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a b s t r a c t

Classical acoustoelasticity couples small-amplitude elastic wave propagation to an
infinitesimal pre-deformation, in order to reveal and evaluate non-destructively third-
order elasticity constants. Here, we see that acoustoelasticity can also be used to determine
fourth-order constants, simply by coupling a small-amplitude wave with a small-but-
finite pre-deformation. We present results for compressible weakly nonlinear elasticity,
we make a link with the historical results of Bridgman on the physics of high pressures,
and we show how to determine ‘‘D’’, the so-called fourth-order elasticity constant of soft
(incompressible, isotropic) solids by using infinitesimal waves.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Acoustoelasticity is now a well established experimental technique used for the non-destructive measurement of third-
order elasticity (TOE) constants of solids, and its principles can be found in standard handbooks of physical acoustics, such as
those of Pao et al. [1] and Kim and Sachse [2]. The underlying theory, however, is quite intricate, and over the years several
authors have produced different and irreconcilable expressions for the shift experienced by the wave speed when elastic
wave propagation is coupled to a pre-strain. A common mistake found in the literature consists of the implicit assumption
that since a small pre-strain and a small-amplitude wave are described by linearized equations, they can be superposed
linearly. With that point of view, the coupling between the two phenomena is of higher order and can be neglected in
the first approximation. The flaw in this reasoning is simply that these phenomena are successive, not linearly superposed.
Experiencing an infinitesimal pre-strain from a stress-free configuration is a linear process; propagating an infinitesimal
wave in a stress-free configuration is another linear process. But in acoustoelasticity, the wave travels in a pre-stressed,
not a stress-free solid, and the laws of linear elastodynamics must be adapted to reflect this fact. The final outcome of this
analysis is that not only second-order, but also TOE constants appear in the expression for the speed of an acoustoelastic
wave.

For example, a longitudinal wave travelling in a solid subject to a hydrostatic stress σ I will propagate with the speed v0L
given by

ρv2
0L = λ + 2µ − 7λ + 10µ + 2A + 10B + 6C

3λ + 2µ
σ , (1.1)
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where ρ is the mass density in the unstressed configuration, λ and µ are the (second-order) Lamé coefficients, and A, B, C
are the (third-order) Landau coefficients [3]. This equation was correctly established as early as 1925 by Brillouin [4] and
confirmed in 1953 by Hughes and Kelly [5], although several erroneous expressions have appeared in between and since
(see, e.g., Birch [6] Tang [7]).

From our contemporary perspective, the easiest way to re-establish and take further this expression is to rely on the
modern theory of incremental (also known as small-on-large) elasticity, which presents compact expressions for the tensor
of instantaneous elastic moduli, A0, given by its components






A0iijj = J
−1λiλjWij,

A0ijij = J
−1 λiWi − λjWj

λ2
i
− λ2

j

λ2
i
, i �= j, λi �= λj,

A0ijji = J
−1 λjWi − λiWj

λ2
i
− λ2

j

λiλj, i �= j, λi �= λj,

A0ijij = J
−1(λ2

i
Wii − λiλjWij + λiWi)/2, i �= j, λi = λj,

A0ijji = J
−1(λ2

i
Wii − λiλjWij − λiWi)/2, i �= j, λi = λj,

(1.2)

in the coordinate system aligned with the principal axes of pre-strain, which, since the material is isotropic, coincide with
the principal axes of pre-stress. Here, W is the strain-energy density per unit volume, which is a symmetric function of the
principal stretches λ1, λ2, λ3 of the deformation, J = λ1λ2λ3,Wi = ∂W/∂λi and Wij = ∂2

W/∂λi∂λj, i, j ∈ {1, 2, 3}; see,
for example, Ogden [8,9] for details. The corresponding principal Cauchy stresses are given by σi = J

−1λiWi, i = 1, 2, 3.
It is worth noting here for later reference that it follows from (1.2)2 that

A0ijij − A0jiji = σi − σj, i �= j. (1.3)

A small-amplitude bodywavemay travel at speed v in the direction of the unit vector nwith polarization in the direction
of a unit vectorm provided the eigenvalue problem

Q (n)m = ρv2m (1.4)

is solved with ρv2 > 0, where Q (n) is the acoustic tensor, which has components

Qij(n) = JA0piqjnpnq. (1.5)

Note that sometimes the acoustic tensor is defined by (1.5) without the factor J , in which case ρ in (1.4) would be replaced
by the density in the deformed configuration, i.e. J−1ρ.

Notice that in this theory the amplitude of the acoustic wave is infinitesimal, but that there is no restriction on the choice
ofW or on the magnitude of the underlying pre-strain because we are in the context of finite nonlinear elasticity. It follows
that the expressions can be specialized in various ways, in particular to weakly nonlinear elasticity (where W is expanded
in terms of some measure of strain) and to special pre-strains.

Hence, to access the TOE constants, we takeW as

W = WTOE ≡ λ

2
I
2
1 + µI2 + A

3
I3 + BI1I2 + C

3
I
3
1 , (1.6)

where In = tr(En), n = 1, 2, 3, are invariants of the Green–Lagrange strain tensor E . The components (1.2) can then be
expanded to the first order in terms of, for example, the volume change ε ≡ J − 1 in the case of a hydrostatic pressure, or
of the elongation e1 ≡ λ1 − 1 in the case of uniaxial tension.

To access fourth-order elasticity (FOE) constants, we takeW as

W = WFOE ≡ WTOE + EI1I3 + FI
2
1 I2 + GI

2
2 + HI

4
1 , (1.7)

where E, F , G, H are the FOE constants and we push the expansions of the wave speed up to the next order in the strain. This
is what we refer to as the large acoustoelastic effect. In fact, the main purpose of this investigation is to provide a theoretical
backdrop to the current drive to determine experimentally the FOE constants of soft solids such as isotropic tissues and gels
in order to improve acoustic imaging resolution (see, e.g., [10–18]).

Because soft solids are often treated as incompressible, so that the constraint J ≡ 1must be satisfied,we shall also consider
the expressions for the TOE and FOE strain-energy densities in their incompressible specializations, specifically

W = µI2 + A

3
I3 (1.8)

for TOE incompressibility and

W = µI2 + A

3
I3 + DI

2
2 (1.9)
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for FOE incompressibility. Hence, in the transition from compressible to incompressible elasticity, the number of second-
order constants goes from two to one, of third-order constants from three to one, and of fourth-order constants from four
to one. This was established by Hamilton et al. in 2004 [10], although it can be traced back to Ogden in 1974 [19] and even
earlier, to Bland in 1969 [20]. Specifically, in that transition we note that the elasticity constants behave as (Destrade and
Ogden [21])

λ → ∞, µ → EY/3, (1.10)

for the second-order constants, where EY is the (finite) Young’s modulus,

A/µ = O(1), B/µ = O(λ/µ), C/µ = O(λ2/µ2) (1.11)

for the third-order constants,

E/µ = O(λ/µ), F/µ = O(λ2/µ2), G/µ = O(λ/µ), H/µ = O(λ3/µ3), (1.12)

for the fourth-order constants, and (C + F)/µ = O(λ/µ) for a combination of second- and third-order constants. Some
constants have the explicit limiting behaviour

B/λ → −1, E/λ → 4/3, G/λ → 1/2, B + G + λ/2 → D, (1.13)

where D remains a finite quantity, of the same order of magnitude as µ; see Destrade and Ogden [21] for analysis of the
behaviour of A, B, . . . , H in the incompressible limit and the connection with D. Note that the limiting behaviour for E in
terms of the initial Poisson’s ratio ν and Young’s modulus EY is thus (1 − 2ν)E → 4EY/9. This was shown by Destrade and
Ogden in [21], but mistyped in Eqs. (49) and (89) therein as (1 − 2ν)E → 4EY/3.

In this paper, we treat in turn the case of hydrostatic pre-stress (Section 2) and of uniaxial pre-stress (Section 3), and
we provide expansions of the body wave speeds up to the second order in the pre-strain, and also in the pre-stress, for
compressible solids and in the relevant incompressible limits.

2. Hydrostatic pressure

Consider first a cuboidal sample of a compressible solid with sides of lengths (L1, L2, L3) in its (unstressed) reference
configuration. We define the reference geometry in terms of Cartesian coordinates (X1, X2, X3) by 0 ≤ Xi ≤ Li, i = 1, 2, 3.
The material is then subject to a pure homogeneous strain x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 and deformed into the cuboid
0 ≤ xi ≤ li, i = 1, 2, 3, where (x1, x2, x3) are the Cartesian coordinates in the deformed configuration, and the constants
λ1, λ2, λ3 are the principal stretches of the deformation. We now specialize the deformation to a pure dilatation so that
λ1 = λ2 = λ3 = J

1/3. Since the material is isotropic the Cauchy stress σ is spherical, σ = σ I say, with σ > 0 (< 0)
corresponding to hydrostatic tension (pressure).

The pre-stress is computed as σ = J
−1λ1W1 or, more conveniently, as σ = Ŵ

�(J), where Ŵ (J) ≡ W (J1/3, J1/3, J1/3). Up
to the second order in the volume change ε ≡ J − 1, we find

σ = κε + 1
2
Ŵ

���(1)ε2, (2.1)

where κ = Ŵ
��(1) = λ + 2µ/3 is the infinitesimal bulk modulus, and

Ŵ
���(1) = −κ + 2

9
(A + 9B + 9C). (2.2)

(It is a simple matter to check that the expansion (2.1) is equivalent to one first established byMurnaghan [22].) Conversely,
the volume change is expressed in terms of the hydrostatic stress as

ε = 1
κ

σ − Ŵ
���(1)
2κ3 σ 2. (2.3)

Here the pre-stress does not generate preferred directions and the solid remains isotropic. It follows that twowavesmay
propagate in any direction, one longitudinal, with speed vL, and one transverse, with speed vT , given by

ρv2
L

= JA01111, ρv2
T

= JA01212, (2.4)

where these quantities are computed from the formulae (1.2). Expanding in terms of the volume change, we obtain

ρv2
L

= λ + 2µ + aLε + bLε
2, ρv2

T
= µ + aTε + bTε

2, (2.5)

where

aL = 7
3
λ + 10

3
µ + 2

3
A + 10

3
B + 2C, aT = λ + 2µ + 1

3
A + B, (2.6)
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are the coefficients for the classical (linear) acoustoelastic effect, and

bL = 13
18

λ + 7
9
µ + 8

9
A + 44

9
B + 10

3
C + 8

3
E + 16

3
F + 20

9
G + 12H,

bT = 1
2
λ + 5

9
µ + 1

2
A + 13

6
B + C + E + F + 2

3
G (2.7)

are the coefficients of the large (quadratic) acoustoelastic effect.
Alternatively, we may use (2.3) to express the wave speeds in terms of the pre-stress rather than the pre-strain, as

ρv2
L

= λ + 2µ + cLσ + dLσ
2, ρv2

T
= µ + cTσ + dTσ

2, (2.8)

thus recovering the classical formulae

cL = aL

κ
, cT = aT

κ
, (2.9)

for the (linear) acoustoelastic effect [5], and establishing the formulae

dL = bL

κ2 − aLŴ
���(1)

2κ3 , dT = bT

κ2 − aT Ŵ
���(1)

2κ3 (2.10)

for the large (quadratic) acoustoelastic effect, where Ŵ
���(1) is given in (2.2).

For an application of these results, we turn to the classical data of Hughes and Kelly [5]. They performed acoustoelastic
experiments and plotted the stress-dependent shear and bulk moduli, defined as

M ≡ ρv2
T
, K ≡ ρv2

L
− 4

3
ρv2

T
, (2.11)

against the hydrostatic pressure P = −σ for polystyrene and for pyrex. For the former, the variations are clearly linear, and
nothing would be gained by including FOE effects. For the latter, there is a marked departure from the linear acoustoelastic
effect at high pressures, and we thus use (2.8) to obtain a better fit to the data. By digitizing the data and performing a
standard least squares optimization, we found that for pyrex,

M(P) = 2.73 − 8.45 × 10−6
P − 1.21 × 10−9

P
2,

K(P) = 3.27 − 7.80 × 10−5
P + 4.07 × 10−9

P
2, (2.12)

whereM and K are expressed in units of 105 bars and P in bars. The fit to the data is shown in Fig. 1.
According to (2.8), the quantities (2.11) give access to λ and µ, to two linear combinations of the third-order constants,

and to two linear combinations of the fourth-order constants. Specifically, we may solve (2.11) to find the Lamé constants
as

λ = K(0) − 2
3
M(0), µ = M(0). (2.13)

Similarly, we find two linearly independent combinations of the three third-order constants:

A + 3B = −3K(0)
�
1 + M

�(0)
�
− 4M(0), A + 9B + 9C = −9K(0)

�
1 + K

�(0)
�
/2. (2.14)

Finally, we also find two combinations of the fourth-order constants:

E + F + 2
3
G = 7

6
K(0) + 4

3
M(0) + 1

2
K(0)

�
K

�(0) + 13
3

M
�(0) + K

�(0)M �(0) + K(0)M ��(0)
�

,

E + 3F + G + 9H = 17
24

K(0) + 3
2
K(0)

�
K

�(0) + 1
4

�
K

�(0)
�2 + 1

4
K(0)K ��(0)

�
. (2.15)

Hence, for the pyrex data:

λ = 1.45 × 105 bars, µ = 2.73 × 105 bars,
A + 3B = −1.24 × 106 bars, A + 9B + 9C = 1.00 × 107 bars,

E + F + 2G/3 = −1.30 × 107 bars, E + 3F + G + 9H = 3.65 × 107 bars. (2.16)

Clearly, the data of Hughes and Kelly [5] are not sufficient to determine all the third- and fourth-order constants. An
additional relation is needed to determine experimentally all the third-order constants, and further two relations to
determine the fourth-order constants. These may be provided from, for example, wave speed measurements in uniaxially
deformed samples, as we show in the following section.
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Fig. 1. Fit of the data measured by Hughes and Kelly [5] for pyrex subjected to hydrostatic pressure P (in bars) based on Eqs. (2.8) and (2.11) with σ = −P

describing the large acoustoelastic effect:M and K are expressed in units of 105 bars.

We conclude this section by evoking the work of P.W. Bridgman on ‘‘The Physics of High Pressures’’ [23], which won him
the 1946 Nobel Prize. He carried out countless high pressure measurements on solids, and fitted his data with a quadratic
equation for the volume change, in the form ∆V/V0 = −aP + bP

2. Direct comparison of this experimental law with (2.3)
reveals the identifications a = 1/κ and b = −Ŵ

���(1)/(2κ3). Further, acoustoelastic measurements give direct access to
these constants, because κ = K(0) and Ŵ

���(1) = −K(0)[2 + K
�(0)]. In Bridgman’s experiments, very high pressures are

required to obtain second-order deformations; however, his coefficients a and b can also be determined by pressurizing the
sample only linearly, and then measuring the speeds of transverse and longitudinal waves. In fact, had Bridgman been able
to propagate such waves in his finitely deformed samples he would have had access to the third term in the expansion,
∆V/V0 = −aP + bP

2 − cP
3 say, because the continuation of (2.3) is

ε = ∆V

V0
= − 1

κ
P − 1

2κ3 Ŵ
���(1)P2 − 1

6κ5

�
3

�
Ŵ

���(1)
�2

− κŴ (4)(1)
�
P
3, (2.17)

where Ŵ
(4)(1) is found to be expressible as

Ŵ
(4)(1) = 19

9
κ − 4

9
(A + 9B + 9C) + 8

3
(E + 3F + G + 9H), (2.18)

in which each term can be determined experimentally using the equations of large acoustoelasticity above.

3. Uniaxial tension

We again consider the cuboidal sample as in Section 2, but now the cuboid is subject to a uniaxial tension in the X1
direction so that it deforms homogeneously with elongation e1 = l1/L1 − 1 = λ1 − 1 in the x1-direction. By symmetry it
contracts laterally and equibiaxially with elongation e3 = e2 = l2/L2 − 1 = λ2 − 1. The nominal stress (axial force per unit
reference area) is Jσ1/λ1 = σ1λ

2
2.

The condition that the lateral faces are free of traction is

σ3 ≡ σ2 = J
−1λ2W2 = 0, (3.1)

which determines the extent of the lateral contraction −1 < e2 ≤ 0 (assuming that λ2 < 1) and can be written in terms of
e1, up to second order, as

e2 = −αe1 − βe
2
1, (3.2)
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where

α = λ

2(λ + µ)
, β = 3κλ

8(λ + µ)2
+ λ2

A

8(λ + µ)3
+

�
λ(λ − 2µ)

2(λ + µ)2
+ 1

�
B

2(λ + µ)
+ µ2

C

2(λ + µ)3
, (3.3)

and again κ = λ + 2µ/3 is the infinitesimal bulk modulus. Note that (3.2) collapses to e2 = −e1/2 + 3e21/8 in the
incompressible limits (1.10) and (1.12), as expected from the expansion to second order of the connection λ2 = λ

−1/2
1

between the stretch ratios of an incompressible solid in uniaxial tension.
Substituting (3.2) with (3.3) into the expression σ1 = J

−1λ1W1 for the uniaxial stress, we obtain the relation between
the pre-stress and the pre-strain, up to the second order, as

σ1 = 3κµ

λ + µ
e1 + γ e

2
1, (3.4)

where

γ = 3κµ (5λ + 3µ)

2 (λ + µ)2
+

�
1 − λ3

4 (λ + µ)3

�
A + 3µ

�
3λ2 + 4λµ + 2µ2

�

2 (λ + µ)3
B + µ3

(λ + µ)3
C . (3.5)

(Note that although 3κµ/(λ + µ) = EY , the infinitesimal Young’s modulus, we shall not use EY hereon.) Conversely,

e1 = λ + µ

3κµ
σ1 −

�
λ + µ

3κµ

�3

γ σ 2
1 . (3.6)

In the incompressible limits (1.10) and (1.12), the stress–strain and strain–stress relations reduce to

σ1 = 3µe1 + 3
�

µ + A

4

�
e
2
1, e1 = 1

3µ
σ1 − 1

9µ3

�
µ + A

4

�
σ 2
1 . (3.7)

Now we examine the possibility of a small-amplitude body wave travelling in the direction of the unit vector n with
polarization in the direction of a unit vectorm. For a general direction of propagation, the speeds of the different waves are
found as the eigenvalues of the acoustical tensor Q (n) in (1.5), i.e. as the roots of a cubic. In this paper, however, we focus
on the wave speeds that are relatively simple to determine experimentally. The speeds of non-principal body waves are not
easily accessible because they would require transducers to be placed at an angle to the faces of the cuboid, and not in full
flat contact, which would lead to additional transmission problems. This leaves the principal body waves, as explained by
Hughes and Kelly [5]: first, waves in the direction x1 of the tension, and, second, principal waves in the x2 and x3 directions,
which are equivalent by symmetry.

In the direction of tension there exists a longitudinal wave with speed v11, say, and two transverse waves, propagating
with the same speed v12, say (in fact, these latter two waves may be combined to form a transverse circularly-polarized
wave). Hence, n = m = e1 for the longitudinal wave, and n = e1,m = e2 for the transverse wave, where e1 and e2 are unit
basis vectors corresponding to the coordinates x1 and x2, respectively. Using (1.4) and (1.5), we then have

ρv2
11 = JA01111, ρv2

12 = JA01212. (3.8)

Expanding the elastic moduli in terms of the elongation e1, we obtain

ρv2
11 = λ + 2µ + a11e1 + b11e

2
1, ρv2

12 = µ + a12e1 + b12e
2
1, (3.9)

where

a11 = µ

λ + µ
(λ + 2B + 2C) + 2 (2λ + 5µ + A + 2B) ,

a12 = µ

λ + µ

�
4(λ + µ) + λ + 2µ

4µ
A + B

�
, (3.10)

for the classical acoustoelastic effect, and

b11 = 12λ2 + 51λµ + 34µ2

2(λ + µ)
+

�
10 − λ3

4 (λ + µ)3

�
A + 3 (λ + 2µ)

�
12λ2 + 21λµ + 10µ2

�

2 (λ + µ)3
B

+ µ

�
9

λ + µ
+ µ2

(λ + µ)3

�
C − λ2

A

2 (λ + µ)3
(B + C) − 3λ2 + 2λµ + 2µ2

(λ + µ)3
BC

− 3λ2 + 2λµ + 2µ2

(λ + µ)3
B
2 − 2µ2

(λ + µ)3
C
2 + 6 (λ + 2µ)

λ + µ
E + 3

�
λ + 2µ
λ + µ

�2

F

+ 2
�
6 + λ2

(λ + µ)2

�
G + 12µ2

(λ + µ)2
H, (3.11)
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b12 = 6µ + 9 (λ + 2µ)

8(λ + µ)
A + 9µ

2(λ + µ)
B − λ2

16(λ + µ)3
A
2 − 3λ2 + 2λµ + 2µ2

2(λ + µ)3
B
2

− 5λ2 + 2λµ + 2µ2

8(λ + µ)3
AB − µ2

4(λ + µ)3
(A + 4B)C + 3µ (λ + 2µ)

4 (λ + µ)2
E + µ2

(λ + µ)2
F

+
�
2 + λ2

(λ + µ)2

�
G, (3.12)

for the large acoustoelastic effect.
For propagation perpendicular to the direction of tension, we take n = e2. Then there exists a longitudinal wave, with

m = e2 and speed v22, a transverse wave polarized in the direction of tensionm = e1 with speed v21, and a transverse wave
polarized perpendicular to the direction of tension, withm = e3 and speed v23. These speeds are given by

ρv2
22 = JA02222, ρv2

21 = JA02121, ρv2
23 = JA02323. (3.13)

Expanding the elastic moduli in terms of the elongation e1, we obtain

ρv2
22 = λ + 2µ + a22e1 + b22e

2
1, ρv2

2k = µ + a2ke1 + b2ke
2
1, k = 1, 3, (3.14)

where

a22 = −2λ(λ + 2µ) + λA + 2(λ − µ)B − 2µC

λ + µ
, (3.15)

a21 = (λ + 2µ)(4µ + A) + 4µB

4(λ + µ)
, (3.16)

a23 = −λ(4µ + A) − 2µB

2(λ + µ)
, (3.17)

are the classical acoustoelastic coefficients, and

b22 = −λµ(λ + 2µ)

(λ + µ)2
− λ(2λ2 − µ2)

2(λ + µ)3
A − 3µ(3λ2 + 3λµ + µ2)

(λ + µ)3
B − µ(3λ2 + 4λµ + 3µ2)

(λ + µ)3
C

− λ2

4(λ + µ)3
A
2 − 2(3λ2 + 2λµ + 2µ2)

(λ + µ)3
B
2 − 2µ2

(λ + µ)3
C
2 − 5λ2 + 2λµ + 2µ2

2(λ + µ)3
AB

− 3λ2 + 2λµ + 6µ2

(λ + µ)3
BC − λ2 + 2µ2

2(λ + µ)3
AC + 3λ(λ − 2µ)

2(λ + µ)2
E + 3λ2 + 4µ2

(λ + µ)2
F

+ 4
�
1 + λ2

(λ + µ)2

�
G + 12µ2

(λ + µ)2
H,

b21 = b12 − γ − 3κµ2

(λ + µ)2
,

b23 = − λµ2

(λ + µ)2
+ λ(3λ2 − µ2)

4(λ + µ)3
A − 3(3λ2 + 2λµ + µ2)µ

2(λ + µ)3
B − 2µ3

(λ + µ)3
C − λ2

8(λ + µ)3
A
2

− 3λ2 + 2λµ + 2µ2

2(λ + µ)3
B
2 − 2λ2 + λµ + µ2

2(λ + µ)3
AB − µ2

2(λ + µ)3
(A + 2B)C − 3λµ

2(λ + µ)2
E

+ µ2

(λ + µ)2
F +

�
2 + λ2

(λ + µ)2

�
G, (3.18)

are the ‘large acoustoelasticity’ coefficients.
We may also find expressions for the acoustoelastic effect in terms of the pre-stress σ1 as

ρv2
ii

= λ + 2µ + ciiσ1 + diiσ
2
1 , ρv2

ik
= µ + cikσ1 + dikσ

2
1 , (3.19)

where i = 1, 2 (no sum on repeated i), and k = 1, 3(k �= i). Using (3.6), we find that

cij =
�

λ + µ

3κµ

�
aij, dij =

�
λ + µ

3κµ

�2 �
bij −

λ + µ

3κµ
γ aij

�
, (3.20)

where ij ∈ {11, 22, 12, 21, 23}. In particular, we recover

c11 = 1
3κ

�
λ + 2B + 2C + 2

λ + µ

µ
(2λ + 5µ + A + 2B)

�
,
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c12 = 1
3κ

�
4(λ + µ) + λ + 2µ

4µ
A + B

�
,

c22 = 2
3κ

�
B + C − λ

µ

�
λ + 2µ + A

2
+ B

��
,

c21 = 1
3κ

�
λ + 2µ + λ + 2µ

4µ
A + B

�
,

c23 = − 1
3κ

�
2λ + λ

2µ
A − B

�
, (3.21)

for the classical acoustoelastic effect [5]. Note that c12−c21 = 1 and that d12−d21 = 1/(3κ), and hence in the incompressible
limit d12 = d21. Using these relations, we establish that

ρ(v2
12 − v2

21) = σ1 + 1/(3κ)σ 2
1 . (3.22)

Recall now that ρ is the mass density in the reference configuration. When expressed in terms of the deformed density
ρc = ρJ−1 Eq. (3.22) becomes

ρc(v
2
12 − v2

21) = σ1. (3.23)

This relation is in fact exact in accordance with (1.3) and the expressions ρv2
ij

= JA0ijij, i �= j, specialized accordingly with
σ2 = 0.

Finally, we take the incompressible limits of the elastic constants using the limiting values listed in Section 1. There, we
have ρv2

11 → ∞ and ρv2
22 → ∞, unsurprisingly, because longitudinal homogeneous plane waves may not propagate in

incompressible solids. For the transverse principal waves travelling in the direction of tension,

ρv2
12 = µ +

�
3µ + A

4

�
e1 +

�
5µ + 7

4
A + 3D

�
e
2
1, (3.24)

in terms of the elongation [24], and

ρv2
12 = µ +

�
1 + A

12µ

�
σ1 + 1

9µ2

�
2µ + A

4

�
3 − A

4µ

�
+ 3D

�
σ 2
1 , (3.25)

in terms of the pre-stress. For the transverse principal waves travelling perpendicular to the direction of tension,

ρv2
21 = µ + A

4
e1 + (2µ + A + 3D) e21,

ρv2
23 = µ −

�
3µ + A

2

�
e1 +

�
5µ + 7

4
A + 3D

�
e
2
1, (3.26)

in terms of the elongation, see Destrade et al., [24], and, using (3.7),

ρv2
21 = µ + A

12µ
σ1 + 1

9µ2

�
2µ + A

4

�
3 − A

4µ

�
+ 3D

�
σ 2
1 ,

ρv2
23 = µ −

�
1 + A

6µ

�
σ1 + 1

9µ2

�
8µ + 3A + A

2

8µ
+ 3D

�
σ 2
1 , (3.27)

in terms of the pre-stress.
For an application, we use data for a sample of silicone rubber that has been subjected to a standard tensile test. Fig. 2

displays the variation of the tensile Cauchy stress component σ1 with the elongation up to a maximum stretch of about
250%, at which stage one end of the sample snapped out of its grip. Over that range, the TOE strain energy density (1.8) is
not able to capture the behaviour of the sample adequately, as shown in Fig. 2, and is thus discarded. On the other hand,
the FOE strain energy (1.9) gives an excellent least-squares fit, with coefficient of correlation R

2 = 0.9997. In fact, the fit
is very good up to a much larger value of the stretch than could be expected for this fourth-order approximate theory. We
determined the following values for the constants of second-, third-, and fourth-order elasticity:

µ = 109.35 kPa, A = −454.18 kPa, D = 109.27 kPa. (3.28)

Note that all three are of the same order of magnitude, as expected from the theory [21]. We also remark that −8µ < A <
−4µ, indicating that the corresponding Mooney–Rivlin solid is materially stable [21,25].

Using these values, the theoretical variations of the squared wave speeds ρv2
12, ρv2

21, ρv2
23 are plotted versus the

elongation in Fig. 3. These curves suggest that it is sufficient to elongate the sample by about 20% to reveal quadratic
acoustoelastic effects, and thus to determine D experimentally.
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Fig. 2. Fitting tensile data (thick curve) of the Cauchy stressσ1 (in Pa) versus the elongation e1 for a sample of incompressible silicone rubber; the TOE strain-
energy density cannot capture the variations adequately; the FOE model gives an excellent fit with only 3 material parameters, with values µ = 109.35
kPa, A = −454.18 kPa, D = 109.27 kPa.

Fig. 3. Plots of ρv2 (in MPa) versus elongation e1 for a deformed incompressible block of silicone rubber subject to simple tension; theoretical curves for
waves travelling (a) in the direction x1 of tension (v = v12), (b) in any direction in the plane normal to the direction of uniaxial stress, with transverse
polarization in that plane (v = v23), (c) in any direction in the plane normal to the direction of uniaxial stress, with polarization normal to that plane
(v = v21); the dotted lines correspond to the linear part of ρv2 versus e1 curves (the classical acoustoelastic effect).

4. Discussion

This studywas set within the framework of the theory of small-amplitude waves propagating in a deformed elastic solid.
Existing general expressions for the speeds of bodywaves in a finitely deformed isotropic elastic solidwere recalled and then
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specialized to fourth-order elasticity. Specifically, the squared wave speeds were expanded in terms of the pre-deformation
(and, equivalently, in terms of the pre-stress) in order to reveal the so-called acoustoelastic effect at the considered order.
While the classical acoustoelastic effect is concernedwith the linear variation of the squaredwave speedwith the pre-stress,
the expansion was extended to the quadratic regime (large acoustoelastic effect). Explicit expressions for the quadratic
coefficients for compressible and incompressible materials were determined for the cases of hydrostatic and uniaxial pre-
stress. These coefficients give access to the fourth-order elastic constants.

In the case of an incompressible sample under uniaxial tension, for example, measurement of the variations of the speed
of a single transverse wave with respect to the pre-stress (or pre-strain) is enough to determine the elastic constants. The
wave speed in the unstressed configuration gives the initial shear modulus µ of second-order elasticity, the linear variation
of the squared wave speed with the pre-stress or pre-strain gives the third-order Landau-coefficient A, and the quadratic
variation gives the fourth-order constant D.

For compressible materials, Hughes and Kelly [5] showed that any three of the seven (2.5), (3.9) and (3.14), with just
the linear terms retained, or equivalently (2.8) and (3.19), excluding either the expression for ρv2

12 or for ρv2
21, suffice to

determine the two Lamé coefficients λ and µ of second-order elasticity and the three Landau coefficients of third-order
elasticity A, B, C . Here we have shown that any four of these seven equations, with the quadratic terms now included, give
access also to the fourth-order constants E, F , G, H (again, excluding either the expression for ρv2

12 or for ρv2
21).

Although we have restricted attention largely to third- and fourth-order elasticity the expressions for the components of
the tensor of instantaneous elasticmoduliA0 given in (1.2) apply for an arbitrary finite deformation relative to an unstressed
configuration of an isotropic elastic material, and the subsequent incremental response depends on the finite deformation
and its accompanying pre-stress. If instead there is an initial stress in the reference configuration then the components of
A0 are considerably more complicated, as detailed in Shams et al. [26], but they do clarify how the elastic moduli depend
in general on the initial stress. In particular, the dependence of A0 on an initial hydrostatic stress τ can be put in the simple
form

A0ijkl = µ(τ )(δikδjl + δilδjk) + λ(τ )δijδkl, (4.1)

where µ(τ ) and λ(τ ) are now stress-dependent Lamé moduli, with τ > 0 (< 0) corresponding to tension (pressure), their
precise functional dependence determined by the choice of strain-energy function. We refer to a recent paper by Rajagopal
and Saccomandi [27] and references therein for a discussion of the stress dependence of moduli within the context of an
implicit theory of elasticity.
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