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Abstract Incompressible nonlinearly hyperelastic materi-
als are rarely simulated in finite element numerical exper-
iments as being perfectly incompressible because of the
numerical difficulties associated with globally satisfying this
constraint. Most commercial finite element packages there-
fore assume that the material is slightly compressible. It is
then further assumed that the corresponding strain-energy
function can be decomposed additively into volumetric and
deviatoric parts. We show that this decomposition is not phys-
ically realistic, especially for anisotropic materials, which are
of particular interest for simulating the mechanical response
of biological soft tissue. The most striking illustration of the
shortcoming is that with this decomposition, an anisotropic
cube under hydrostatic tension deforms into another cube
instead of a hexahedron with non-parallel faces. Further-
more, commercial numerical codes require the specification
of a ‘compressibility parameter’ (or ‘penalty factor’), which
arises naturally from the flawed additive decomposition of
the strain-energy function. This parameter is often linked
to a ‘bulk modulus’, although this notion makes no sense
for anisotropic solids; we show that it is essentially an arbi-
trary parameter and that infinitesimal changes to it result
in significant changes in the predicted stress response. This
is illustrated with numerical simulations for biaxial tension
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experiments of arteries, where the magnitude of the stress
response is found to change by several orders of magnitude
when infinitesimal changes in ‘Poisson’s ratio’ close to the
perfect incompressibility limit of 1/2 are made.
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1 Introduction

Biological systems inevitably involve complex geometries,
microstructure and boundary conditions, and numerical sim-
ulations of the mechanical response of soft tissue are required
in order to estimate the stress distribution. The finite ele-
ment method is typically the preferred numerical method and,
because of the complexity, commercial (such as ABAQUS,
ANSYS, LS-DYNA, MSC.Nastran, etc.) or non-commercial
(such as FEBio, CalculiX, etc.) formulations of this method
are usually employed to predict the stress distribution for
soft tissue. It is worth noting that Erdemir et al. (2012)
report an almost exponential increase over the last 40 years
in published studies utilizing finite element analysis as a
research tool. This increased reliance on using computa-
tional models for analysis has been achieved mainly by rapid
advances in non-invasive medical imaging such as compu-
tational tomography and magnetic resonance imaging being
coupled with the use of computer software for automatically
meshing complex anatomical structures and for solving large
scale problems quickly. However, these rapid technologi-
cal advances in imaging and computer engineering have not
been matched by similarly rapid advances in experimental
methods to characterize soft matter. Indeed, there is a dearth
of accurate mechanical property data for soft biological tis-
sue such as skin, muscle and neural tissue, and sufficiently
detailed data are only recently beginning to be obtained
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(Ní Annaidh et al. 2012a,b; Rashid et al. 2012a,b). As more
sophisticated medical devices continue to be designed for
implantation into soft tissue, and as computer assisted/guided
surgery relies on increasingly sophisticated models for con-
trolling the mechanical interaction between surgical instru-
ments and soft tissue, the need to understand the behavior of
incompressible nonlinearly hyperelastic materials is becom-
ing increasingly urgent.

The deformations of biological, soft tissue are usually
assumed to be accompanied by only infinitesimal volume
changes due to the tissue’s high water content (Vito and
Dixon 2003). However, there is no generally agreed method
for modeling slightly compressible materials. The most pop-
ular approach, and that implemented in most commercial
finite element codes, is to decompose the strain-energy func-
tion additively into volumetric and deviatoric parts, with the
deviatoric part constructed in such a way that only isochoric
deformations can be considered. A summary of this approach
can be found, for example, in Ogden (1997) and also in Sect. 2
here. This decomposition has the advantage of having an
innate intuitive appeal and, as importantly, is mathematically
convenient. However, the physical basis for this assump-
tion has rarely been tested. Exceptions include the work of
Sansour (2008) and Horgan and Murphy (2009a) who proved
that for isotropic materials, this decomposition is equivalent
to assuming that the hydrostatic Cauchy stress is a function
only of the invariant measuring volume change for every
deformation (see Sect. 3). Following Sansour (2008), who
proved the same result for orthotropic materials, it is shown
in Sect. 4 that this result also holds for nonlinearly hypere-
lastic anisotropic materials with two preferred directions, the
standard phenomenological model for large, elastic arteries.
The consequences of this identity are then explored, with the
conclusion being that the additive decomposition of strain-
energy functions into volumetric and deviatoric parts in order
to model slightly compressible materials is valid only for
isotropic materials under hydrostatic tension/compression
and is not appropriate for anisotropic materials. The lim-
ited experimental data available, due to Penn (1970), sup-
port this view. Therefore, finite element analyses that use the
volumetric and deviatoric decomposition as a fundamental
constitutive assumption are not based on good physics for
anisotropic soft tissues and, consequently, the corresponding
stress predictions must be viewed skeptically.

Even if one were to ignore our concerns about this decom-
position and continue to use commercial finite element codes
based on it, there is a serious practical problem associated
with using these codes. Most codes assume that the hydro-
static stress is proportional to a function of the assumed
infinitesimal volume change, but there is no guidance as
to how the constant of proportionality should be chosen; in
effect, it is an arbitrary parameter. Most commercial codes
do provide a default value. For example, ABAQUS (Abaqus

User’s Manual 2012) assumes, without justification, the value
κ/μ = 20 for its artery model, where κ is defined to be the
bulk modulus, remembering that we dispute that this is well-
defined for anisotropic materials, and μ is defined to be the
largest value of the initial shear moduli among the different
material directions. This value seems to have been directly
imported from the isotropic formulation, where κ/μ = 20
corresponds to a Poisson’s ratio ν of 0.475. Repeating this
implicit identification of the anisotropic compressibility fac-
tor with its isotropic counterpart, we show here that for biaxial
experiments on a nonlinear, homogenous material with two
preferred directions introduced by Holzapfel (2000) and by
Gasser et al. (2006), there are significant variations in the pre-
dicted stress response as a result of variations in this arbitrary
parameter induced by infinitesimal variations in Poisson’s
ratio, even for small strains (see Sect. 5). This is worrying
for two reasons: first, there is the issue of reproducibility of
numerical experiments, since many reported simulations do
not reveal the value of the compressibility constant used. The
more important and related second problem is that finite ele-
ment predictions of stress based on additive decomposition
must now be viewed even more skeptically in terms of their
correspondence to reality because the experimental deter-
mination of this crucial parameter is hardly ever conducted.
Thus, at the very best, only a qualitative estimate of the phys-
ical stress can be obtained and even this cannot be stated with
much confidence, because the principal stresses for slightly
compressible models are hyper-sensitive to variations in
Poisson’s ratio, see Sect. 6. This has potentially serious impli-
cations, in particular, for the numerical modeling of biolog-
ical, soft tissue where finite element analysis is a basic tool.

Companies that sell finite element codes seem com-
placent when it comes to the issue of incompressibility.
For example, the LS-DYNA manual states that for their
MAT_SOFT_TISSUE model, used to represent transversely
isotropic biological soft tissue,

the bulk modulus K should be at least 3 orders of mag-
nitude larger than C1 [shear modulus] to ensure near-
incompressible material behavior.

This would correspond to a Poisson’s ratio between 0.4995
and 0.5. However, for the MAT_BLATZ-KO_RUBBER
model, the manual states

this one parameter material allows the modeling of
nearly incompressible continuum rubber. The Pois-
son’s ratio is fixed to 0.463.

Thus, the bulk modulus here is only 13 times larger than the
shear modulus. Similarly, the ABAQUS manual states that

in applications where the material is not highly con-
fined, the degree of compressibility is typically not
crucial.
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Table 1 The different degrees of compressibility for arteries under
equi-biaxial strain

ν D (Pa)−1 κ (Pa) κ/μ

0.475 1.33 ×10−5 1.50 × 105 20

0.48 1.06 ×10−5 1.88 × 105 25

0.49 5.27 ×10−6 3.79 × 105 50

0.495 2.63×10−6 7.61 × 105 100

0.499 5.24 ×10−7 3.82 × 106 500

0.4995 2.62 ×10−7 7.64 × 106 1,000

0.4999 5.24 ×10−8 3.82 × 107 5,000

See Figs. 2 and 3 for the corresponding Cauchy stress response

We show here, however, that the degree of compressibility
is indeed very crucial, even for the unconfined problem of
biaxial tension. The crucial dependence on the compress-
ibility parameter in commercial finite element codes has
been demonstrated previously by Gent et al. (2007) and by
Destrade et al. (2012), who showed that in shearing deforma-
tions of isotropic materials, the normal stress distribution can
exhibit extreme sensitivity to changes in Poisson’s ratio. The
seemingly obvious solution to this dependence on a com-
pressibility factor of simply simulating perfect incompress-
ibility is not a valid approach since no material is perfectly
incompressible. The analysis presented here suggests that the
difference between predicted stress distributions assuming
this idealization and those obtained assuming slight com-
pressibility is likely to be very significant. The solution to
the problems identified here must begin with extensive and
careful experimentation of anisotropic materials, and, in par-
ticular, biological, soft tissue, to determine the variation of
compressibility under mechanical loading. It is only then that
a rational constitutive framework that models this compress-
ibility for anisotropic materials can be formulated.

We conclude this section with a simple, yet telling, exper-
iment in ABAQUS, where we subject a cube of side 10 mm,
meshed with 1000 C3D8R elements, to hydrostatic ten-
sion. For our first experiment, we use the code to model
an anisotropic solid which is characterized by ‘linear elastic
behavior’: we take a cube made of orthotropic Zinc, with
the following elastic constants D1111 = 165, D1122 = 31.1,
D2222 = 165, D1133 = 50, D2233 = 50, D3333 = 61.8,
D1212 = 66.95, D1313 = D2323 = 39.6 (GPa) (Hearmon
1974). We rotate its symmetry axes by 45 ◦ with respect to
its edges. We subject it to a hydrostatic tension of magni-
tude 10 GPa. In the second experiment, ABAQUS is used to
model a solid with ‘anisotropic hyperelastic behavior’: we
use the material constants of Eq. (23) (but with no fiber dis-
persion, i.e., κ0 = 0), with a ‘bulk modulus’ of 150 kPa (see
first line of Table 1). We subject it to a hydrostatic tension of
magnitude 100 kPa. In the first case, the cube deforms into
an hexahedron with non-parallel faces, as it should, while
in the second case, the cube deforms into another cube, of

side 12.31 mm. Figure 1 clearly highlights a major problem
with the implementation of a rational model of nonlinear
anisotropic elasticity in ABAQUS. This is discussed further
in Sects. 3 and 4.

2 Preliminaries

The nominal and Cauchy stress tensors (S, σ , respectively)
are related by

σ = J−1FS,

where J ≡ λ1λ2λ3, with λi the principal stretches, and F
is the deformation gradient tensor. Ogden (2003) gives the
following constitutive law for compressible, homogeneous,
nonlinearly elastic materials with two preferred directions
along the unit vectors M, M′ in the undeformed configura-
tion:

S = 2W1FT + 2W2 (I1I − C) FT + 2I3W3F−1

+ 2W4M ⊗ FM + 2W5 (M ⊗ FCM + CM ⊗ FM)

+ 2W6M′ ⊗ FM′ + 2W7
(
M′ ⊗ FCM′ + CM′ ⊗ FM′)

+ W8
(
M ⊗ FM′ + M′ ⊗ FM

)
, (1)

so that

Jσ = 2W1B + 2W2

(
I1B − B2

)
+ 2I3W3I + 2W4FM ⊗ FM

+ 2W5 (FM ⊗ BFM+BFM ⊗ FM)+2W6FM′ ⊗ FM′

+ 2W7
(
FM′ ⊗ BFM′ + BFM′ ⊗ FM′)

+ W8
(
FM ⊗ FM′ + FM′ ⊗ FM

)
. (2)

Here, W = W (I1, I2, I3, . . . , I8) is the strain-energy func-
tion per unit undeformed volume, attached subscripts denote
partial differentiation with respect to the appropriate prin-
cipal strain invariant or pseudo-invariant, and B, C are the
left and right Cauchy-Green strain tensors, respectively. The
invariants are defined by

I1 = tr(B), I2 = 1

2

[
I 2
1 − tr(B2)

]
, I3 = det(B) = J 2,

I4 = M · CM, I5 = M · C2M,

I6 = M′· CM′, I7 = M′· C2M′, I8 = M · CM′. (3)

The constraint of incompressibility, requiring that I3 = 1
for all deformations, is usually imposed for two important
classes of materials: elastomers and biological soft tissues.
In numerical simulations of these materials, however, the
material is usually assumed to be almost incompressible
instead due to the numerical difficulty in globally enforcing
the incompressibility constraint. This also has the virtue of
being closer to the physics of these materials, as all materials
suffer some volume change when deformed.
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Fig. 1 Deformed cube under
hydrostatic tension. a Using the
linear elastic implementation
and the elastic constants of Zinc
(orthotropic), the cube deforms
into a hexahedron with
non-parallel faces. b Using the
hyperelastic implementation and
material constants of arteries,
the cube deforms into another
larger cube

(a) Linear elastic implementation (b) Hyperelastic implementation

There is no standard formulation of slight compressibil-
ity. The usual approach (see, for example, Ogden 1997;
Holzapfel 2000; Bonet et al. 2008, and the manuals cited
in the References) is first to reformulate the kinematics in
terms of the modified or distortional stretches, λ∗

i , defined as

λ∗
i ≡ J−1/3λi . (4)

The motivation for doing this is to develop a theory that
has close parallels with the now classical theory of perfectly
incompressible materials since λ∗

1λ
∗
2λ

∗
3 = 1. The tensorial

measures of deformation can therefore be multiplicatively
decomposed into dilatational and volume-preserving parts
as follows (Holzapfel 2000):

F =
(

J 1/3I
)

F∗ = J 1/3F∗,

B =
(

J 2/3I
)

B∗ = J 2/3B∗,

C =
(

J 2/3I
)

C∗ = J 2/3C∗,

with the relationship between the two sets of invariants
{I1, I2, I3, I4, . . . , I8} and {I ∗

1 , I ∗
2 , I ∗

4 , . . . , I ∗
8 ; J } given by

I ∗
a = J−2/3 Ia, a ∈ {1, 4, 6, 8},

I ∗
b = J−4/3 Ib, b ∈ {2, 5, 7}, I ∗

3 = 1. (5)

In terms of the modified stretches, the stress–strain relation
(2) becomes

Jσ = 2I3
∂W

∂ I3
I + 2W ∗

1 B∗ + 2W ∗
2

[
I ∗
1 B∗ − (

B∗)2
]

+ 2W ∗
4 F∗M ⊗ F∗M

+ 2W ∗
5

(
F∗M ⊗ B∗F∗M + B∗F∗M ⊗ F∗M

)

+ 2W ∗
6 F∗M′ ⊗ F∗M′

+ 2W ∗
7

(
F∗M′ ⊗ B∗F∗M′ + B∗F∗M′ ⊗ F∗M′)

+ W ∗
8

(
F∗M ⊗ F∗M′ + F∗M′ ⊗ F∗M

)
, (6)

where, now, the subscripts attached to W ∗ = W ∗(I ∗
1 , I ∗

2 ,

I ∗
4 , . . . , I ∗

8 ; J ) denote partial differentiation with respect
to the modified invariants I ∗

c . In terms of the invariants

{I ∗
1 , I ∗

2 , I ∗
4 , . . . , I ∗

8 ; J }, the ∂W/∂ I3 term has the form

2I3
∂W

∂ I3
= J

∂W ∗

∂ J
− 2

3
W ∗

a I ∗
a − 4

3
W ∗

b I ∗
b ,

where the ranges of the summation over repeated subscripts
are given in (5). Consequently, the Cauchy stress-strain rela-
tion has the following final form in terms of the normalized
invariants and J :

Jσ = J
∂W ∗

∂ J
I + 2W ∗

1

(
B∗ − 1

3
I ∗
1 I

)

+ 2W ∗
2

[
I ∗
1 B∗ − (

B∗)2 − 2

3
I ∗
2 I

]

+ 2W ∗
4

(
F∗M ⊗ F∗M − 1

3
I ∗
4 I

)

+ 2W ∗
5

(
F∗M ⊗ B∗F∗M + B∗F∗M ⊗ F∗M − 2

3
I ∗
5 I

)

+ 2W ∗
6

(
F∗M′ ⊗ F∗M′ − 1

3
I ∗
6 I

)

+ 2W ∗
7

(
F∗M′ ⊗ B∗F∗M′+B∗F∗M′ ⊗ F∗M′−2

3
I ∗
7 I

)

+ W ∗
8

(
F∗M ⊗ F∗M′ + F∗M′ ⊗ F∗M − 2

3
I ∗
8 I

)
. (7)

Taking the trace of both sides yields the following impor-
tant property of strain-energies defined in terms of these nor-
malized invariants:

tr (σ ) = 3
∂W ∗

∂ J
. (8)

This term is usually called the hydrostatic stress. The con-
trast with the corresponding result for the classical invariants,
given by

J tr (σ ) = 6W3 I3 + 2Wa Ia + 4Wb Ib, (9)

is immediate. The simplicity of form of the first suggests a
more convenient choice of invariants but this very simplic-
ity poses problems for the theory expressed in terms of the
normalized invariants as will be shown shortly.
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Although (7) is the general constitutive form assumed for
slightly compressible materials reinforced with two families
of fibers, this form is in fact valid for all materials reinforced
with two families of fibers. The constitutive assumption that is
widely assumed to be specific to slightly compressible mate-
rials is that the strain-energy function in (7) can be additively
decomposed into dilatational and volume-preserving parts as:

W ∗ (
I ∗
1 , I ∗

2 , I ∗
4 , . . . , I ∗

8 ; J
)

= f (J ) + W
(
I ∗
1 , I ∗

2 , I ∗
4 , . . . , I ∗

8

)
. (10)

It follows immediately from (8) that these materials have the
important property that

tr (σ ) = 3 f ′(J ), (11)

and consequently, the hydrostatic stress is a function of the J
invariant only. It will be seen that this property has implica-
tions for the validity of the decomposition (10). The decom-
position (10) is the usual starting point for finite element
analysis of anisotropic, nonlinearly elastic materials. Most
authors (see, for example, Holzapfel 2000; Crisfield 1991;
SimoandTaylor1991;Weissetal.1996)assumethisaxiomat-
ically without motivation, relying on physical intuition and,
almost certainly, mathematical convenience as the basis for
this assumption. Its validity will be considered in Sect. 4.

3 Isotropic materials

Before considering the anisotropic materials defined by
either (2) or (7), some insight into the validity of assuming
(10) can be gained by first considering isotropic materials.
Sansour (2008) and Horgan and Murphy (2009a) have shown
for isotropic materials that a decomposition of the form

W ∗ (
I ∗
1 , I ∗

2 , J
) = f (J ) + W

(
I ∗
1 , I ∗

2

)
, (12)

which is the specialization of (10) to isotropic materials, holds
if and only if (11) holds for all deformations. Condition (11)
is a generalization to all deformations of the intuitive idea that,
for isotropic materials, a pure hydrostatic stress, with the prin-
cipal stressesallequal, shouldonlycauseavolumechangeand
therefore tr (σ ) should depend only on J .

To represent this intuitive idea mathematically, note that,
in terms of the classical Cauchy-Green strain invariants, pure
hydrostatic stress for isotropic materials is described by σ =
T I, say, giving

J T = 2W1λ
2
1 + 2W2λ

2
1

(
λ2

2 + λ2
3

)
+ 2J 2W3,

J T = 2W1λ
2
2 + 2W2λ

2
2

(
λ2

1 + λ2
3

)
+ 2J 2W3,

J T = 2W1λ
2
3 + 2W2λ

2
3

(
λ2

1 + λ2
2

)
+ 2J 2W3. (13)

Simple subtraction then yields

0 =
(
λ2

i − λ2
j

) (
W1 + λ2

k W2

)
.

Assuming that the so-called empirical inequalities, W1 > 0,
W2 ≥ 0, hold means that, for isotropic materials, pure hydro-
static stress and strain are equivalent. For pure hydrostatic
stress then, the deformation is a single-parameter deforma-
tion, and therefore, it seems reasonable that pure hydrostatic
stress should depend only on one strain invariant and that that
invariant should be the volume measuring invariant J , that
is, it seems reasonable that (11) holds.

However, even for isotropic materials, requiring that the
relation (11) holds for all deformations, which is equivalent to
the additive decomposition (12), seems overly prescriptive.
The mean Cauchy stress should cause more than a simple
volume change in general and (11) therefore does not seem an
a priori constitutive assumption rooted in rational mechanics,
even though its equivalent (12) has some intuitive appeal on
the basis of mathematical convenience.

The modeling of slight compressibility, even for the
isotropic case, is severely hindered by the scarcity of rele-
vant experimental data. Although there are classical studies
investigating the hydrostatic response of elastomers, most
notably those of Adams and Gibson (1930) and Bridgman
(1944), they involve pressures of the order of hundreds of
MPa (see, for example, Horgan and Murphy (2009a,b), for
recent reviews of the available data on slight compressibility
of rubber-like materials) and are thus not relevant when one
wishes to consider the effect of slight compressibility under
pressures experienced by elastomers in typical applications
and by soft tissue under physiological pressure. There is,
however, one set of experiments that can be considered the
benchmark set of data when it comes to measuring the slight
compressibility of elastomers. In a series of elegant experi-
ments on peroxide vulcanizates of natural gum rubber using
a dilatometer technique, Penn (1970) measured the volume
change for a number of rubberlike materials in simple ten-
sion. His data are summarized and tabulated in Fong and
Penn (1975). Penn’s conclusion is that no model of the form
(12) is compatible with his data, although a recent re-analysis
of Penn’s data (Horgan and Murphy 2009a) suggests that a
quantitative, if not qualitative, agreement of (12) with Penn’s
data can be achieved. If Penn is correct, however, then the
additive decomposition is fatally flawed for isotropic solids.

4 Additive decomposition for anisotropic materials

It is now shown that for the anisotropic materials of interest
here, that is, compressible, nonlinear, hyperelastic materi-
als with two preferred directions, the additive decomposition
(10) is equivalent to (11), thus generalizing the result for
isotropic materials considered in the last section.

It has already been shown that (11) is a necessary con-
sequence of (10). Sufficiency will now be proved. Assume
then that (11) holds. Then, it follows from (2) that
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J tr (σ ) = 2I1W1 + 4I2W2 + 6I3W3 + 2I4W4 + 4I5W5

+ 2I6W6 + 4I7W7 + 2I8W8 = 3J f ′(J ), (14)

which is a linear partial differential equation in W . The par-
ticular integral is trivial:

Wp = f
(

I 1/2
3

)
. (15)

The homogeneous equation has the form

I1W1 + 2I2W2 + 3I3W3 + I4W4 + 2I5W5 + I6W6

+ 2I7W7 + I8W8 = 0, (16)

which has the general solution

Wh = W
(
I ∗
1 , I ∗

2 , I ∗
4 , I ∗

5 , I ∗
6 , I ∗

7 , I ∗
8

)
, (17)

where W is an arbitrary function and the starred invariants
are the normalized invariants defined in (5). Consequently,
the solution of the partial differential equation (14) is given
by (10), and the equivalence result has been proved.

In summary, if W = W (I1, I2, I3, . . . , I8) then

tr (σ ) = 3 f ′(J ), (18)

if, and only if,

W = f (J ) + W
(
I ∗
1 , I ∗

2 , I ∗
4 , . . . , I ∗

8

)
. (19)

This type of equivalence for anisotropic materials was first
obtained by Sansour (2008), who considered materials that
were orthotropic.

Some implications of this equivalence are now considered.
Although (10) might seem a natural assumption to model
slight compressibility of anisotropic materials in terms of the
strain-energy function, its stress equivalent (11) suggests that
it is seriously flawed. It was argued previously for isotropic
materials that the mean Cauchy stress should cause more than
a simple volume change, with the possible exception of pure
hydrostatic stress. This argument seems especially valid for
anisotropic materials: the effect of the mean Cauchy stress
should contain some dependence on the fiber orientation and
therefore contain some dependence on the pseudo-invariants
I4, . . . , I8 or their normalized equivalents. In addition, the
different responses of the fibers and the matrix should cause
some change in shape and consequently some dependence on
I1, I2 must also be needed. This should be true even for pure
hydrostatic stress, for if one considers, say, the pure hydro-
static stress of a cube containing two families of reinforcing
fibers, then the fibers will be stiffer than the surrounding
matrix. Elementary physics therefore suggests that the cube
will be deformed into an hexahedron with non-parallel faces.
In fact, for orthotropic materials, Sansour (2008) proved that
a purely spherical state of stress will be accompanied by a

change of shape as well. However, our repeated numerical
experiments using ABAQUS 6.9 of the hydrostatic tension
of slightly compressible cubes show that ABAQUS predicts
that the cubic shape is maintained, see Fig. 1.

It seems then that the additive decomposition of the
strain-energy function into volumetric and deviatoric parts
is essentially an isotropic condition (and even then appro-
priate for pure hydrostatic tension only) and was simply
extended in a natural way for anisotropic materials with-
out adequate consideration being given to the correspond-
ing physics. The arguments above suggest that, despite its
intuitive appeal, it should not be employed when modeling
nonlinear, anisotropic materials which are characterized by
infinitesimal volume changes when deformed. Certainly, its
equivalent formulation in terms of stresses, (11), does not
seem a natural or appropriate constitutive assumption to make
when modeling the slight compressibility of anisotropic
materials. A formulation of the theory that accounts for infin-
itesimal volume changes in a physically realistic way is badly
needed.

There are some data in the literature that measure the
volume change of biological, soft tissue in deformation, but
they are neither as comprehensive nor as useful as the data
of Penn. Carew et al. (1968) measured the volume change
accompanying the internal pressurization of arteries from
dogs and observed volume changes much smaller than 1 %.
Unfortunately, these data are of limited use for constitutive
modeling as the underlying deformation is inhomogeneous.
Chuong and Fung (1984) conducted uniaxial compression
experiments on rabbit thoracic arteries and also concluded
that the tissue is only slightly compressible. However, these
experiments were one-dimensional and consequently cannot
yield information about the interaction of volume change
and anisotropy. Consequently, extensive, careful experimen-
tation is needed to measure the slight compressibility of soft
tissue, with a particular emphasis on the effect of anisotropy.
This data must be valid for the entire range of physiological
loading and must incorporate as much variety in the type of
soft tissue used as possible. It is only when such data are
available that reliable models of slight compressibility can
be formulated and the reliability and accuracy of finite ele-
ment simulations of the mechanical response of soft tissue be
improved. The analysis presented here has illustrated the dif-
ficulties of modeling the slight compressibility of soft tissue
using intuitive mathematical models.

Even if one is unconvinced by the theoretical arguments
against the additive decomposition (10) and the claim of Penn
(1970) that his experimental data are incompatible with it,
there are serious practical difficulties in simulating slightly
compressible anisotropic materials. This is illustrated next
using the example of equi-biaxial strain, which locally
models the deformation of arterial tissue under internal
pressure.
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5 Finite element simulations

We now consider some finite element simulations of the
Holzapfel-Gasser-Ogden model of anisotropic, hyperelastic
behavior implemented by ABAQUS (see Section 19.5.3 of
the Abaqus Analysis User’s Manual). For isothermal defor-
mations, this assumes the strain-energy function can be addi-
tively decomposed into volumetric and deviatoric parts as in
(10) where, using our previous notation,

f (J ) = 1

D

[
1

2
(J 2 − 1) − ln J

]
, (20)

and

W (
I ∗
1 , I ∗

2 , I ∗
4 , . . . , I ∗

8

) = C10
(
I ∗
1 − 3

)

+ k1

2k2

{
ek2[κ0 I ∗

1 +(1−3κ0)I ∗
4 −1]2 +ek2[κ0 I ∗

1 +(1−3κ0)I ∗
6 −1]2 − 2

}
,

(21)

where C10, k1 and k2 are constants and κ0 is the dispersion
parameter (not to be confused with the ‘bulk modulus’ κ).

There are two approaches to the specification of the com-
pressibility factor D. The first is to treat this factor as a mate-
rial parameter, with the expectation therefore that there is
some experimental justification for its choice. Referring to
the ABAQUS manual (Abaqus User’s Manual 2012), D is
defined as D = 2/κ , where κ is the bulk modulus without
any definition of what the term ‘bulk modulus’ might mean
in an anisotropic context. In fact the manual’s definition is
circular, D is defined in terms of κ and vice versa. What
seems implicit in the ABAQUS formulation of compress-
ibility is the existence of a set of experimental data for pure
hydrostatic stress, T , for which T = f ′(J ) in general and
for which

T = 1

D

(
J − 1

J

)
, (22)

holds in particular here. Then D = 2/ f
′′
(1). There are two

obvious practical difficulties with this approach: there are no
experimental data for biological, soft tissue in hydrostatic
stress and even if there were, almost certainly the relation
(22) would not hold as there needs to be some incorporation
of the fiber orientation into the hydrostatic response. The
important default setting, used in almost all finite element
simulations in practice, is derived from setting κ/μ = 20,
where μ is defined to be the largest value of the initial shear
moduli. Again, rarely, if ever, are there experimental data
available to identify the largest of the shear moduli and, of
course, the value of the ratio adopted is arbitrary. It seems to
have been imported directly into the modeling of anisotropic
materials from the corresponding models of isotropic elastic-
ity, where it corresponds to a Poisson’s ratio of 0.475, which
has been adopted without justification by ABAQUS as being
representative of the behavior of elastomers.

The second approach is to treat D as a penalty parameter
in a purely computational approach. A clear exposition of
this approach can be found in Holzapfel et al. (2002), where
κ is a user-specified and mathematically motivated penalty
parameter. The authors state that ‘an appropriate value for
κ is determined through numerical experiments’, although
what an appropriate value might be or what these numerical
experiments entail is not discussed. A hint as to the size of
the appropriate value is given when the ratio of the penalty
parameter used in the simulations to the shear moduli of the
modeled material is said to be approximately three orders of
magnitude. Interestingly, this is several orders of magnitude
greater than the default setting for the first approach used in
ABAQUS. However, here again D is essentially an arbitrary
parameter, and it will be shown that varying this parame-
ter in an obvious way has a significant effect on the stress
distribution.

The values for the material constants used in our simula-
tions are those proposed by Gasser et al. (2006) to model the
mechanical response of the iliac adventitia, that is,

C10 = 3.82 kPa, k1 = 996.6 kPa, k2 = 524.6,

κ0 = 0.226, � = 49.98◦, (23)

where � is the angle between the fiber directions M and M′ in
the reference configuration. As already discussed, ABAQUS
implicitly identifies the anisotropic compressibility factor
with its isotropic equivalent, with therefore

D = 3(1 − 2ν)

μ(1 + ν)
,

where ν, μ are the initial Poisson’s ratio and shear modulus,
respectively. Taking the shear modulus as μ = 2C10 = 7.64
kPa (Gasser et al. 2006), we use this identification to vary the
values of D, with units (Pa)−1, by changing ν as detailed in
Table 1.

A square sample of dimensions 10 mm × 10 mm and
thickness 0.5 mm was modeled using 8320 reduced inte-
gration hexahedral (C3D8R) elements for the mesh. The
numerical analyses were performed using both the sta-
tic analysis procedure in ABAQUS/Standard 6.9 and the
dynamic, explicit procedure in ABAQUS/Explicit 6.9, with
both procedures giving identical results for slight compress-
ibility. The perfectly incompressible case was modeled using
ABAQUS/Standard only, since it is not possible to model the
incompressible case using ABAQUS/Explicit. Displacement
was applied through a constant velocity boundary condition
applied to two sides of the square while the other two sides
were fully constrained in all six degrees of freedom, resulting
in an equibiaxial deformation. The simulation results were
independent of mesh density, element type and sample thick-
ness.

Figure 2 illustrates the variation in Cauchy stress in
the 1-direction throughout the duration of the simulation.
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Fig. 2 Variation in Cauchy stress in 1-direction for different values of
Poisson’s ratio

Fig. 3 Variation in Cauchy stress in 2-direction for different values of
Poisson’s ratio

Similarly, Fig. 3 illustrates the variation in Cauchy stress in
the 2-direction, which, despite the equibiaxial nature of the
simulation, differs from Fig. 2 because of the anisotropic
nature of the material. It can be seen that the Cauchy stress
varies dramatically up to a strain of 20 % depending on the
chosen value of Poisson’s ratio.

The implications of these plots for the FE analysis of bio-
logical soft tissue are obvious: there is a variation of several
orders of magnitude in the predicted stresses when Poisson’s
ratio is varied between 0.475, the default value in ABAQUS,
and 0.5, the incompressible limit, even for strains as low as
5–10 %, which are typical physiologically. The correct value
(remember we are assuming that the additive strain decompo-
sition is valid) of Poisson’s ratio is never known in practice,
and there will almost certainly be a difference between the
assumed and actual values, resulting in a significant error
in the predicted stresses. The seemingly obvious solution to
this extreme sensitivity to Poisson’s ratio of simply simu-
lating perfect incompressibility is not a valid approach. No
material is perfectly incompressible, and assuming this ide-
alization (denoted in our results by ν = 1/2) will result in
a difference between the idealized value assumed and the
actual value of Poisson’s ratio.

There is another feature of these plots worth noting: the
exponential form of the strain-energy function (21) was orig-
inally proposed by Holzapfel et al. (2000) as a means of
modeling the severe anisotropic strain-hardening observed
in experiments on biological, soft tissue. The above plots
suggest that this strain-hardening feature of the model is
blunted with decreasing values of Poisson’s ratio. Indeed for
ν = 0.475, a not untypical value for elastomers (Beatty and
Stalnaker 1986), the strain-hardening effect is moderate at
best. Thus, if one were to assume a compressibility parame-
ter close to this value of Poisson’s ratio, the essential severe
strain-hardening effect will not be reflected in the simula-
tions.

6 Stress sensitivity

The source of this hyper-sensitivity to variation in the value of
Poisson’s ratio is now explored. Consider first the response of
slightly compressible, anisotropic materials to general pure
homogeneous deformations of the form

x = λ1 X, y = λ2Y, z = λ3 Z ,

where (X, Y, Z) and (x, y, z) are the Cartesian coordinates of
a typical particle before and after deformation, respectively,
and the λs are positive constants. For simplicity, it is further
assumed that the directions of anisotropy in the undeformed
configuration are planar and symmetric with respect to each
other of the form

M = CI + SJ, M′ = CI − SJ,

where C ≡ cos �, S ≡ sin �, 0 < � < π/2,

using an obvious notation for the unit vectors in the unde-
formed configuration. The fiber directions are deformed into
the vectors FM, FM′ given by

FM = λ1C i + λ2Sj, FM′ = λ1C i − λ2Sj.

In terms of the normalized stretches (4) and their corre-
sponding invariants (5), the principal Cauchy stresses for
pure homogeneous deformations for two families of plane
mechanically equivalent fibers can be obtained from (7) and
are given by

Jσ1 = J
∂W ∗

∂ J
+ 2

3
W ∗

1

(
2λ∗2

1 − λ∗2
2 − λ∗2

3

)

+ 2

3
W ∗

2

(
λ∗2

1 λ∗2
2 + λ∗2

1 λ∗2
3 − 2λ∗2

2 λ∗2
3

)

+ 2

3

(
W ∗

4 + W ∗
6

) (
2λ∗2

1 C2 − λ∗2
2 S2

)

+ 4

3

(
W ∗

5 + W ∗
7

) (
2λ∗4

1 C2 − λ∗4
2 S2

)

+ 2

3
W ∗

8

(
2λ∗2

1 C2 + λ∗2
2 S2

)
,
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Jσ2 = J
∂W ∗

∂ J
+ 2

3
W ∗

1

(
2λ∗2

2 − λ∗2
1 − λ∗2

3

)

+ 2

3
W ∗

2

(
λ∗2

1 λ∗2
2 + λ∗2

2 λ∗2
3 − 2λ∗2

1 λ∗2
3

)

+ 2

3

(
W ∗

4 + W ∗
6

) (
2λ∗2

2 S2 − λ∗2
1 C2

)

+ 4

3

(
W ∗

5 + W ∗
7

) (
2λ∗4

2 S2 − λ∗4
1 C2

)

− 2

3
W ∗

8

(
2λ∗2

2 S2 + λ∗2
1 C2

)
,

Jσ3 = J
∂W ∗

∂ J
+ 2

3
W ∗

1

(
2λ∗2

3 − λ∗2
1 − λ∗2

2

)

+ 2

3
W ∗

2

(
λ∗2

1 λ∗2
3 + λ∗2

2 λ∗2
3 − 2λ∗2

1 λ∗2
2

)

− 2

3

(
W ∗

4 + W ∗
6

) (
λ∗2

1 C2 + λ∗2
2 S2

)

− 4

3

(
W ∗

5 + W ∗
7

) (
λ∗4

1 C2 + λ∗4
2 S2

)

+ 2

3
W ∗

8

(
λ∗2

2 S2 − λ∗2
1 C2

)
, (24)

which for plane-stress experiments become

Jσ1 = 2W ∗
1

(

λ∗2
1 − 1

λ∗2
1 λ∗2

2

)

+ 2λ∗2
2 W ∗

2

(

λ∗2
1 − 1

λ∗2
1 λ∗2

2

)

+ 2
(
W ∗

4 + W ∗
6 + W ∗

8

)
λ∗2

1 C2

+ 4
(
W ∗

5 + W ∗
7

)
λ∗4

1 C2,

Jσ2 = 2W ∗
1

(

λ∗2
2 − 1

λ∗2
1 λ∗2

2

)

+ 2λ∗2
1 W ∗

2

(

λ∗2
2 − 1

λ∗2
1 λ∗2

2

)

+ 2
(
W ∗

4 + W ∗
6 + W ∗

8

)
λ∗2

2 S2

+ 4
(
W ∗

5 + W ∗
7

)
λ∗4

2 S2, (25)

noting that λ∗
3 = 1/

(
λ∗

1λ
∗
2

)
. For equi-biaxial strain, plane-

stress experiments, these principal stresses therefore become

Jσ1 = 2W ∗
1

(

λ∗2
1 − 1

λ∗4
1

)

+ 2λ∗2
1 W ∗

2

(

λ∗2
1 − 1

λ∗4
1

)

+ 2
(
W ∗

4 + W ∗
6 + W ∗

8

)
λ∗2

1 C2

+ 4
(
W ∗

5 + W ∗
7

)
λ∗4

1 C2,

Jσ2 = 2W ∗
1

(

λ∗2
1 − 1

λ∗4
1

)

+ 2λ∗2
1 W ∗

2

(

λ∗2
1 − 1

λ∗4
1

)

+ 2
(
W ∗

4 + W ∗
6 + W ∗

8

)
λ∗2

1 S2

+ 4
(
W ∗

5 + W ∗
7

)
λ∗4

1 S2. (26)

The corresponding principal stresses for materials assumed
to be perfectly incompressible are given by

σ1 = 2W1

(
λ2

1 − λ−4
1

)
+ 2W2

(
λ4

1 − λ−2
1

)

+ 2 (W4 + W6 + W8) λ2
1C2 + 4 (W5 + W7) λ4

1C2,

σ2 = 2W1

(
λ2

1 − λ−4
1

)
+ 2W2

(
λ4

1 − λ−2
1

)

+ 2 (W4 + W6 − W8) λ2
1S2 + 4 (W5 + W7) λ4

1S2.

(27)

A comparison of (26) and (27) reveals the same structure,
with an interchange of stretches and normalized stretches
resulting in an interchange in the two formulations. This is
by design and is an attractive feature of the additive decom-
position (10).

Strain-energy functions of the form (21), (23) were simu-
lated in the previous section and are now considered here. To
facilitate the analysis, which is easily generalized in a natural
way, it is assumed that

W ∗ = 1

D

[
1

2
(J 2 − 1) − ln J

]
+ W

(
I ∗
1 , I ∗

4 , I ∗
6

)
, (28)

a general form of the strain-energy function previously con-
sidered, and that � = 45◦. The latter assumption is a close
approximation to the simulated value in (23) and simplifies
the analysis because now the two principal stress are the same
and for slightly compressible materials are given by

Jσ1 = Jσ2 = 2W1

(

λ∗2
1 − 1

λ∗4
1

)

+ (W4 + W6) λ∗2
1 . (29)

The corresponding principal stress for perfectly incompress-
ible materials for reduced strain-energy functions of the form
W = W (I1, I4, I6) has the form

σ1 = σ2 = 2W1

(
λ2

1 − λ−4
1

)
+ (W4 + W6) λ2

1. (30)

For strain-energy functions of the form (28), the plane-stress
condition for equi-biaxial strain with � = 45◦ follows from
(24)3 and is given by

0 = 3
(

J 2 − 1
)

+ 2D

[

2W1

(
1

λ∗4
1

− λ∗2
1

)

− (W4 + W6) λ∗2
1

]

. (31)

As before, let μ be the largest value of the initial shear moduli.
Let D̃ ≡ Dμ be a non-dimensional measure of the relative
contribution of the volumetric and deviatoric parts of the
strain-energy function. Then,
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0 = 3
(

J 2 − 1
)

+2D̃

[

2Ŵ1

(
1

λ∗4
1

− λ∗2
1

)

−
(
Ŵ4 + Ŵ6

)
λ∗2

1

]

,

Ŵa ≡ Wa/μ. (32)

Given that a typical shear modulus of biological, soft tissue
is of the order of kPa, it can be seen from Table 1 that the
product D̃ = Dμ is almost certainly infinitesimal. Motivated
by this and the form of the leading-order term in (32), assume
then that

J = 1 + D̃ J (1) = 1 + ε, ε 	 1, (33)

that is, the volume change is infinitesimal. Then,

λ∗
1 = J−1/3λ1 = (1 + ε)−1/3 λ1 = λ1

(
1 − ε

3

)
, (34)

neglecting higher-order terms here and elsewhere, and

I ∗
a = J−2/3 Ia = Ia

(
1 − 2ε

3

)
, a = 1, 4, 6. (35)

The leading-order term in (31) is then of O(D̃) and has the
form

3J (1) = σi/μ, (36)

where σi is the principal stress for perfectly incompressible
materials, assuming

Wa (I1, I4, I6) = Wa (I1, I4, I6) , a = 1, 4, 6.

Thus, the predicted volume change is simply a third of the
corresponding normalized incompressible stress, an interest-
ing consequence of the additive decomposition (10). Note
that the predicted volume change is positive, in agreement
with the only relevant experimental data available in the lit-
erature obtained by Penn (1970) and Christensen and Hoeve
(1970) for simple tension experiments on elastomers. With
this determination of the volume change, the smallness para-
meter ε can be interpreted as

ε = Dσi

3
.

Return now to the form for the principal stress for slightly
compressible materials given by (29). Expanding the right-
hand side in terms of ε and neglecting higher-order terms
yields

σs = σi − ε

3
T (37)

where

T = 2W1

(

5λ2
1 + 1

λ4
1

)

+ 4

(

λ2
1 − 1

λ4
1

)

(I1W11 + I4W14 + I6W16)

+ λ2
1 [5W4 + 5W6 + 2I1W14 + 2I4W44

+ 2 (I4 + I6) W46 + 2I1W16 + 2I6W66] .

A reassuring feature of this analysis is that for λ1 > 1 and
for positive partial derivatives of W , which is the rule in
practice, T > 0. Thus, the analysis predicts that the stress
will be smaller in the slightly compressible case than in the
perfectly incompressible case, which is reflected in the plots
of the last section. The truncated Maclaurin series (37) has
the alternative form

σs = σi

(
1 − D

9
T

)
. (38)

The hyper-sensitivity of the stress for slightly compressible
materials to variations in Poisson’s ratio is thus explained.
The data in Table 1 can be summarized as noting that a
reduction of one in the second decimal place in Poisson’s
ratio increases D by an order of magnitude. It follows from
(38) that an increase in D causes a decrease in the stress and
that this decrease will be significant due to the large change
in the value of D. This is exactly what is illustrated in Figs.
2, 3. Note also that the perturbation about the stress obtained
in the perfectly incompressible case is a multiplicative factor
rather than the usual additive model. This is a consequence
of the decomposition (10) and will tend to magnify the varia-
tion from the perfectly incompressible case due to variations
in the choice of ν.

7 Conclusion

Two problems with the current approach of simulating
slightly compressible anisotropic hyperelasticity have been
identified. The first is what we believe is a fundamental flaw
in the constitutive modeling. The usual decomposition of
the strain-energy function into separate volumetric and devi-
atoric parts is equivalent to assuming that the hydrostatic
stress is a function only of the invariant that measures vol-
ume change. Thus, if one were to consider pure hydrosta-
tic stress of a cube, say, of such a material, the cubic shape
would be maintained. This is at variance with simple physics,
where, under hydrostatic stress, the fibers and matrix would
deform differently, resulting in a change in the cubic shape.
Some indication of the presence of the fibers must be reflected
therefore in the constitutive model for hydrostatic stress.
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A second problem is a practical problem with the current
formulation of slightly compressible, anisotropic materials
in commercial finite element codes. The compressibility fac-
tor is treated as if it were the reciprocal of the isotropic,
infinitesimal bulk modulus. Small variations in the choice of
Poisson’s ratio close to the limiting value of 1/2 result in
significant variations in the predicted stress. For relatively
low levels of strain (<10 %) such as commonly occur in soft
biological tissue, these predicted stresses can be in error by
more than a single order of magnitude. This means that sim-
ulated stress distributions based on an arbitrary choice of
Poisson’s ratio ‘close’ to 1/2 are very likely to be unrealistic.
Whether the predicted stresses are significantly greater than
or less than the actual stresses has real implications since
a medical device designed using FE tools could be either
over designed or, conversely, likely to fail in service. Fur-
thermore, the present work has demonstrated that the severe
strain-hardening effect that seems an essential part of con-
stitutive models of biological, soft tissue is not reflected in
models using a Poisson’s ratio as high as 0.4995. Extensive
and careful experimentation on the compressibility of biolog-
ical, soft tissue is needed before robust and reliable models
of slight compressibility can be formulated. These will then
lead to physically accurate computer-based design models
for future medical devices that interact with or are embedded
into soft biological tissue.
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