure shearing stress field produces a deformation field which is
not the classical simple shear deformation, but a simple shear
deformation superimposed upon a triaxial stretch, and that the
corresponding angle of shear cannot be greater than 45°. For the
special case of incompressible generalized neo-Hookean materi-
als, a one-parameter isochoric deformation is obtained. For
general isotropic materials the corresponding deformation field
is more complex and even more complex for anisotropic materials
(see, for example [22,23]).
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